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Abstract

In this paper, we use variational methods to prove two existence of positive solutions
of the following mixed boundary value problem:

-Au=fkxu), xet,
u=0, X€EO,
g—z =g(x,u), xel.

One deals with the asymptotic behaviors of f(x, u) near zero and infinity and the
other deals with superlinear of f(x,u) at infinity.
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1 Introduction and preliminaries
This paper is concerned with the existence of positive solutions of the following elliptic

mixed boundary value problem:

-Au=f(xu), x€9,
u=0, xeo, 1

M=glxu), xeT,

where Q is a bounded domain in R” with Lipschitz boundary Q2,0 UT =8Q,0 NT =@, T
is a sufficiently smooth (# — 1)-dimensional manifold, and v is the outward normal vector
on 9Q2. We assume : Q2 x R — R, g: " x R — R are continuous and satisfy

(S1) f(x,t)>0,Vt>0,x€ 2, f(x,0)=0.f(x,£)=0,Ve<0,x € Q.
@ is nondecreasing with respect to ¢ > 0.
(83) 1imy—o %2 = p(x), lim,, o0 1&2

lp()|loo < A1, A1 is the first eigenvalue of (2), 0 < p(x), g(x) € L>(R2).

(S4) There exists c1, ¢y > 0 such that |f(x, £)| < ¢; + c3|t|P~* for some p € (2, ,?Tnz) asn>3

(S2) For almost every x € €,

= g(x) # 0 uniformly in a.e. x € 2, where

and p € (2,+00) asn=1,2.
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The eigenvalue problem of (1) is studied by Liu and Su in [1]

—-Au=Au in$,
u=0 ono, (2)
g—“ =\u onl.

v

There exists a set of eigenvalues {Ax} and corresponding eigenfunctions {u;} which

solve problem (2), where 0 < 4 < Ay <--- <A < -+, 4 > 00 as k —> 00, A} =
inf. Jo IVul? dx
10V Tl dar [ P s

There have been many papers concerned with similar problems at resonance under the

boundary condition; see [2—10]. Moreover, some multiplicity theorems are obtained by the
topological degree technique and variational methods; interested readers can see [11-17].
Problem (1) is different from the classical ones, such as those with Dirichlet, Neuman,
Robin, No-flux, or Steklov boundary conditions.

In this paper, we assume V := {v € H}(Q) : v|, = 0} is a closed subspace of H*(£2). We
define the norm in V as ||ul|* = [, [Vul*dx + [, lyul*ds, || - |»(@ is the L?(2) norm,
I - llzeqry is the LP(T") norm, y : V — L?(T") is the trace operator with yu = ur for all
u € H(R), that is continuous and compact (see [18]). Furthermore, we define g = yf,
0 <g(xt) <|yf(x,t)| for £ >0 (see [1]). Then, by (S3), we obtain

)L . ,L _
lim ‘M < lim M =q(x)#£0, aexeQ. (3)
t—+00 t t—+00 t
Let ©2 be abounded domain with a Lipschitz boundary; there is a continuous embedding
V— (Q) for y € [2, n%] when n > 3, and y € [2, +00) when # = 1,2. Then there exists

¥y > 0, such that

lully@) < wyllull, YueV. (4)

Moreover, there is a continuous boundary trace embedding V < L*(I") for z € 2, 25’”_’21) ]
when 7 > 3, and z € [2, +00) when 1 = 1,2. Then there exists k, > 0, such that

lullzry < kellull, VYueV. ®)

It is well known that to seek a nontrivial weak solution of problem (1) is equivalent to

finding a nonzero critical value of the C! functional
1 2
Jw)== | |Vul"dx—- | Flx,u)dx— | G(s,u)ds, (6)
2 Jq Q r
where u € V, F(x,u) = [y f(x,2) dt, G(x,u) = [ g(x,t) dt. Moreover, by (S1) and the Strong
maximum principle, a nonzero critical point of / is in fact a positive solution of (1). In order

to find critical points of the functional (6), one often requires the technique condition, that
is, for some u > 2, V|u| > M >0,x € £,

0 < uF(x,u) <uf(x,u), Flxu)= /uf(x, t)dt. (AR)
0
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It is easy to see that the condition (AR) implies that lim,_, , % = +00, that is, f(x, u)

must be superlinear with respect to u at infinity. In the present paper, motivated by [19]
and [20], we study the existence and nonexistence of positive solutions for problem (1)
with the asymptotic behavior assumptions (S3) of f at zero and infinity. Moreover, we also
study superlinear of f at infinity with g(x) = +00 in (S3), which is weaker than the (AR)
condition, that is the (AR) condition does not hold.

