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1 Introduction
Euclidean Clifford analysis is a higher dimensional function theory offering a refinement
of classical harmonic analysis. The theory is centred around the concept of monogenic
functions, i.e. null solutions of a first-order vector-valued rotation invariant differential
operator, called Dirac operator, which factorises the Laplacian; monogenic functions may
thus also be seen as a generalisation of holomorphic functions in the complex plane. Its
roots go back to the s. Formore details on this function theorywe refer to the standard
references [, , –].
More recently Hermitian Clifford analysis emerged as a refinement of the Euclidean set-

ting for the case of Rn. Here, Hermitian monogenic functions are considered, i.e. func-
tions taking values either in a complex Clifford algebra or in complex spinor space, and
being simultaneous null solutions of two complex Hermitian Dirac operators, which are
invariant under the action of the unitary group. For the systematic development of this
function theory we refer to [–].
In the papers [, , , ], the Hermitian Clifford analysis setting was further refined

by considering functions on R
n with values in a quaternionic Clifford algebra, being si-

multaneous null solutions of four mutually related quaternionic Dirac operators, which
are invariant under the action of the symplectic group. In [], Borel-Pompeiu and Cauchy
integral formulas are established in this setting, by following a ( × ) circulant matrix
approach, similar in spirit to the circulant ( × ) matrix approach introduced in []
within the complexHermitianClifford case. Subsequently, in [] a quaternionicHermitian
Cauchy integral is introduced, as well as its boundary limit values, leading to the definition
of a matrix quaternionic Hermitian Hilbert transform. These operators provide a useful
tool for studying boundary value problems for the quaternionic Hermitian system. This
is precisely the main objective of the present paper. The main problems that we address
are the problem of finding a quaternionic Hermitian monogenic function with a given
jump over a given surface ofRn as well as problems of Dirichlet type for the quaternionic
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Hermitian system. Finally, we also prove an equivalence between both-sided quaternionic
Hermitian monogenicity and a certain integral conservation law.

2 Preliminaries
Let (e, . . . , em) be an orthonormal basis of Euclidean space Rm and consider the real Clif-
ford algebraR,m constructed overRm. The non-commutativemultiplication inRm is gov-
erned by the rules:

e� = –, � = , . . . ,m,

e�ek + eke� = , � �= k.

In Rm one can consider the following automorphisms:
(i) the conjugation e� = –e� and for any a,b ∈Rm, ab = ba
(ii) the main involution ẽ� = –e� and for any a,b ∈Rm, ãb = ãb̃.

In particular, we consider the skew-field of quaternionsHwhose elements will be denoted
by q = x + ix + jx + kx with i = j = k = – and ij = –ji = k. Clearly,Hmay be identified
with the Clifford algebra R, making the identifications i ↔ e, j ↔ e and k ↔ ee. The
automorphisms (i) and (ii) then respectively lead to the H-conjugation

q = x – ix – jx – kx

and to the main H-involution

qγ ≡ q̃ = x – ix – jx + kx.

However, it is quite natural to introduce two more H-involutions defined by

qα = x + ix – jx – kx, qβ = x – ix + jx – kx.

Definition  (see[]) The quaternionic Witt basis ofHm =H⊗R Rm,m = n, is given by
{f�, f α

� , f
β

� , f
γ

� }, � = , . . . ,n, where

f� = e+(�–) – ie+(�–) – je+(�–) – ke+(�–),

f α
� = e+(�–) – ie+(�–) + je+(�–) + ke+(�–),

f β

� = e+(�–) + ie+(�–) – je+(�–) + ke+(�–),

f γ

� = e+(�–) + ie+(�–) + je+(�–) – ke+(�–).

