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Abstract

We prove some new results on existence of solutions to first-order ordinary
differential equations with deviated arguments. Delay differential equations are
included in our general framework, which even allows deviations to depend on the
unknown solutions. Our existence results lean on new definitions of lower and upper
solutions introduced in this article, and we show with an example that similar results
with the classical definitions are false. We also introduce an example showing that
the problems considered need not have the least (or the greatest) solution between
given lower and upper solutions, but we can prove that they do have minimal and
maximal solutions in the usual set-theoretic sense. Sufficient conditions for the
existence of lower and upper solutions, with some examples of application, are
provided too.

1 Introduction
Let I0 = [t0, t0 + L] be a closed interval, r ≥ 0, and put I- = [t0 - r, t0] and I = I- ∪ I0. In

this article, we are concerned with the existence of solutions for the following problem

with deviated arguments:
{
x′(t) = f (t, x(t), x(τ (t, x))) for almost all (a.a.) t ∈ I0,
x(t) = �(x) + k(t) for all t ∈ I−,

(1)

where f : I × ℝ2 ® ℝ and τ : I0 × C(I) → I are Carathéodory functions,

� : C(I) → R is a continuous nonlinear operator and k ∈ C(I−) . Here C(J) denotes

the set of real functions which are continuous on the interval J.

For example, our framework admits deviated arguments of the form

τ (t, x) = sin2(x(t)) t0 + (1 − sin2(x(t))) (t0 + L),

or

τ (t, x) = t − ∫I

∣∣x(s)∣∣ ds
1 + ∫I

∣∣x(s)∣∣ ds r.

We define a solution of problem (1) to be a function x ∈ C(I) such that

x|I0 ∈ AC(I0) (i.e., x|I0 is absolutely continuous on I0) and x fulfills (1).
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In the space C(I) we consider the usual pointwise partial ordering, i.e., for

γ1, γ2 ∈ C(I) we define g1 ≤ g2 if and only if g1(t) ≤ g2(t) for all t Î I. A solution of (1),

x*, is a minimal (respectively, maximal) solution of (1) in a certain subset Y ⊂ C(I) if

x* Î Y and the inequality x ≤ x*, (respectively, x ≥ x*) implies x = x*, whenever x is a

solution to (1) and x Î Y. We say that x* is the least (respectively the greatest) solution

of (1) in Y if x* ≤ x (respectively x* ≥ x) for any other solution x Î Y. Notice that the

least solution in a subset Y is a minimal solution in Y, but the converse is false in gen-

eral, and an analgous remark is true for maximal and greatest solutions.

Interestingly, we will show that problem (1) may have minimal (maximal) solutions

between given lower and upper solutions and not have the least (greatest) solution.

This seems to be a peculiar feature of equations with deviated arguments, see [1] for

an example with a second-order equation. Therefore, we are obliged to distinguish

between the concepts of minimal solution and least solution (or maximal and greatest

solutions), unfortunately often identified in the literature on lower and upper solutions.

First-order differential equations with state-dependent deviated arguments have

received a lot of attention in the last years. We can cite the recent articles [2-7] which

deal with existence results for this kind of problems. For the qualitative study of this

type of problems we can cite the survey of Hartung et al. [8] and references therein.

As main improvements in this article with regard to previous works in the literature

we can cite the following:

(1) The deviating argument τ depends at each moment t on the global behavior of

the solution, and not only on the values that it takes at the instant t.

(2) Delay problems, which correspond to differential equations of the form x’(t) = f(t,

x(t), x(t - r)) along with a functional start condition, are included in the framework of

problem (1). This is not allowed in articles [3-6].

(3) No monotonicity conditions are required for the functions f and τ, and they need

not be continuous with respect to their first variable.

This article is organized as follows. In Section 2, we state and prove the main results

in this article, which are two existence results for problem (1) between given lower

and upper solutions. The first result ensures the existence of maximal and minimal

solutions, and the second one establishes the existence of the greatest and the least

solutions in a particular case. The concepts of lower and upper solutions introduced in

Section 2 are new, and we show with an example that our existence results are false if

we consider lower and upper solutions in the usual sense. We also show with an

example that our problems need not have the least or the greatest solution between

given lower and upper solutions. In Section 3, we prove some results on the existence

of lower and upper solutions with some examples of application.

2 Main results
We begin this section by introducing adequate new definitions of lower and upper

solutions for problem (1).

