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Abstract
We study the existence of a nontrivial solution of the following elliptic boundary
value problem with mixed type nonlinearities:{

–�u = f (x,u) in �,

u = 0 on ∂�,

where f (x,u) = –Ku +Wu. We consider the problem in a different case:
lim|u|→∞ f (x,u)/u = ∞, lim|u|→0 f (x,u)/u is some constant. Assuming that K satisfies
the “pinching” condition, andW satisfies a more general superquadratic growth
condition than the well-known Ambrosetti-Rabinowitz condition usually used in
literature, we obtain a nontrivial solution via the Mountain Pass Lemma.
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1 Introduction
In this paper, we shall be concerned with the elliptic boundary value problem in a different
case

⎧⎨⎩–�u = f (x,u) in �,

u =  on ∂�,
(P)

where � ⊂ RN (N > ) is a bounded open domain with a smooth boundary ∂� and f ∈
C(� × R,R).
The existence of nontrivial weak solutions for (P) have been studied in many papers,

see [–]. Su and Zhao in [] considered problem (P) for resonance case at infinity,
lim|u|→∞ f (x,u)

u = λk , where λk is an eigenvalue of the linear boundary value problem

⎧⎨⎩–�u = λu in �,

u =  on ∂�,
(P)
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the existence ofmultiple nontrivial solutions for (P) are obtained byminimaxmethods and
Morse theory. Ambrosetti and Rabinowitz in [] established the existence of a nontrivial
solution for problem (P) by assuming the following conditions:

(f ′
 ) f (x, ) = , limu→

f (x,u)
u = , uniformly in a.e. x ∈ �.

(f ′
) There exist two positive constants a and b such that

∣∣f (x,u)∣∣ ≤ a + b|u|p for some  ≤ p <
N + 
N – 

,∀u ∈ R,x ∈ �.

And the following well-known Ambrosetti-Rabinowitz condition ((AR) for short):

∃θ > ,R >  s.t.  < θF(x,u) ≤ uf (x,u), for all |u| ≥ R,x ∈ �,

where F(x,u) =
∫ u
 f (x, s)ds.

Since then, the (AR) condition has been used extensively in many literature sources, see
[–]. It is well known that the (AR) condition is quite natural and convenient not only
to ensure that the Euler-Lagrange functional associated to problem (P) has a mountain
pass geometry but also to guarantee that the Palais-Smale sequence of the Euler-Lagrange
functional is bounded. Let E be a Hilbert space andG ∈ C(E,R). Recall that the sequence
{un}n∈N ⊂ E is said to be a Palais-Smale sequence of G provided that {G(un)} is bounded
and G′(un) →  as n → +∞, the function G satisfies the Palais-Smale condition ((PS) for
short) if and only if any Palais-Smale sequence for G contains a convergent subsequence.
The function G satisfies the Cerami condition ((C) for short) if any sequence {un}n∈N in
E satisfying G(un) is bounded and G′(un)( + ‖un‖) →  as n → +∞ has a convergent
subsequence.
Without (AR), it becomes more complicated. Indeed, there are many functions which

are superlinear, but it is not necessary to satisfy (AR) even if  < θ ≤ . Willem and Zou
stated the following examples:

f (x,u) = μ|u|μ–u + (μ – )|u|μ–u sin u + |u|μ– sinu, u ∈ R \ {},

where μ > . Then it is easy to check that (AR) does not hold even for any θ > μ –  > .
On the other hand, in order to verify (AR), it usually is an annoying task to compute a
primitive function of f and sometimes it is almost impossible. For example,

f (x,u) = |u|u(
 + e(+| sinu|)α + | cosu|α)

, u ∈ R,

where α > .
Some authors have tried to drop or weaken the above superlinear condition (AR) in

recent years, see [–, , ]. Miyagaki and Souto [] adapted some monotonicity argu-
ments studying the existence of nontrivial weak solutions of (P).
The aim of the manuscript is to consider the problem in a different case:

lim|u|→∞ f (x,u)/u = ∞, lim|u|→ f (x,u)/u is some constant. We study this problem un-
der “pinching” condition and the general superquadratic condition. The case that F(x,u)
has a part with “pinching” condition has been considered only by few authors, see [, ].
Since F(x,u) does not satisfy the (f ′) and (AR), problem (P) becomes more delicate. The
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main difficulty when dealing with this problem is the lack of compactness of the Sobolev
embedding theorem.
In this paper, here, F(t,u) :=

∫ u
 f (t, s)ds replaced by –K +W , satisfy

(F) F(x,u) = –K(x,u) +W (x,u), K ,W :� × R → R are C-maps.
(K) There are two positive constants b and b such that

b|u| ≤ K(x,u) ≤ b|u|, for all (x,u) ∈ � × R.