We will consider the Clifford vectors

X = X =
n∑

�=

(e�–x�– + e�–x�– + e�–x�– + e�x�),

X =
n∑

�=

(e�–x�– – e�–x�– – e�–x� + e�x�–),
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X =
n∑

�=

(e�–x�– + e�–x� – e�–x�– – e�x�–),

X =
n∑

�=

(e�–x� – e�–x�– + e�–x�– – e�x�–)

for whichX
r = –|X|, whileXrXs+XsXr = , r �= s, r, s = , . . . , . The correspondingDirac

operators are denoted by ∂X = ∂X, ∂X , ∂X and ∂X. Here we have ∂
Xr

= –�n, with �n

the Laplacian in R
n, and ∂Xr∂Xs + ∂Xs∂Xr = , r �= s, r, s = , . . . , . Next, the quaternionic

Hermitian variables are introduced:

Z = Z = X + iX + jX + kX,

Z = X + iX – jX – kX,

Z = X – iX + jX – kX,

Z = X – iX – jX + kX

for which ZZ
†
 + ZZ

†
 + ZZ

†
 + ZZ

†
 = |X|, the symbol † denoting Hermitian quater-

nionic conjugation is defined as the composition of H-conjugation and Clifford conjuga-
tion in R,m, i.e. λ† =

∑
A eAλA. The Hermitian Dirac operators are

∂Z =



(∂X + i∂X + j∂X + k∂X ),

∂Z =



(∂X + i∂X – j∂X – k∂X ),

∂Z =



(∂X – i∂X + j∂X – k∂X ),

∂Z =



(∂X – i∂X – j∂X + k∂X )

for which �n = (∂Z∂
†
Z

+ ∂Z∂
†
Z

+ ∂Z∂
†
Z

+ ∂Z∂
†
Z
).

Definition  (see []) Let	 be an open set inRn. A continuously differentiable function
f : 	 �→ Hn is said to be (left) q-Hermitian monogenic in 	 (or q-monogenic for short)
iff it satisfies in 	 the system ∂Z f = ∂Z f = ∂Z f = ∂Z f = , or, equivalently, the system
∂X f = ∂X f = ∂X f = ∂X f = .

Similarly right q-monogenicity is defined. Left and right q-monogenic functions are
called two-sided q-monogenic. A q-monogenic function in	 is monogenic, and thus har-
monic in 	. Note that Definition  was proven in [] to be equivalent to the system in-
troduced in [] by group invariance considerations.
The fundamental solutions of the Dirac operators ∂Xr , r = , . . . , , i.e. the Euclidean

Cauchy kernels, are respectively given by

Er(X) = –

an

Xr
|X|n , r = , . . . , 
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with an the area of the unit sphere Sn– inRn. Explicitly, thismeans that ∂XrEr(X) = δ(X),
r = , . . . , . Next we introduce the Hermitian Cauchy kernels:

Er(Z) =

an

Z†
r

|Z|n , r = , . . . , .

Note that Er is not the fundamental solution of ∂Zr . However, the following theoremholds,
see [].

Theorem  Introducing the circulant (× ) matrices

D =

⎛
⎜⎜⎜⎝

∂Z ∂Z ∂Z ∂Z
∂Z ∂Z ∂Z ∂Z
∂Z ∂Z ∂Z ∂Z
∂Z ∂Z ∂Z ∂Z

⎞
⎟⎟⎟⎠ , E =

⎛
⎜⎜⎜⎝
E E E E
E E E E
E E E E
E E E E

⎞
⎟⎟⎟⎠ ,

δ =

⎛
⎜⎜⎜⎝

δ   
 δ  
  δ 
   δ

⎞
⎟⎟⎟⎠

one obtains thatDTE = EDT = δ.