Notice first that τ(t, g) Î I = I- ∪ I0 for all (t, γ ) ∈ I0 × C(I) , so for each t Î I0we can

define

τ∗(t) = inf
γ∈C(I)

τ (t, γ ) ∈ I, τ ∗(t) = sup
γ∈C(I)

τ (t, γ ) ∈ I.

Figueroa and Pouso Boundary Value Problems 2012, 2012:7
http://www.boundaryvalueproblems.com/content/2012/1/7

Page 2 of 12



Definition 1 We say that α,β ∈ C(I) , with a ≤ b on I, are a lower and an upper

solution for problem (1) if α|I0 ,β|I0 ∈ AC(I0)and the following inequalities hold:

α′(t) ≤ min
ξ∈E(t)

f (t,α(t), ξ) for a.a. t ∈ I0, α ≤ inf
γ∈[α,β]

�(γ ) + k on I−, (2)

β ′(t) ≥ min
ξ∈E(t)

f (t,β(t), ξ) for a.a. t ∈ I0, β ≥ sup
γ∈[α,β]

�(γ ) + k on I−, (3)

where

E(t) =
[

min
s∈[τ∗(t),τ ∗(t)]

α(s), max
s∈[τ∗(t),τ ∗(t)]

β(s)
]

(t ∈ I0),

and [α,β] = {γ ∈ C(I) : α ≤ γ ≤ β}..
Remark 1 Definition 1 requires implicitly that Λ be bounded in [a, b].
On the other hand, the values

min
ξ∈E(t)

f (t,α(t), ξ) and max
ξ∈E(t)

f (t,β(t), ξ),

are really attained for almost every fixed t Î I0 thanks to the continuity of f(t, a(t), ·)
and f(t, b(t), ·) on the compact set E(t).

Now we introduce the main result of this article.

Theorem 1 Assume that the following conditions hold:

(H1) (Lower and upper solutions) There exist α,β ∈ C(I) , with a ≤ b on I, which

are a lower and an upper solution for problem (1).

(H2) (Carathéodory conditions)

(H2) - (a) For all x, y Î [mintÎI a(t), maxtÎI b(t)] the function f(·,x,y) is measur-

able and for a.a. t Î I0, all x Î [a(t), b(t)] and all y Î E(t) (as defined in Defi-

nition 1) the functions f(t, ·, y) and f(t, x, •) are continuous.

(H2) - (b) For all γ ∈ [α,β] = {ξ ∈ C(I) : α ≤ ξ ≤ β}the function τ(·, g) is mea-

surable and for a.a. t Î I0 the operator τ(t, ·) is continuous in C(I) (equipped
with it usual topology of uniform convergence).

(H2) - (c) The nonlinear operator � : C(I) → R is continuous.

(H3) (L
1-bound) There exists ψ Î L1( I0) such that for a.a. t Î I0, all x Î [a(t), b(t)]

and all y Î E(t) we have
∣∣f (t, x, y)∣∣ ≤ ϕ(t).

Then problem (1) has maximal and minimal solutions in [a, b].
Proof. As usual, we consider the function

p(t, x) =

⎧⎨
⎩

α(t), if x < α(t),
x, if α(t) ≤ x ≤ β(t),

β(t), if x > β(t),

and the modified problem
{
x′(t) = f (t, p(t, x(t)), p(τ (t, x), x(τ (t, x)))) for a.a. t ∈ I0,
x(t) = �(p(·, x(·))) + k(t) for all t ∈ I−.

(4)
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Claim 1: Problem (4) has a nonempty and compact set of solutions. Consider the

operator T : C(I) → C(I) which maps each γ ∈ C(I) to a continuous function Tg
defined for each t Î I- as

Tγ (t) = �(p(·, γ (·))) + k(t),

and for each t Î I0 as

Tγ (t) = �(p(·, γ (·))) + k(t0) +
∫ t

t0
f (s, p(t, γ (s)), p(τ (s, γ ), γ (τ (s, γ ))))ds.

It is an elementary matter to check that T is a completely continuous opera-tor from

C(I) into itself (one has to take Remark 1 into account). Therefore, Schauder’s Theo-

rem ensures that T has a nonempty and compact set of fixed points in C(I) , which are

exactly the solutions of problem (4).