(K) There exists � ∈ (, ] such that

K(x,u) ≤ Ku(x,u)u≤ �K(x,u), for all (x,u) ∈ � × R.

(W) W (x,u)≥  andWu(x,u) = o(|u|) as |u| →  uniformly in x.
(W) W (x,u)/u → ∞ as |u| → ∞ uniformly in x.
(W) Set W̃ (x,u) := 

Wu(x,u)u – W (x,u), W̃ (x,u) >  if u 
= , W̃ (x,u) → ∞ as |u| →
∞ uniformly in x, and there exist r >  and σ > N/ such that |Wu(x,u)|σ ≤
cW̃ (x,u)|u|σ if |u| ≥ r.

We will prove the following results.

Theorem . If assumptions (F), (K), (K) and (W)-(W) are satisfied, then problem (P)
has a nontrivial weak solution.

Remark 
(i) Our assumptions (W), (W) are weaker than (AR), and there is no monotone

condition;
(ii) The condition (K) can be written in the form  ≤ Ku(x,u)u

K (x,u) ≤ �, � ∈ (, ] which is
weaker than the condition  ≤ Ku(x,u)u

K (x,u) ≤  in [, ].

Example  Consider the functions

K(x,u) =
[
 + exp

(
–|x|)]u, W (x,u) =

(
 –


 + |x|

)
u ln

(
 + u

)
.

A straightforward computation shows that K andW (x,u) satisfy the assumptions of The-
orem ., but neither F(x,u) norW (x,u) satisfy the (AR) condition.

Example  Consider the more general functions

Ku(x,u) = V (x)u, Wu(x,u) = g(x,u),

where g(x,u) is of superlinear growth as |u| → ∞. A straightforward computation shows
that K andW satisfy the assumptions of Theorem ..

We will prove that the function associated with (P) has Mountain Pass geometry and
satisfies the (C) condition. The remainder of the paper is organized as follows. In Sec-
tion , we deal with the variational setting. In Section , we give the details of the proof of
Theorem ..

http://www.boundaryvalueproblems.com/content/2012/1/97
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2 Preliminary results
Let H :=H

(�) be the Sobolev space equipped with the inner product and the norm

(u, v) =
∫

�

(∇u · ∇v + uv)dx, ‖u‖ = (u,u)

 , u, v ∈ H .

And we denote the usual Lp(�)-norm

‖u‖p =
(∫

�

∣∣u(x)∣∣p dx) 
p
.

Our approach will be the variational techniques. Define the Euler-Lagrange functional
associated to problem (P) given by

	(u) =



∫
�

|∇u| dx –
∫

�

[
–K(x,u) +W (x,u)

]
dx, for all u ∈H .

From the assumptions on f , it is standard to check that 	 ∈ C whose Gateaux derivative
is

	′(u)v =
∫

�

∇u · ∇vdx –
∫

�

[
–Ku(x,u)v +Wu(x,u)v

]
dx, for all u, v ∈H .

Let η :H → [, +∞) be given by

η(u) :=
(∫

�

[|∇u| + K(x,u)
]
dx

) 

.

Hence

	(u) =


η(u) –

∫
�

W (x,u)dx.

By (K),

	′(u)u≤
∫

�

|∇u| dx +
∫

�

�K(x,u)dx –
∫

�

Wu(x,u)udx.

By (K) and set b, :=min{, b}, b, :=max{, b},

b,‖u‖ ≤ η(u) ≤ b,‖u‖.

It is worth pointing out that if the function K(x,u) is of the form 
V (x)u with V (x) ∈

C(�,R) and inf� V (x) ≥ V >  then η in a Hilbert space X = {u ∈H
(�);

∫
�
V (x)u <∞}

is equivalent to the norm ‖ · ‖; however, if the function K(x,u) is not of the form 
V (x)u,

η is not a norm because of the lack of norm’s linear property.

Lemma . (see []) Let H be a real Banach space, 	 ∈ C(H ,R), satisfying 	() = .
Moreover,

(i) there exist ρ,α >  such that 	|∂Bρ () ≥ α,

http://www.boundaryvalueproblems.com/content/2012/1/97
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(ii) there exists e ∈H \ Bρ() such that 	(e) ≤ .
Then there exists a sequence {un} ∈ H such that ‖	′(un)‖(+‖un‖) →  and	(un) → c≥ α

as n→ ∞.