Thus, E is a fundamental solution ofD, in a matricial interpretation.
We associate, with functions g, g, g and g defined in 	 ⊂ R

n and taking values in
Hn, the (× ) circulant matrix function

G =

⎛
⎜⎜⎜⎝
g g g g
g g g g
g g g g
g g g g

⎞
⎟⎟⎟⎠ ≡ circ

⎛
⎜⎜⎜⎝
g
g
g
g

⎞
⎟⎟⎟⎠ . ()

We say that G belongs to some class of functions if all its entries belong to that class.
In particular, the spaces of k-times continuously differentiable, of α-Hölder continuous
( < α ≤ ) and of p-integrable (× ) circulant matrix functions on some suitable subset
E of Rn are respectively denoted by Ck(E), C,α(E) and Lp(E). The corresponding spaces
of Hn-valued functions are denoted by Ck(E), C,α(E) and Lp(E). Moreover, introducing
the non-negative function ‖G(X)‖ =maxr=,,,{|gr(X)|}, the classesC,α(E) and Lp(E) may
also be defined by means of the respective traditional conditions

‖G‖α =max
X∈E

∥∥G(X)∥∥ + sup
X,Y∈E,X �=Y

‖G(X) –G(Y )‖
|X – Y |α < +∞

and

‖G‖p =
(∫

E

∥∥G(X)∥∥p
) 

p
< +∞.

http://www.boundaryvalueproblems.com/content/2012/1/0
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Definition  The (× ) circulant matrix function G is called (left)Q-Hermitian mono-
genic in 	 (orQ-monogenic for short) iffDTG =O in 	, whereO denotes the matrix with
zero entries.

Similarly right Q-monogenicity is defined by the system GDT = O. Left and right Q-
monogenic matrix functions are called two-sided Q-monogenic. An important special
case concerns the diagonal matrix function G, with g = g and g = g = g = . Indeed,
G is left (respectively right) Q-monogenic iff the function g is left (respectively right)
q-monogenic.
Now, let 	+ = 	 be a bounded simply connected domain in R

n with boundary � = ∂	,
and denote by 	– the complementary open domain R

n \ (	 ∪ �). We assume � to be a
Liapunov surface. The unit normal vector on � at X ∈ � is given by

n(X) =
n∑

�=

(
e�–n�–(X) + e�–n�–(X) + e�–n�–(X) + e�n�(X)

)

and similarly as above, we also introduce the vectors n, n and n, giving rise in the usual
way (up to a constant factor) to their Hermitian counterparts

N =



(n + in + jn + kn)

and N, N, N, as well as to the circulant matrix N . Then, in [], the following Cauchy
integral formulae were proven for Q-monogenic matrix functions and for q-monogenic
functions, respectively.

Theorem  (Q-Hermitian Cauchy integral formula) If the matrix function G, (), is Q-
monogenic in 	 then

∫
∂�

E(Z –V )N T (Z)G(X)dS(X) =

⎧⎨
⎩
G(Y ), Y ∈ �+,

O, Y ∈ �–.

Theorem  (q-Hermitian Cauchy integral formula) If the function g is q-monogenic in 	

then

∫
∂�

E(Z –V )N T (Z)G(X)dS(X) =

⎧⎨
⎩
G(Y ), Y ∈ �+,

O, Y ∈ �–,

where G is the corresponding diagonal matrix.

Next, in [] a Q-Hermitian Cauchy transform was introduced, given by

C[G](Y ) =
∫

�

E(Z –V )N T (Z)G(X)dS(X), Y /∈ � ()

for a matrix function G ∈ C(�), where Z and V denote the Hermitian versions of the Clif-
ford vectors X and Y , respectively. C[G] is a leftQ-monogenic matrix function in R

n \�,

http://www.boundaryvalueproblems.com/content/2012/1/0
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vanishing at infinity; in terms of the Euclidean Cauchy type integrals

Cr,sg(Y ) :=
∫

�

Er(X – Y )ns(X)g(X)dS(X), Y /∈ �

it reads as

C[G] = 

circ

⎛
⎜⎜⎜⎝

C, +C, +C, +C,

C, –C, + j(C, +C,)
C, –C, +C, –C,

C, –C, – j(C, +C,)

⎞
⎟⎟⎟⎠ [G].

In particular, for the special case of the matrix G, the action of C is reduced to

C[G] =


circ

⎛
⎜⎜⎜⎝

C,g +C,g +C,g +C,g
C,g –C,g + j(C,g +C,g)
C,g –C,g +C,g –C,g
C,g –C,g – j(C,g +C,g)

⎞
⎟⎟⎟⎠ .