In order to get our conclusion, we define the minimization problem

A:inf{/ |Vul?dx:ue V,/ q(x)uzdx+/q(s)u2ds:l}, (7)
Q Q r

then A > 0, which is achieved by some ¢, € V with ¢, (x) > 0 a.e. in Q; see Lemma 1.
We denote by ¢, ¢, ¢; universal constants unless specified otherwise. Our main results
are as follows.

Theorem 1 Let conditions (S1) to (S3) hold, then:
(i) If A > 1, then the problem (1) has no any positive solution in V.
(ii) If A <1, then the problem (1) has at least one positive solution in V.
(iii) If A =1, then the problem (1) has one positive solution u(x) € V if and only if there
exists a constant ¢ > 0 such that u(x) = cpa (x) and f(x, u) = q(x)u(x),
glx, u) = g(x)u(x) a.e. x € Q, where @ (x) > 0 is the function which achieves A.

Corollary 2 Let conditions (S1) to (S3) with q(x) = > 0 hold, then:
(i) If I < A, then the problem (1) has no any positive solution in V.
(ii) If M << +00, then the problem (1) has at least one positive solution in V.
(iii) Ifl = Ay, then the problem (1) has one positive solution u(x) € V if and only if there
exists a constant ¢ > 0 such that u(x) = cp1(x) and f(x, u) = Au(x), glx, u) = Au(x)
a.e. x € 2, where ¢1(x) > 0 is the eigenfunction of the Ay.

Theorem 3 Let conditions (S1) to (§4) with q(x) = +oo hold, then the problem (1) has at
least one positive solution in V.

2 Some lemmas
We need the following lemmas.

Lemma 1 Ifq(x) € L®(2), g(x) > 0, g(x) # 0, then A > 0 and there exists g5 (x) € V such
that A = [, Vo> dx and [, q(x)¢3 dx + [ q(s)¢% ds = 1. Moreover, o (x) >0 a.e. in V.

Proof By the Sobolev embedding function V < L*(2) and Fatou’s lemma, it is easy to
know that A > 0 and there exists g, (x) € V, which satisfies A, that is, fﬂ q(x)p= dx +
fr q(s)p= ds = 1. Furthermore, we assume @4 (x) > 0, then @, (x) could replace by |p4 (x)|.
By the Strong maximum principle, we know ¢4 (x) >0 a.e. in V. g

Lemma 2 If conditions (SI) to (S3) hold, then there exists B, p > 0 such that J|s,0) > B,
YueV, |u| = p.

u
A —¢eas0 < |u| < 8. Which implies that F(x, u) < (A —&)u? +clul?, G(x,u) < (A —&)u?

clul?.

Proof By condition (S3), there exists § > 0, ¢ > 0 such that @ <M-¢ 4@ < Yl <
+
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By (4) and (5), we obtain

Jw) = 3 IValag, ‘LF@MwM—z}x&mds

1 2
- _()"1 - 8)||M||L2(Q)

1 1,1
§||Vu”L2 EHJ/MHLZ(F)_ Ellyu”LZ(p) 2

1
— cllul g = 5 (1 = &)l ey = ell

1
> —||u|| - —()\1 —8)—|Iu|| —cyyllulP - —(/\1 —&+ 1) 1 lleel|* = ckZ uel|*
e +1) 1
= | = 5 | lull® = eyl — ek flul)”.
2)\.1()\1 + 1) 2
Hence, y,z > 2; we take ¢ which satisfies #1:1)) - % >0, that is, & > M . Then we
take a positive constant 8 such that /|5,(0) > B as ||| = p, and is small enough. O

Lemma 3 If conditions (SI) to (S3) hold, A <1, px(x) > 0 is defined by Lemma 1, then

J(toa(x)) — —00 as t — +00.

Proof If A <1, pp(x) > 0 is defined by Lemma 1, by Fatou’s lemma, and (S3), we have

i J(toa (x))
m ——-——-
t—+00 12
F(x, ¢t d G(s, ¢t d
=1f|v¢ s - fQ (x ;pA(x)) x - lim J-Gs ;JA(S)) s

1 _ F(x, toa(x))
§§AW%@WW—L£%—77%—ZUM

. Gls,tpa(s))
_/rtl}&noo 7; f/(\s)s @1 (s)ds

fx:f%(x)) 2 g(S,fGDA(S)) 2
/'V(p @l dx__ toa () A _E/I:W AG)ds

- E/S;|V<,0A(x)|2dx—5[/;2 61(ﬁ¢)<pi(x)dx+/Fq(s)golz\(s)ds}

1
o= [ [Vor@[as

<0.