Lemma . (see []) Assume that |�| < ∞,  ≤ p, r < ∞, f ∈ C(�̄ × R) and |f (x,u)| ≤
c( + |u| pr ). Then, for every u ∈ Lp(�), f (x,u) ∈ Lr(�) and the operator A : Lp(�) → Lr(�),
u �→ f (x,u) is continuous.

3 Proofs of theorems
First of all, we recall a property of the function K(x,u), which is necessary to the proof of
the geometric structure of the C functional 	.

Fact  Assume that (K) holds, then

K(x,u) ≤ K
(
x,

u
|u|

)
|u|� , for all x ∈ � and |u| ≥ .

Proof Define G : s → K(x, s–u)s� , s ∈ (, +∞)

G′(s) = –Ku
(
x, s–u

) u
s
s� +K

(
x, s–u

)
�s�–

= –Ku
(
x, s–u

)
s–us�– +K

(
x, s–u

)
�s�–

= s�–
[
–Ku

(
x, s–u

)
s–u +K

(
x, s–u

)
�
]
.

By (K), G′(s)≥ , which implies G(s) is non-decreasing. So, we have

K(x,u) =G()≤ G(s) = K
(
x,

u
|u|

)
|u|� , if |u| = s ≥ .

Next we discuss the geometric structure of the C functional 	 on H . �

Lemma . Under the assumptions of Theorem ., there are constants ρ,α >  such that
	|∂Bρ () ≥ α.

Proof From (W) and (W), as |u| > r, we have

∣∣Wu(x,u)
∣∣σ ≤ c

(


Wu(x,u)u –W (x,u)

)
|u|σ

≤ cWu(x,u)|u|σ+,

where c is a positive constant. Hence as |u| > r,∣∣Wu(x,u)
∣∣ ≤ c|u|σ+/(σ–).

From σ >N/, we know σ + /(σ – ) < * – , so we can choose σ /(σ – ) ≤ p < *. And
using (W) again, we observe that for any given ε >  there is cε >  such that

∣∣Wu(x,u)
∣∣ ≤ ε|u| + cε |u|p– (.)

http://www.boundaryvalueproblems.com/content/2012/1/97


Mao et al. Boundary Value Problems 2012, 2012:97 Page 6 of 11
http://www.boundaryvalueproblems.com/content/2012/1/97

and

∣∣W (x,u)
∣∣ ≤ ε|u| + cε |u|p. (.)

It follows from (.) and the Sobolev embedding theorem that for all u ∈H∫
�

W (x,u)dx≤ ε‖u‖ + cε‖u‖pp ≤ ε‖u‖ + cεc‖u‖p, (.)

where c is a positive constant. Then combining (K) and (.), we obtain

	(u) ≥ 


∫
�

|∇u| dx + b‖u‖ –
(
ε‖u‖ + cεc‖u‖p)

=



∫
�

|∇u| dx + (b – ε)‖u‖ – cεc‖u‖p ≥ min

{


, (b – ε)

}
‖u‖ – cεc‖u‖p

set b = min{ 
 , (b – ε)}, it is clear that b > . We choose ‖u‖ = ρ = (


 b
cεc )


p– and α =


ρ

b, then

	(u) ≥ α. �

Lemma . Under the assumptions of Theorem ., there exists e ∈ H \ Bρ() such that
	(e) < .

Proof Let e ∈ H \ , M = maxx∈�,|u|≤K(x,u) and A > (M+)‖e‖
‖e‖

. By (W), there exists
B >  such that

W (x,u)≥ A|u| – B, for all x ∈ �,u ∈H . (.)

As � < , by Fact , we have

η(ξe) =
∫

�

[|∇ξe| + K(x, ξe)
]
dx

≤
∫

�

|∇e|ξ  dx + 
∫

{x∈�;|ξe|≤}
K(x, ξe)dx + 

∫
{x∈�;|ξe|≥}

K(x, ξe)dx

≤
∫

�

|∇e|ξ  dx + M|�| + M
∫

{x∈�;|ξe|≥}
|ξe|� dx

≤
∫

�

|∇e|ξ  dx + M|�| + M
∫

{x∈�;|ξe|≥}
|ξe| dx

≤ ξ ( + M)‖e‖ + M|�|. (.)

Then, by inequalities (.) and (.), we get

	(ξeo) =


η(ξe) –

∫
�

W (x, ξe)dx ≤  + M


ξ ‖e‖ +M|�| –Aξ ‖e‖ – B|�|

=
(
 + M


‖e‖ –A‖e‖

)
ξ  + (M – B)|�|. (.)

http://www.boundaryvalueproblems.com/content/2012/1/97
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By the choice of A, we have ( +M ‖e‖ – A‖e‖) < , so there exists ξ ∈ R such that if
e = ξe, then

	(e) < . �

Suppose that the assumptions of Theorem . hold, we have Lemma . and Lemma ..
Now it follows from Lemma . that there is a sequence {un} ⊂H such that

∥∥	′(un)
∥∥(
 + ‖un‖

) →  and 	(un) → c ≥ α as n→ ∞. (.)