Claim 2: Every solution x of (4) satisfies a ≤ x ≤ b on I and, therefore, it is a solution

of (1) in [a, b]. First, notice that if x is a solution of (4) then p(·,x(·)) Î [a, b]. Hence

the definition of lower solution implies that for all t Î I- we have

α(t) ≤ �(p(·, x(·))) + k(t) = x(t).

Assume now, reasoning by contradiction, that x�α on I0. Then we can find

t̂0 ∈ [t0, t0 + L) and ε > 0 such that α(t̂0) = x(t̂0) and

α(t) > x(t) for all t ∈ [t̂0, t̂0 + ε]. (5)

Therefore, for all t ∈ [t̂0, t̂0 + ε] we have p(t, x(t)) = a(t) and

p(τ (t, x), x(τ (t, x))) ∈ [α(τ (t, x)),β(τ (t, x))] ⊂ E(t),

so for a.a. s ∈ [t̂0, t̂0 + ε] we have

α′(s) ≤ f (s, p(s, x(s)), p(τ (s, x), x(τ (s, x)))).

Hence for t ∈ [t̂0, t̂0 + ε] we have

α(t) − x(t) =
∫ t

t0
α′(s)ds −

∫ t

t̂0
f (s, p(s, x(s)), p(τ (s, x), x(τ (s, x)))) ds ≤ 0,

a contradiction with (5).

Similar arguments prove that all solutions x of (4) obey x ≤ b on I. Claim 3: The set

of solutions of problem (1) in [a, b] has maximal and minimal elements. The set

S = {x ∈ C(I) : x is a solution of (1), x ∈ [α,β]}

is nonempty and compact in C(I) , beacuse it coincides with the set of fixed points of

the operator T. Then, the real-valued continuous mapping

x ∈ S 
→ I(x) =
∫ t0+L

t0
x(s)ds
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attains its maximum and its minimum, that is, there exist x∗, x∗ ∈ S such that

I(x∗) = max{I(x) : x ∈ S}, I(x∗) = min{I(x) : x ∈ S}. (6)

Now, if x ∈ S is such that x ≥ x* on I then we have I(x) ≥ I(x∗) and, by (6),

I(x) ≤ I(x∗). So we conclude that I(x) = I(x∗) which, along with x ≥ x*, implies that

x = x* on I. Hence x* is a maximal element of S . In the same way, we can prove that

x* is a minimal element.

One might be tempted to follow the standard ideas with lower and upper solutions

to define a lower solution of (1) as some function a such that

α′(t) ≤ f (t,α(t),α(τ (t,α))) for a.a. t ∈ I0, (7)

and an upper solution as some function b such that

β ′(t) ≥ f (t,β(t),β(τ (t,β))) for a.a. t ∈ I0. (8)

These definitions are not adequate to ensure the existence of solutions of (1)

between given lower and upper solutions, as we show in the following example.

Example 1 Consider the problem with delay

x′(t) = −x(t − 1) for a.a. t ∈ [0, 1], x(t) = k(t) = −t for t ∈ [−1, 0]. (9)

Notice that functions a(t) = 0 and b(t) = 1, t Î [-1, 1], are lower and upper solutions

in the usual sense for problem (9). However, if x is a solution for problem (9) then for

a.a. t Î [0, 1] we have

x′(t) = −x(t − 1) = k(t − 1) = −[−(t − 1)] = t − 1,

so for all t Î [0,1] we compute

x(t) = x(0) +
∫ t

0
(s − 1)ds =

t2

2
− t,

and then x(t) <a(t) for all t Î (0,1]. Hence (9) has no solution at all between a and

b.
Remark 2 Notice that inequalities (2) and (3) imply (7) and (8), so lower and upper

solutions in the sense of Definition 1 are lower and upper solutions in the usual sense,

but the converse is false in general.

Definition 1 is probably the best possible for (1) because it reduces to some defini-

tions that one can find in the literature in connection with particular cases of (1).

Indeed, when the function τ does not depend on the second variable then for all t Î I0
we have E(t) = [a(τ(t)), b(τ(t))] in Definition 1. Therefore, if f is nondecreasing with

respect to its third variable, then Definition 1 and the usual definition of lower and

upper solutions are the same (we will use this fact in the proof of Theorem 2). If, in

turn, f is nonincreasing with respect to its third variable, then Definition 1 coincides

with the usual definition of coupled lower and upper solutions (see for example [5]).