In general C[G] will not be a diagonal matrix, whence its entries will not be left q-
monogenic functions. However C[G] does become diagonal if and only if

C,g = C,g, C,g = –C,g, C,g = C,g +C,g ()

in which case we obtain

C[G] = circ

⎛
⎜⎜⎜⎝
C,g




⎞
⎟⎟⎟⎠ = circ

⎛
⎜⎜⎜⎝
C,g




⎞
⎟⎟⎟⎠ =



circ

⎛
⎜⎜⎜⎝
C,g +C,g





⎞
⎟⎟⎟⎠ .

The following Plemelj-Sokhotski formula, proven in [], then asserts the existence of the
continuous boundary limits of the Q-Hermitian Cauchy transform.

Theorem  Let G ∈ C,α(�) ( < α ≤ ), then the continuous limit values of its Q-
Hermitian Cauchy transform C[G] exist and are given by

C±[G](U) =


(
H[G](U)±G(U)

)
, U ∈ �.

Here we have introduced the matrix Q-Hermitian Hilbert operator

H[G] =


circ

⎛
⎜⎜⎜⎝

H, +H, +H, +H,

H, –H, + j(H, +H,)
H, –H, +H, –H,

H, –H, – j(H, +H,)

⎞
⎟⎟⎟⎠ [G],

where the singular integrals

Hr,sg(U) = 
∫

�

Er(X –U)ns(X)g(X)dS(X), U ∈ �

http://www.boundaryvalueproblems.com/content/2012/1/0
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are Cauchy principal values.H shows the following traditional properties, see [].

Theorem  One has
(i) H is a bounded linear operator on (C,α(�),‖ • ‖α) ( < α < )
(ii) H is an involution on C,α(�) ( < α < ).

Similar results may be obtained for right-hand versions of theQ-Hermitian Cauchy and
Hilbert transforms by means of the alternative definitions

[G]C(Y ) =
∫

�

G(X)N T (Z)E(Z –V )dS(X), Y /∈ �

and

[G]H = [G]


circ

⎛
⎜⎜⎜⎝

H, +H, +H, +H,

H, –H, + j(H, +H,)
H, –H, +H, –H,

H, –H, – j(H, +H,)

⎞
⎟⎟⎟⎠ ,

where

gHr,s(U) = 
∫

�

g(X)ns(X)Er(X –U)dS(X), U ∈ �.

3 Boundary value problems forQ-monogenic functions
In this section we study the so-called jump problem (reconstruction problem) for Q-
monogenic functions; that is, we will investigate the problem of reconstructing a Q-
monogenic matrix function � in R

n \ � vanishing at infinity and having a prescribed
jump G across �, i.e.

�+(U) –�–(U) = G(U), U ∈ �. ()

First, it should be noted that if this problem has a solution, then it necessarily is unique.
This assertion can be easily proven using the Painlevé and Liouville theorems in the Clif-
ford analysis setting, see []. Next, under the condition that G ∈ C,α(�), Theorem  en-
sures the solvability of the jump problem (), its unique solution being given by

�(Y ) = C[G](Y ), Y ∈R
n \ �.

Now consider the important special case of the matrix function G. The reconstruction
problem () then is strongly related to the jump problem for the involved q-monogenic
function, as addressed in the following theorem.

Theorem  For a function g ∈ C,α(�), the following statements are equivalent:
(i) the jump problem

ψ+(U) –ψ–(U) = g(U), U ∈ � ()

is solvable in terms of q-monogenic functions;

http://www.boundaryvalueproblems.com/content/2012/1/0
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(ii) g satisfies the relations ();
(iii) g satisfies the relations C,g = C,g = C,g = C,g .

Proof
(i) → (ii)
Associate to the function g the diagonal matrix function G. Then G ∈C,α(�), and the

jump problem () for G has the unique solution

�(Y ) = C[G](Y ), Y ∈ R
n \ �.