Lemma . Under the assumptions of Theorem ., the functional 	 satisfies the (C) con-
dition.

Proof Let {un} ⊂H be such that

	(un) is bounded and
(
 + ‖un‖

)
	′(un) → . (.)

By (K) we observe that for large n,

c ≥ 	(un) –


	′(un)un

=
∫

�

K(x,un)dx –
∫

�



Ku(x,un)un dx +

∫
�



Wu(x,un)un –W (x,un)dx

≥
∫

�

K(x,un) –
�


K(x,un)dx +

∫
�



Wu(x,un)un –W (x,un)dx

≥
∫

�

W̃ (x,un)dx. (.)

Arguing indirectly, assume as a contradiction that ‖un‖ → ∞. Setting νn = un/‖un‖, then
‖νn‖ =  and since the embedding H ↪→ Ls for s ∈ [, *), we have ‖νn‖s ≤ γs‖νn‖ = γs.
Observe that, from (.), (K) and (K)

	′(un)un =
∫

�

|∇un| dx +
∫

�

Ku(x,un)un dx –
∫

�

Wu(x,un)un dx

≥
∫

�

|∇un| dx +
∫

�

K(x,un)dx –
∫

�

Wu(x,un)un dx

≥
∫

�

|∇un| dx +
∫

�

b|un| dx –
∫

�

Wu(x,un)un dx

≥
∫

�



|∇un| dx +

∫
�

b|un| dx –
∫

�

Wu(x,un)un dx

≥ ‖un‖
(


b, –

∫
�

Wu(x,un)νn
‖un‖ dx

)
.

It follows that for any ε >  and n large enough,

∫
�

Wu(x,un)νn
‖un‖ dx ≥ b,


– ε. (.)

http://www.boundaryvalueproblems.com/content/2012/1/97
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Set for r ≥ 

h(r) := inf
{
W̃ (x,u) : x ∈ � and u ∈ R with |u| ≥ r

}
.

By (W), h(r) >  for all r >  and h(r) → ∞ as r → ∞. For  ≤ a < b, let

�n(a,b) =
{
x ∈ � : a≤ ∣∣un(x)∣∣ < b

}
and

Cb
a = inf

{
W̃ (x,u)

u
∣∣∣x ∈ � and u ∈ R with a ≤ ∣∣un(x)∣∣ < b

}
.

Since W̃ (x,u) >  if u 
= , one has Cb
a >  and

W̃
(
x,un(x)

) ≥ Cb
a
∣∣un(x)∣∣ for all x ∈ �n(a,b).

It follows from (.) that

c ≥
∫

�

W̃ (x,un)dx

=
∫

�n(,a)
W̃ (x,un)dx +

∫
�n(a,b)

W̃ (x,un)dx +
∫

�n(b,∞)
W̃ (x,un)dx

≥
∫

�n(,a)
W̃ (x,un)dx +Cb

a

∫
�n(a,b)

∣∣un(x)∣∣ dx + h(b)
∣∣�n(b,∞)

∣∣. (.)

Set τ := σ /(σ –), since σ >N/, one sees τ ∈ (, *). Fix arbitrarily τ̂ ∈ (τ , *), using (.),

∣∣�n(b,∞)
∣∣ ≤ c

h(b)
→  as b→ ∞ uniformly in n,

which implies by the Hölder inequality that

∫
�n(b,∞)

|νn|τ dx≤
(∫

�n(b,∞)
dx

)– τ
τ̂
(∫

�n(b,∞)
|νn|τ τ̂

τ dx
) τ

τ̂

≤ γ τ
τ̂

∣∣�n(b,∞)
∣∣– τ

τ̂

→  (.)

as b → ∞ uniformly in n. Using (.) again, for any fixed  < a < b,

∫
�n(a,b)

|νn| dx = 
‖un‖

∫
�n(a,b)

|un| dx ≤ c
Cb
a‖un‖

→ 

as n→ ∞. Let  < ε < b,
 , by (W), there exists aε >  such that

∣∣Wu(x,u)
∣∣ ≤ ε

γ
|u|, for all |u| ≤ aε .
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Consequently,

∫
�n(,aε )

Wu(x,un)
|un| |νn| dx≤

∫
�n(,aε )

ε

γ
|νn| dx≤ ε

γ
‖νn‖ ≤ ε (.)

for all n. By (W) and (.), we can take large bε ≥ r so that

∫
�n(bε ,∞)

Wu(x,un)
|un| |νn| dx≤

(∫
�n(bε ,∞)

|Wu(x,un)|σ
|un|σ dx

) 
σ
(∫

�n(bε ,∞)
|νn|σ ′

dx
) 

σ ′

≤
(∫

�

cW̃ (x,un)dx
) 

σ
(∫

�n(bε ,∞)
|νn|τ dx

) 
τ

. (.)