So, J(tga(x)) = —00 as t — +00. O

Lemma 4 Let conditions (S1) and (S2) hold. If a sequence {u,} C V satisfies (J'(u,), u,) —
0 asn — +00, then there exists a subsequence of {u,,}, still denoted by {u,,} such that ] (tu,) <
1“ +J(uy,) forallt >0, n>1.

Proof Since (J'(u,), u,) — 0 as n — +00, for a subsequence, we may assume that

1 1
——< (]/(M,,), un) = ”Vun”%)(g) - ff(x’ un)un dx - / g(S’ un)un dS < V”l Z 1- (8)
n Q r n

Page 4 of 11
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For any fixed x € Q and n > 1, set
£ 2
Y(t) = Ef (%, up)uty — F(x, tuy), Ya(t) = Eg(s, Uty — G(s, tuy).
Then (S2) implies that

Vi) = tf (%, )y — f (%, tut ) sy

y Lty
= tuy |:f(x: un) _@]
>0, 0<t<];
<0, t>1

It implies that ¥ (¢) < ¥1(1), V£ > 0. Following the same procedures, we obtain y,(£) <
U (1), Ve > 0.

For all £ > 0 and positive integer #, by (8), we have

t2
J(tu,) = §||Vu,,||i2(g)—fQF(x,tu,,)dx—/rG(s,tun)ds

gl:% +/Qf(xvun)undx""/l:g(s’un)unds]

—/F(x,tu,,)dx—/G(s,tu,,)ds
Q r

IA

IA

% + /Q[%f(x, Un)ty — F(x, un)] dx + /1" [%g(s, up)ty — G(s, un):| ds. 9)

On the other hand, by (8), one has

1
](un) = §||Vun”i2(9)_/‘ F(x:un)dx_/ G(sxun)ds
Q r

> %[—% +/Qf(x,un)undx+/Fg(s,un)unds} _/QF(x’u")dx_/pG(s’u”)ds

1

= “on + fﬂ[%f(x, u,)u, — F(x, u,,):| dx + /r [%g(s, u,)u, — G(s, u,,)] ds.

One has
fg[%f(x, u,)u, — F(x, u,,):| dx + /r [%g(s, U, — G(s, u,,)] ds < J(u,) + % (10)

Combining (9) and (10), we have J(tu,) < % +J(uy). O

Lemma 5 (see [21]) Suppose E is a real Banach space, ] € C*(E,R) satisfies the following
geometrical conditions:
(i) J(0) = O; there exists p > 0 such that J|3p,) > r > 0;
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(it) There exists e € E\B,(0) such that J(e) < 0. Let 'y be the set of all continuous paths
joining 0 and e:

Iy = {h e C([0,1],E)|1(0) = 0,h(1) = ¢},
and

¢ = inf max ](h(t)).

hel1 te[0,1]

Then there exists a sequence {u,} C E such that J(u,) — ¢ > B and (1 + ||u,|]) X
IJ' ()| g — 0.

3 Proofs of main results
Proof of Theorem 1 (i) If u € V is one positive solution of problem (1), by (3), one has

0=<]/(u),u)=/9|Vu|2dx—Af(x,u)udx—/rg(s,u)uds.

That is,

/Q|Vu|2dx= /;Zf(x,u)udx+/1:g(s,u)uds

2 2 g
< /S;q(x)u dx+/rq(s)u ds=1.

It implies that A < 1. This completes the proof of Theorem 1(i).
(ii) By Lemma 2, there exists 8, p > 0 such that /|5,(0) > B with [lu|| = p. By Lemma 3,
we obtain J(¢ypa (x)) < 0 as ty — +00. Define

Iy = {h e C([0,1], V)|h(0) = 0, x(1) = topa (%)}, (11)
c= hiéll_fl E}Sﬁ]](h(t))’ (12)

where @, (x) > 0 is given by Lemma 1. Then ¢ > 8 > 0 and by Lemma 3, there exists {u,} C

V such that
1
J ) = 5 IVt 2 = /Q F(x, u,) dx — /F G(s,un)ds = ¢+ 0(1), (13)
(1+ ||MVI||)”]/(M}1)’ Vi g 0' (14)
(14) implies that
U @) ) = 1V - fQ F )it e — /F (s, )ity ds = o(1). (15)

Here, in what follows, we use o(1) to denote any quantity which tends to zero as n — +00.