In general, in the conditions of Theorem 1 we cannot expect problem (1) to have the

extremal solutions in [a, b] (that is, the greatest and the least solutions in [a, b ]). This

is justified by the following example.
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Example 2 Consider the problem

x′(t) = f (t, x(t), x(τ (t))) for a.a. t ∈ I0 =
[
−π

2
,π

]
, x

(
−π

2

)
= 0, (10)

where

f (t, x, y) =

⎧⎨
⎩
1, if y < −1,
−y, if − 1 ≤ y ≤ 1,
−1, if y > 1,

and τ (t) = π
2 − t .

First we check that α(t) = −t − π
2 = −β(t) , t Î I0, are lower and upper solutions for

problem (10). The definition of f implies that for all (t, x, y) Î I0 × ℝ2 we have |f(t, x,

y)| ≤ 1, so for all t Î I0 we have

min
ξ∈E(t)

f (t,α(t), ξ) ≥ −1 = α′(t)and max
ξ∈E(t)

f (t,β(t), ξ) ≤ 1 = β ′(t),

where, according to Definition 1,

E(t) =
[
α

(π

2
− t

)
,β

(π

2
− t

)]
= [t − π ,π − t].

Moreover, α
(−π

2

)
= β

(−π
2

)
= 0 , so a and b are, respectively, a lower and an upper

solution for (10), and then condition (H1) of Theorem 1 is fulfilled. As conditions (H2)

and (H3) are also satisfied (take, for example, ψ ≡ 1) we deduce that problem (1) has

maximal and minimal solutions in [a, b]. However we will show that this problem

does not have the extremal solutions in [a, b].
The family xx(t) = l cos t, t Î I0, with l Î [-1,1], defines a set of solutions of pro-

blem (10) such that a ≤ xl ≤ b for each l Î [-1,1]. Notice that the zero solution is

neither the least nor the greatest solution of (10) in [a, b]. Now let x̂ ∈ [α,β] be an

arbitrary solution of problem (10) and let us prove that x̂ is neither the least nor the

greatest solution of (10) in [a, b]. First, if x̂ changes sign in I0 then x̂ cannot be an

extremal solution of problem (10) because it cannot be compared with the solution x

≡ 0. If, on the other hand, x̂ ≥ 0 in I0 then the differential equation yields x̂′ ≤ 0 a.e.

on I0, which implies, along with the initial condition x̂
(−π

2

)
= 0 , that x̂(t) = 0 for all t

Î I0. Reasoning in the same way, we can prove that x̂ ≤ 0 in I0 implies x̂ ≡ 0 . Hence,

problem (10) does not have extremal solutions in [a, b].
The previous example notwithstanding, existence of extremal solutions for problem

(1) between given lower and upper solutions can be proven under a few more assump-

tions. Specifically, we have the following extremality result.

Theorem 2 Consider the problem
{
x′(t) = f (t, x(t), x(τ (t))) for a.a. t ∈ I0,
x(t) = �(x) + k(t) for all t ∈ I−.

(11)

If (11) satisfies all the conditions in Theorem 1 and, moreover, f is nondecreasing with

respect to its third variable and Λ is nondecreasing in [a, b], then problem (11) has the

extremal solutions in [a, b].
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Proof. Theorem 1 guarantees that problem (11) has a nonempty set of solutions

between a and b. We will show that this set of solutions is, in fact, a directed set, and

then we can conclude that it has the extremal elements by virtue of [9, Theorem 1.2].

According to Remark 2, the lower solution a and the upper solution b satisfy,

respectively, inequalities (7) and (8) and, conversely, if a and b satisfy (7) and (8) then

they are lower and upper solutions in the sense of Definition 1.

Let x1, x2 Î [a, b] be two solutions of problem (11). We are going to prove that

there is a solution x3 Î [a, b] such that xi ≤ x3 (i = 1, 2), thus showing that the set of

solutions in [a, b] is upwards directed. To do so, we consider the function

x̂(t) = max{x1(t), x2(t)} , t Î I0, which is absolutely continuous on I0. For a.a. t Î I0 we

have either

x̂′(t) = f (t, x̂(t), x1(τ (t))),

or

x̂′(t) = f (t, x̂(t), x2(τ (t))),

and, since f is nondecreasing with respect to its third variable, we obtain

x̂′(t) ≤ f (t, x̂(t), x2(τ (t))).

