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Abstract

In this study, a new solution scheme for the partial differential equations with variable
coefficients defined on a large domain, especially including infinities, has been
investigated. For this purpose, a spectral basis, called exponential Chebyshev (EC)
polynomials, has been extended to a new kind of double Chebyshev polynomials.
Many outstanding properties of those polynomials have been shown. The
applicability and efficiency have been verified on an illustrative example.
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1 Introduction

The importance of special functions and orthogonal polynomials occupies a central po-
sition in the numerical analysis. Most common solution techniques of differential equa-
tions with these polynomials can be seen in [1-12]. One of the most important of those
special functions is Chebyshev polynomials. The well-known first kind Chebyshev polyno-
1x2 on the interval

Vi-a2
[-1,1]. These polynomials have many applications in different areas of interest, and a lot

mials [1] are orthogonal with respect to the weight-function w,(x) =

of studies are devoted to show the merits of them in various ways. One of the application
fields of Chebyshev polynomials can appear in the solution of differential equations. For
example, Chebyshev polynomial approximations have been used to solve ordinary differ-
ential equations with boundary conditions in [1], with collocation points in [13], the gen-
eral class of linear differential equations in [14, 15], linear-integro differential equations
with collocation points in [16], the system of high-order linear differential and integral
equations with variable coefficients in [17, 18], and the Sturm-Liouville problems in [19].

Some of the fundamental ideas of Chebyshev polynomials in one-variable techniques
have been extended and developed to multi-variable cases by the studies of Fox et al. [1],
Basu [20], Doha [21] and Mason et al. [5]. In recent years, the Chebyshev matrix method
for the solution of partial differential equations (PDEs) has been proposed by Kesan [22]
and Akyuz-Dascioglu [23] as well.

On the other hand, all of the above studies are considered on the interval [-1,1] in
which Chebyshev polynomials are defined. Therefore, this limitation causes a failure of
the Chebyshev approach in the problems that are naturally defined on larger domains,
especially including infinity. Then, Guo et al. [24] has proposed a modified type of Cheby-
shev polynomials as an alternative to the solutions of the problems given in a nonnegative
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real domain. In his study, the basis functions called rational Chebyshev polynomials are

orthogonal in L,(0,00) and are defined by

x—-1
R,,(x) = Tn<m).

Parand et al. and Sezer et al. successfully applied spectral methods to solve problems on
semi-infinite intervals [25, 26]. These approaches can be identified as the methods of ra-
tional Chebyshev Tau and rational Chebyshev collocation, respectively. However, this kind
of extension also fails to solve all of the problems over the whole real domain. More re-
cently, we have introduced a new modified type of Chebyshev polynomials that is devel-
oped to handle the problems in the whole real range called exponential Chebyshev (EC)
polynomials [27].

In this study, we have shown the extension of the EC polynomial method to multi-

variable case, especially, to two-variable problems.

2 Properties of double EC polynomials
The well-known first kind Chebyshev polynomials are orthogonal in the interval [-1,1]
with respect to the weight-function w,(x) = ﬁ and can be simply determined with the

help of the recurrence formula [1]

To(x) =1, T1(x) = x,
@.1)
Tn+1(x) = ZXTn(x) - Tn—l(x): n>1

Therefore, the exponential Chebyshev (EC) functions are recently defined in a similar
fashion as follows [27].
Let

L*(¢) = {f= Ifll2 = \// I ()| we () dx < OO}

be a function space with the weight function w,(x) = %. We also assume that, for a non-

negative integer 7, the nth derivative of a function f € L? is also in L. Then an EC poly-

nomial can be given by

E:p— [-1,1],

En (x) = Tn ()/):

-1
e¥+1 °

This definition leads to the three-term recurrence equation for EC polynomials

where y =

el

Eo(x)=1,  Eix)= i1
o1 (2.2)
E,(x) = 2(m)En(x) —-E,1(x), n>1
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This definition also satisfies the orthogonality condition [27]

/ T EM)En@wix) da - n’s B 2.3)

o0

2,m=0,

L 70 and §,,, is the Kronecker function.

where ¢, = i

Double EC functions

Basu [20] has given the product T,(x,y) = T.(x) - Ts(y) which is a form of bivariate Cheby-
shev polynomials. Mason et al. [5] and Doha [11] have also mentioned a Chebyshev poly-
nomial expression for an infinitely differentiable function u(x,y) defined on the square

S(-1<x,y<1)by

[ ele e}

u@y) =Y Y anT®)T),

r=0 s=0

where T,(x) and T(y) are Chebyshev polynomials of the first kind, and the double primes
indicate that the first term is iﬂo,o; amo and ag, are to be taken as %amyo and %do,n for

m,n > 0, respectively.