Page 6 of 11
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If {u,,} is bounded in V, when €2 is bounded and f (x, ), g(x, u) are subcritical, we can get
{u,} has a subsequence strong convergence to a critical value of /, and our proof is com-
plete. So, to prove the theorem, we only need show that {u,} is bounded in V. Supposing
that {u,} is unbounded, that is, ||u,| — +00 as n — +00. We order

G _ 2/t (16)

n = ) Wy = Lyl = .
ll2 I Nl

Then {w,} is bounded in V. By extracting a subsequence, we suppose w,, — w is a strong
convergence in L*(Q), w, —> wisa convergence a.e. x € 2, w, — w is a weak convergence
inV.

We claim that w # 0. In fact, by (S1) and (S3), we know Vx € €, u,, > 0, and there exists
M, M, > 0 such that |f(’;’—:")| <M, |g(’;’—:")| <M,.Ifw=0,w, — 0 is astrong convergence
in L*(R2), and by (15) and (16) we know

46 ti”un”Z = tﬁ(”VMVI”%Z(Q) + ”‘J/MVIHEZ(F))

tﬁ /f(x, Uy) Uy dX + tﬁ / g(s, up)u, ds + tﬁ||yu,,||%2(r) +0(1)
Q r

[, [ ) g o)
Q Un r

n

IA

M1/ wf,dx+M2/wids+ ||w,,||i2(l_)+o(1)
Q r

— 0.

It is contradiction with ¢ > 0, so w # 0.
As follows, we prove w # 0 satisfies

fV(p(x)Vw(x)dx—f ql(x)tp(x)w(x)dx—/qz(s)(p(s)w(s)ds=0.
Q Q r

We order
Pn(x) = f(x’ Uy)/, u,>0,x€,
’ 0, u,<0,x €,
q (x) _ g(‘x’ url)/un; U, > O,x (S F,
' 0, U, < 0,xeTl.

By (S1) and (S3), there exists M3 > 0 such that 0 < p,(x) < M3, 0 < g,(x) < M3, Vx € Q.
We select a suitable subsequence and there exists 41 (x) € L2(Q2), h2(x) € L*(T") such that
Pu(x) = hy(x) is a strong convergence in L2(S2), ,,(x) — hy(x) is a strong convergence in
L*(T), and 0 < Ky (x) < M3, 0 < hy(x) < M3, Vx € Q.

It follows from w,, — w is a strong convergence in L2($2) that

f )W () p() e = f W (W) dx — / n()w (W)p(x) dx,
Q Q Q

/ qn(S)wy(s)p(s) ds = / qn(s)w,,(s)g(s) ds — / ha(s)w* (s)g(s) ds.
r I T

Page 7 of 11
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Hence, {p,,(x)w,(x)} is bounded in L2(R2), p,, (x)w,,(x) — h1(x)w* (x) in L2(); {g,(x)w,(x)}
is bounded in L%(T"), g, (x)w,(x) = ha(x)w* (x) in L%(T").
By (16), we have

/ V() Vo () dx - / () ) e — / (S Wn(s)(s) ds
Q Q r

f V (ta14 () Vep () — / (8 nttn(6) 0 () i — / (it (5) () ds
Q Q r
_2/c

l[2tn l

/ Vit (1) Vo () dx - / P8t () dx — / n(tn($)p(s) ds
Q Q r

— 0.

Since w,, — w is a weak convergence in V, we obtain
/ Vo(x)Vw(x) dx—/ h(x)ex)w* (x) dx—/%(s)go(s)w*(s) ds=0, ¢@eV.
Q Q r

We order ¢ = w~; thisyields [|w~ I>?=0,sow=w">0. By the Strong maximum principle,
we know w > 0 a.e. in €2, so u, — 0o a.e. in Q. Combining (S3) and (3), we obtain

/V(p(x)Vw(x)dx—/ q(x)go(x)w(x)dx—/q(s)<p(s)w(s)ds=0, YoeV.
Q Q r

This is a contradiction with A < 1. This completes the proof of Theorem 1(ii).
(iii) If A =1, by Lemma 1, there exists some @, (x) > 0, such that

/ Vo)V (x) dax = / V@) (x) dx + / 4(5)V(s)ga(s) ds. 17)
Q Q r

If u is a positive solution of (1), for the above @, (x), we have

/Vu(x)V(pA(x)dx:/f(x,u(x))goA(x)dx+/g(s,u(s))goA(s)ds. (18)
Q Q r

We order v = u in (17), and it follows from (18) that

/Vu(x)V(pA(x)dx = / q(x)u(x)q)A(x)dx+fq(s)u(s)<pA(s)ds
Q Q

r

= /f(x u(x)) @4 (%) dx+/g(s,u(s))<pA(s)ds
Q T
< /Q qx)u(x)pa (x) dx + /r q(s)u(s)pa(s) ds,

which implies that [, (f (x, ) — g(x)u(x))@a (¥) dx + [1(g(s, u) — q(s)u(s))@a(s) ds = 0.
When @, (x) > 0 a.e. in 2, combining (S2), (S3), and (3), we obtain

fx,u) < glx)u(x), g, u) < gx)u(x).