Let ψ be a solution of (), then the circulant matrix

�(Y ) = circ

⎛
⎜⎜⎜⎝

ψ





⎞
⎟⎟⎟⎠

is another solution of the jump problem () for G, whence the uniqueness yields

circ

⎛
⎜⎜⎜⎝

ψ





⎞
⎟⎟⎟⎠ =



circ

⎛
⎜⎜⎜⎝

C,g +C,g +C,g +C,g
C,g –C,g + j(C,g +C,g)
C,g –C,g +C,g –C,g
C,g –C,g – j(C,g +C,g)

⎞
⎟⎟⎟⎠

implying (ii).
(ii) → (iii)
From the third relation in (), we have ∂Y C,g = ∂Y C,g + ∂Y C,g = ∂Y C,, and

hence

∂Y C,g =
∫

�

(
∂Y E(X – Y )

)
n(X)g(X)dS(X)

= –
∫

�

(
∂Y E(X – Y )

)
n(X)g(X)dS(X)

= –∂Y C,g = ∂Y C,g = , Y /∈ �

the latter following from the second relation in () and the ∂Y -monogenicity ofC,g . This
factmeans thatC,g–C,g is a ∂Y  -monogenic function inRn \�. Moreover, it has a null
jump through �, whence it vanishes in the whole of Rn. We conclude that C,g = C,g .
Similarly, we arrive at C,g = C,g .
(iii) → (i)
It suffices to observe that, under the conditions stated, C,g is q-monogenic, whence it

solves the jump problem (). �

For right q-monogenic functions the following analogue is obtained.

Theorem  For a function g ∈ C,α(�), the following statements are equivalent:

http://www.boundaryvalueproblems.com/content/2012/1/0
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(i) the jump problem

ψ+(U) –ψ–(U) = g(U), U ∈ � ()

is solvable in terms of right q-monogenic functions;
(ii) g satisfies the relations

gC, = gC,, gC, = –gC,, gC, = gC, + gC,;

(iii) g satisfies the relations gC, = gC, = gC, = gC,.

The next result deals with theDirichlet boundary value problem forQ-monogenic func-
tions.

Theorem  Let G ∈C,α(�), then the following statements are equivalent:
(i) The Dirichlet problem

DTF =O
(
resp. FDT =O

)
, in 	,

F = G, on �
()

has a solution.
(ii) H[G] = G (resp. [G]H = G).

Proof Wegive the proof for the left-sided version of the theorem, the right-sided one being
completely similar.
(i) → (ii)
Let F be a solution of the Dirichlet problem (). Then, by theQ-Hermitian Cauchy for-

mula, we have

C[F](Y ) = F(Y ), Y ∈ 	.

Taking limits as Y →U ∈ �, (ii) follows in view of Theorem .
(ii) → (i)
It suffices to observe that, under the condition (ii), F = C[G] solves (). �

Theorem  Let g ∈ C,α(�), then the following statements are equivalent:
(i) The Dirichlet problem

∂Z f = ∂Z f = ∂Z f = ∂Z f = , in 	,

f = g, on �
()

has a solution.
(ii) g satisfies the relations

H,g =H,g = g, H,g = –H,g, H,g +H,g = g.

http://www.boundaryvalueproblems.com/content/2012/1/0
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(iii) g satisfies the relations

H,g =H,g =H,g =H,g = g.