Hence combining (.), (.) and (.), there is n such that

∫
�n(bε ,∞)

|Wu(x,un)||νn|
|un| dx ≤ (cc)


σ

(∫
�n(bε ,∞)

|νn|τ dx
) 

τ

< ε (.)

for n≥ n. Note that there is γ = γ (ε) >  independent of n such that

∣∣Wu(x,un)
∣∣ ≤ γ |un| for x ∈ �n(aε ,bε).

By (.)

∫
�n(aε ,bε )

|Wu(x,un)||νn|
|un| dx ≤ γ

∫
�n(aε ,bε )

|νn| dx < ε (.)

for all n ≥ n. Therefore, combining (.)-(.), we obtain for n≥ n∫
�

|Wu(x,un)||νn|
|un| dx≤ ε <

b,


– ε

which contradicts (.). Hence {un} is bounded inH . Going if necessary to a subsequence,
we assume that

un ⇀ u in H for some u ∈H ,

which implies un → u a.e. in�, because the imbeddingH
(�) ↪→ L(�) is compact. Hence

we have ‖un – u‖ →  and |(	′(un) –	′(u))(un – u)| → . Using the Hölder inequality∣∣∣∣∫
�

(
f
(
x,un(x)

)
– f

(
x,u(x)

))(
un(x) – u(x)

)
dx

∣∣∣∣
≤

(∫
�

∣∣f (x,un(x)) – f
(
x,u(x)

)∣∣q) 
q
(∫

�

∣∣un(x) – u(x)
∣∣p) 

p

( p +

q = ) for un → u in Lp(�), and by (K), (K), (W), (W) we have

∣∣f (x,u)∣∣ ≤ c
(
 + |u|p–) = c

(
 + |u| pq ).
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Then, by Lemma ., we have f (x,un(x))→ f (x,u(x)) in Lq(�). Thus∫
�

(
f
(
x,un(x)

)
– f

(
x,u(x)

))(
un(x) – u(x)

)
dx → 

as n→ +∞. Moreover, a straightforward computation shows that

(
	′(un) –	′(u)

)
(un –u) =

∥∥∇(un –u)
∥∥
 –

∫
�

(
f
(
x,un(x)

)
– f

(
x,u(x)

))(
un(x) –u(x)

)
dx

it is clear that

∥∥∇(un – u)
∥∥
 → . (.)

Finally,

∥∥un – u
∥∥ →  in H .

This completes the proof. �

Now, we are ready to prove Theorem ..
We will obtain a critical point of 	λ by the use of a standard version of the Mountain

Pass Lemma (see []). It provides theminimax characterization for the critical value which
is important for what follows. Therefore, we state this lemma precisely.

Lemma . (see []) Let H be a real Banach space and 	λ : H → R be a C-smooth
functional. If 	 satisfies the following conditions:

(i) 	() = ,
(ii) every sequence {un}n∈N in H such that {	(un)}n∈N is bounded in R and 	′(un) → 

in H∗ as n→ +∞, contains a convergent subsequence ((PS) condition),
(iii) there are constants ρ,α >  such that 	|∂Bρ () ≥ α,
(iv) there is a constant e ∈H \ Bρ() such that 	(e)≤ ,

where Bρ() is an open ball in H of radius ρ centered at , then 	 possesses a critical value
c≥ α given by

c = inf
g∈�

max
s∈[,]

	
(
g(s)

)
,

where

� =
{
g ∈ C

(
[, ],H

)}
: g() = , g() = e}.

Now we are ready to give the proofs of Theorem ..

Proof of Theorem . Under conditions (F), (K), (K), (W)-(W), as shown in [], a
deformation lemma can be proved with the (C) condition, replacing the usual Palais-
Smale condition, and it turns out that the Mountain Pass Theorem still holds true. Ap-
plying the Mountain Pass Lemma ., 	 possesses a critical value c ≥ α given by c =

http://www.boundaryvalueproblems.com/content/2012/1/97
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infg∈� maxs∈[,] 	(g(s)). Hence, u is a nontrivial solution of problem (P) satisfying	(u) = c,
	′(u) = . The proof is done. �
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