We also have x̂(t) ≤ �(x̂) + k(t) in I- because Λ is nondecreasing, so x̂ is a lower

solution for problem (11). Theorem 1 ensures now that (11) has at least one solution

x3 ∈ [x̂,β].

Analogous arguments show that the set of solutions of (11) in [a, b] is downwards
directed and, therefore, it is a directed set.

Next we show the applicability of Theorem 2.

Example 3 Let L > 0 and consider the following differential equation with reflection

of argument and a singularity at x = 0:

x′(t) =
−t

x(−t)
for a.a. t ∈ [0, L], x(t) = k(t) = t cos t − 3t for all t ∈ [−L, 0]. (12)

In this case, the function defining the equation is f (t, y) = −t
y , which is nondecreasing

with respect to y. On the other hand, functions

α(t) =
{−2t if t < 0,

− 1
2 t, if 0 ≤ t ≤ L,

and

β(t) =
{−4t if t < 0,
0, if 0 ≤ t ≤ L,

are lower and upper solutions for problem (12). Indeed, for t Î [-L,0] we have -2t ≤

k(t) ≤ -4t and for a.a. t Î I0 we have

f (t,α(−t)) = −1
2
= α′(t), f (t,β(−t)) = −1

4
< β ′(t).

Hence a and b are lower and upper solutions for problem (12) by virtue of Remark 2.
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Finally, for a.a. t Î I0 and all y Î [a(-t), b(-t)] we have

∣∣f (t, x, y)∣∣ ∈
[
1
4
,
1
2

]
,

so problem (12) has the extremal solutions in [a, b ]. Notice that f admits a Car-

athéodory extension to I0 × ℝ outside the set

{(t, y) ∈ I0 × R : α(−t) ≤ y ≤ β(−t)},

so Theorem 2 can be applied.

In fact, we can explicitly solve problem (12) because the differential equation and the

initial condition yield

x′(t) =
1

cos t − 3
for all t ∈ [0, L], and x(0) = 0,

hence problem (12) has a unique solution (see Figure 1) which is given by

x(t) =
∫ t

0

dr
cos r − 3

, t ∈ [0, L].

Figure 1 Solution of (12) bracketed by the lower and the upper solution.
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3 Construction of lower and upper solutions
In general, condition (H1) is the most difficult to check among all the hypotheses in

Theorem 1. Because of this, we include in this section some sufficient conditions on

the existence of linear lower and upper solutions for problem (1) in particular cases

We begin by considering a problem of the form
{
x′(t) = f (x(τ (t, x))) for a.a. t ∈ I0 = [t0, t0 + L],
x(t) = k(t) for all t ∈ I− = [t0 − r, t0],

(13)

where f ∈ C(R) and k ∈ C(I−) .
Proposition 1 Assume that f is a continuous function satisfying

lim
y→+∞ f (y) = +∞; (14)

lim
y→−∞ f (y) = −∞; (15)

lim
y→±∞

f (y)
y

<
1
L
. (16)

Then there exist m, m̄ > 0 such that the functions

α(t) =
{

ϕ∗, if t < t0,
m(t0 − t) + ϕ∗, if t ≥ t0,

(17)

and

β(t) =
{

ϕ∗, if t < t0,
m̄(t − t0) + ϕ∗, if t ≥ t0,

(18)

are, respectively, a lower and an upper solution for problem (13), where

ϕ∗ = min
t∈I−

k(t), ϕ∗ = max
t∈I−

k(t).

In particular, problem (13) has maximal and minimal solutions between a and b,
and this does not depend on the choice of τ.

Proof. Conditions (15) and (16) imply that

lim
y→−∞

y − ϕ∗
f (y)

> L,

so there exists y1 < min{0, �t} such that

0 > f (y) >
y − ϕ∗

L
if y ≤ y1. (19)

On the other hand, condition (14) implies that there exists y2 > 0 such that

f (y) > 0 if y ≥ y2. (20)

Let l = min{f(y): y1 ≤ y ≤ y2}. By condition (15) and continuity of f, there exists y3 ≤

y1 such that

f (y3) = λ and f (y) ≥ λ for all y ∈ [y3, y1], (21)
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and this choice of y3 also provides that

f (y3) ≤ f (y) for all y ≥ y3, (22)

and, by virtue of (19),

f (y3) >
y3 − ϕ∗

L
. (23)