Proof
(i) → (ii)
From (i) we see that the matrix function

F = circ

⎛
⎜⎜⎜⎝
f




⎞
⎟⎟⎟⎠

is a solution of the Dirichlet problem

DTF =O, in 	,

F = G, on �

whence by Theorem  we have thatH[G] = G. The desired conclusion (ii) then directly
follows by comparing the entries in the above equality.
(ii) → (iii)
From the condition H,g = H,g = g it follows that C±

,g = C±
,g . Therefore, as C,g –

C,g is harmonic in 	± and C±
,g – C±

,g|� = , we have C,g = C,g in R
n \ �. Using

the remaining conditions in (ii) and following a similar reasoning as above, we obtain that
g satisfies the relations () and hence by Theorem  we have that C,g = C,g = C,g =
C,g . Consequently, we obtain that H,g =H,g =H,g =H,g = g , as stated in (iii).
(iii) → (i)
The conditions H,g = H,g = H,g = H,g = g imply the solvability of the Dirichlet

problems

∂Xr f = , in 	,

f = g, on �,
()

where r = , . . . , . Now, let f, f, f, f be the respective solutions of (), then these func-
tions all are solutions of the classical Dirichlet problem

�nf = , in 	,

f = g, on �

whence they coincide. The function f = f = f = f = f thus is q-monogenic and constitutes
a solution of (). �

For right q-monogenic functions the following analogue is obtained.

Theorem  Let g ∈ C,α(�), then the following statements are equivalent:

http://www.boundaryvalueproblems.com/content/2012/1/0
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(i) The Dirichlet problem

f ∂Z = f ∂Z = f ∂Z = f ∂Z = , in 	,

f = g, on �
()

has a solution.
(ii) g satisfies the relations

gH, = gH, = g, gH, = –gH,, gH, + gH, = g.

(iii) g satisfies the relations

gH, = gH, = gH, = gH,g = g.

We now turn our attention towards establishing a connection between the two-sided
Q-monogenicity of a matrix function G and the matrix Hilbert transforms H[G|�] and
[G|�]H of its trace on the boundary �.

Theorem  Let G ∈ C,α(	 ∪ �), such thatDTG =O in 	, then the following statements
are equivalent:

(i) G is two-sided Q-monogenic in 	.
(ii) H[G|�] = [G|�]H.

Proof Assume that, next to its already assumed left Q-monogenicity, G also is right Q-
monogenic in 	. Then by Theorem  it holds that

H[G|�] = G|� = [G|�]H.

Conversely, suppose that H[G|�] = [G|�]H. By Theorem  and its right-handed version,
we conclude that the corresponding left and right Q-Hermitian Cauchy transform of G,
C[G] and [G]C, have the same boundary values on �. This fact, together with their har-
monicity, implies that

C[G] = [G]C.

On the other hand, from the assumed left Q-monogenicity of G we have G = C[G] and
hence

G = C[G] = [G]C

which clearly forces G to be two-sided Q-monogenic. �

The following result illustrates the utility of the above theorem when considering q-
monogenic functions.

Theorem  Let g ∈ C,α(	 ∪ �) be left q-monogenic in 	, then the following statements
are equivalent:

http://www.boundaryvalueproblems.com/content/2012/1/0
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(i) g is two-sided q-monogenic in 	.
(ii) g satisfies the relations

H,g = gH,, H,g = gH,,

H,g +H,g = gH, + gH,,

H,g +H,g = gH, + gH,.

(iii) g satisfies the relations

H,g = gH,, H,g = gH,, H,g = gH,, H,g = gH,.

Proof
(i) ↔ (ii)
From (i) we see that the matrix function G corresponding to g is two-sided Q-

monogenic in 	, whence (ii) follows from Theorem (ii) applied to G. Conversely, (ii)
can be rewritten in the matricial form H[G|�] = [G|�]H, from which (i) follows by ob-
serving that the two-sided Q-monogenicity of G implied by Theorem  is equivalent to
the q-monogenicity of g .
(i) ↔ (iii)
It follows from (i) that g is two-sided monogenic w.r.t. ∂Xr , r = , . . . , . We may then

invoke [, Theorem .] in order to conclude that Hr,rg = gHr,r , r = , . . . , . Conversely,
suppose that (iii) holds. Each of the conditions Hr,rg = gHr,r , r = , . . . , , implies the two-
sided monogenicity of g in 	 w.r.t. ∂Xr , r = , . . . , , see again [, Theorem .], whence g
is two-sided q-monogenic in 	. �
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