Then we must have f(x, u) = g(x)u(x), g(x, u) = g(x)u(x) a.e. in ©, u(x) > 0 also achieves
A (=1). When u = cpy, ¢ > 0, we have [, |[Vou*dx = [, q(x)¢3 dx + [, q(s)p3 ds, which
achieves A.

Page 8 of 11
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On the other hand, if for some ¢ > 0, u(x) = cp (x) and f(x, cpa (%)) = cq(x)pa (%), g(x, u) =
cq(x)pa(x) a.e. x € Q, since cop (x) also achieves A. This means u(x) = cg, (x) is a solution
of problem (1) as A = 1. This completes the proof of Theorem 1(iii). O

Proof of Corollary 2 Note that when g(x) =/, then A = L; The conclusion follows from
Theorem 1. 0

Proof of Theorem 3 When ¢(x) = +00, we can replace ¢ by ¢ in (11) and define ¢ as in
(12), then following the same procedures as in the proof of Theorem 1(ii), we need to show
only that {u,} is bounded in V. For this purpose, let {w,} be defined as in (16). If {w,,} is
bounded in V, we know w,, — w is a strong convergence in L%(2), w,, — w is convergence
a.e.x € 2, w, — wis aweak convergence in V,and we V.

If ||u,,|| — +00, then £, — 0 and w(x) =0. We set Q1 = {x € Q:w(x) =0}, 2, = {x € Q:
w(x) # 0}. Obviously, by (16), |u,| — +00 a.e. in €. When g(x) = +o0 in (S3), there exists
Ki,K; > 0 and # large enough we have |f(xu’—:’”)| > Kj, |g(’;’—:")| > K, uniformly in x € Q,.
Hence, by (15) and (16), we obtain

4e = lim £2]|u,|?
n—+00

. 2 2 2
n1—1>r+noo t;q (HVM,,, ||L2(Q) + ” YUy ||L2(F))

n—+00

lim (/Mwidx+/walds+tﬁ||yun||izm)
Q Uy r u

n—+0Q0 n

= lim tﬁ(/ﬂf(x,un)undw/g(s,un)undﬁ IIVunlliz(r)>
r

z]qf w2dx+1(2/w2ds+ IWl7a -
Q r

Noticing that w(x) # 0 in ©2, and Kj, K, can be chosen large enough, so m, = 0 and
then w(x) =0 in Q.
Then we know lim,,_, .0 [, F(%, W,,) dx + 1imy,_, 1o [ G(s, w,)ds = 0, and consequently,

1
](Wn) = E ”VWHHEZ(Q)

1

_ 2 _

—2||Wn|| 2|
1 1

>—(1-—— 2400

= 2( )L1+1>||Wn|| o(1)

1
2c<1 - o 1) +0(1). (19)

By ||u,|| = +00, t, = 0 as n — +00, then it follows Lemma 4 and (13), we obtain

+0(1)

[Wall72 ) +0(1)

1+¢2
ML (20)

](Wn):](tnun)f wm =

Obviously, (19) and (20) are contradictory. So {u,} is bounded in V. This completes the
proof of Theorem 3. g
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4 Example

In this section, we give two examples on f(x, u): One satisfies (S1) to (S3) with g(x) = +o0,
but does not satisfy the (AR) condition; the other illustrates how the assumptions on the
boundary are not trivial and compatible with the inner assumptions in .

Example 1 Set:

0, t<0;
flxt) =
tin(l+t), t>0.

Then it is easy to verify that f(x, £) satisfies (S1) to (S3) with p(x) = 0 as t — 0 and g(x) =
+00 as t — +00. In addition,

1 1 1 1
F(x,t) = Etz In(1 +¢) - th + Et_ 5 In(1 + ¢).

So, for some > 2, uF(x,t) = * In(1 + £)(§ - ﬁm) + sy~ 3) > t2In(1 +¢), for all ¢

large.
This means f(x, t) does not satisfy the (AR) condition.

Example 2 Consider the following problem:

—u'"(x) =aulx), 0<x<l,
u(0) = 0, (21)
u' (1) = au(l),

where & > 0 is a constant. It is obvious that g = yf as f(x, u) = au(x). Problem (21) is a case
of (1); we can obtain the nontrivial solution: #(x) = C sin Jax, C #0.
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