Now, define a as in (17), with m = ϕ∗−y3
L . Notice that a(t) ≤ k(t) for all t Î I-,

α′(t) = y3−ϕ∗
L for all t Î I0 and

min
t∈I

α(t) = α(t0 + L) = −mL + ϕ∗ = y3,

so we deduce from (22) and (23) that for all t Î I0 we have

α′(t) = −m < f (y3) = min
y≥minIα(t)

f (y). (24)

In the same way, we can find ȳ3 ≥ max{0,ϕ∗} such that b defined as in (18) with

m̄ = ϕ∗−ȳ3
L

satisfies that b(t) ≥ k(t) for all t Î I- and

β ′(t) = m̄ ≥ max
y≤maxIβ(t)

f (y) for all t ∈ I0. (25)

So we deduce from (24) and (25) that a and b are lower and upper solutions for pro-

blem (13).

Example 4 The function

f (y) =
{
sgn (y) log

∣∣y∣∣ , if y ∈ (−∞,−1) ∪ (1,∞),
sin(πy), if y ∈ [−1, 1],

satisfies all the conditions in Proposition 1 for every compact interval I0. So the cor-

responding problem (13) has at least one solution for any choice of k ∈ C(I−) and

τ ∈ C(I, I) .
We use now the ideas of Proposition 1 to construct lower and upper solutions for

the general problem (1).

Proposition 2 Let k ∈ C(I0)and let f : I0 × ℝ2 ® ℝ be a Carathéodory function.

Assume that there exist Fα , Fβ ∈ C(R)such that for a.a. t Î I0 and all y Î ℝ we have

f (t, x, y) ≥ Fα(y) for all x ≤ ϕ∗ (26)

and

f (t, x, y) ≥ Fβ(y) for all x ≤ ϕ∗ (27)

Moreover, assume that the next conditions involving Fa and Fb hold:

lim
y→−∞ Fα(y) = −∞, (28)

Fα is bounded from below in [0, +∞) , (29)
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lim
y→−∞

Fα(y)
y

<
1
L
, (30)

lim
y→+∞ Fβ(y) = +∞, (31)

Fβ is bounded from above in (−∞, 0] , (32)

lim
y→+∞

Fβ(y)
y

<
1
L
. (33)

Then there exist m, m̄ ≥ 0such that a and b defined as in (17), (18) are lower and

upper solutions for problem (1) with Λ = 0, and this does not depend on the choice of τ.

Proof. Reasoning in the same way as in the proof of Proposition 1, we obtain that

there exists m ≥ 0 such that a(t) ≤ �* for all t Î I- and

α′(t) = −m ≤ min
y≥minIα

Fα(y) for a.a. t ∈ I0.

As a(t) ≤ �* for all t Î I, we obtain by virtue of (26) that

α′(t) ≤ min
y≥minIα

f (t,α(t), y) for a.a. t ∈ I0.

In the same way there exists m̄ ≥ 0 such that b(t) ≥ �* for all t Î I- and

β ′(t) = m̄ ≥ min
y≥maxIβ

f (t,β(t), y) for a.a. t ∈ I0.

Therefore, a and b are lower and upper solutions for problem (1).

Example 5 Let F be the function defined in Example 4 and consider the problem
{
x′(t) = −(x + π)|x + π |γ g(t, x) + F(x(τ (t, x))) for a.a. t ∈ [0, L],
x(t) = −t cos t for all t ∈ [−π , 0],

(34)

where g ≥ 0, L > 0, and g is a nonnegative Carathéodory function.

In this case, we have �* = -π, �* ≈ 0.5611, and the function f(t,x,y) which defines the

equation satisfies

f (t, x, y) ≥ F(y) if x ≤ −π and f (t, x, y) ≤ F(y) if x ≥ −π ,

so in particular conditions (26) and (27) hold. As conditions (28)-(33) also hold (see

Example 4) we obtain that there exist m, m̄ > 0 such that a and b defined as in (17),

(18) are lower and upper solutions for problem (34) for any choice of τ. In particular,

if there exists ψ Î L1(I 0) such that for a.a. t Î I0 and all x Î [a(t), b(t)] we have g(t, x)

≤ ψ(t), then problem (34) has maximal and minimal solutions between a and b.
Remark 3 Notice that the lower and upper solutions obtained both in Propositions 1

and 2 satisfy a slightly stronger condition than the one required in Definition 1.
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