Definition Based on Basu’s study, now we introduce double EC polynomials in the fol-

lowing form:
Er,s(x)y) = Er(x) N Es(y); (24)
where E,;,(x), E,(y) are EC polynomials defined by

e’ -1 -1
E,(x):T,(ex+1), Es(y):Ts(ey+1>’

Recurrence relation The polynomial E, ;(x, y) satisfies the recurrence relations

Erps(%,9) = [2<—ex — 1>Er(x) .y _1(x)] E(y), r=1, (2.5)
e*+1
Epsnr(,9) = E,(x) [2(6y - 1>Es(y) - Es_l(w], s> 1. (2.6)
e+1

If the function f(x, y) is continuous throughout the whole infinite domain —oo < %,y < 00,

then the E, s(x,)’s are biorthogonal with respect to the weight function

exty

We(x,y) = m,
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and we have

72, i=j=k=1=0,
Z i=k#0,j=1+0,
%0 oo z i=k=0,j=1#0
[ Bt st s sy - N 2.38)
i=k#0,j=1=0,
0, for all other values of i,j,k, .

Multiplication E;;(x,y) is said to be of higher order than E,, ,,(x,y) if i + j > m + n. Then
the following result holds:

Em,n (x: )’) ‘ Ei,j(x) }’)
1

=3 {Emsinsj @) + Emsiini) %) + Ejm—ifnsj % ¥) + Ejm—it, ot (%, 9) ) (2.9)

Function approximation
Let u(x,y) be an infinitely differentiable function defined on the square S(—oco <,y < 00).
Then it may be expressed in the form

oo o0
u@y) =Y Y " arEps(xy), (2.10)
r=0 s=0
where

f f u(x, rs(x; )W(x, )dx dy
ﬂrs - .
, o0 o B2, y)wlx,y) dx dy

(2.11)

If u(x, y) in Eq. (2.10) is truncated up to the mth and nth terms, then it can be written in
the matrix form

x:y) = ZZ arsErs x¢ =E(x, ) (2.12)

r=0 s=0

with E(x,y) isal x (m + 1)(n + 1) EC polynomial matrix with entries E,(x, ),

E(x,y) = [Eoo(%,9) Eo1(%,9) - Eou(%,9) Ero(y) Ei1(%y) -+ Eiu(x,y) -
Em,O(xry) Em,l(xry) Em,n(xry)] (213)

and A is an unknown coefficient vector,
T
=[aoo @01 -+ Gom G0 A1t At Amo Aml c Gmpl - (2.14)

Matrix relations of the derivatives of a function
(i + j)th-order partial derivative of u(x, y) can be written as

u®(x,y) = Z Z”am E(x,9) (2.15)

r=0 s=0
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and its matrix form is
u (x,y) = EW(x,y) - A, (2.16)
where E®Y = E, ., u®%(x,y) = u(x,) and

B (x,) = [Eg) (69) Eo)(5,9) -+ Eqhx3) ELdxy) - E)(5) -
E,Z{o(x,y) E;(/Zl(xry) E,j,’fn(x,y)].
Proposition 1 Let u(x,y) and (i, j)th-order derivative be given by (2.12) and (2.16), respec-

tively. Then there exists a relation between the double EC coefficient row vector E(x,y) and

(i + j)th-order partial derivatives of the vector E®)(x,y) of size 1 x (m + 1)(n +1) as
E®(x,) = E(x,7)(D,) (D, ), (217)

where D, and D, are (m +1)(n +1) x (m +1)(n + 1) operational matrices for partial deriva-

tives given in the following forms:

T
D, = [cap] = <diag<%l,0,—%l>) . a=0,1,...,mB=0,1,..,n

and
T
u 0 0
0 u --- 0
Dy: . . . . ’
0 0 - pu

10 = [du p] =diag<%,0,—%),a —0,1,...,m,B=0,1,...,n

Here, 1 and O are (m +1)(n + 1) identity and zero matrices, respectively, and T denotes the

usual matrix transpose.

Proof Taking the partial derivatives of Es, E;s and both sides of the recurrence rela-

tion (2.5) with respect to x, we get

ad
ESO(x,y) = —axEo,s(x,y) =0, (2.18)
ad
(10 (00
E (= —Eq(x, s x,Y) — —E 2 2.19
() = o Eis(y) = (ex+1)2 Ei(y) = (x,) () (2.19)
and

9
Efy03) = o[BS 0 ER (9) - B2 (9]

= ZE&’O)(x, y)Eﬁf’s’O) (x, ) + 2E§g’0)(x, y)E” ) (x, y) — E,1 f)s(x, y), s>0. (2.20)
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By using the relations (2.18)-(2.20) for r = 0,1,2,...,m the elements ¢, g of the matrix of

partial derivatives D, can be obtained from the following equalities:

EgY (x,9) =0,
EM(x,9) = LESO(x,9) - LEDO (v, ),
E0x,y) = LEO0(x,5) - LECO (1, ), (2.21)

E5d(ey) = 2EDS (6,9) - ZEN) (x,9), s> 0.

Similarly, taking the partial derivatives of E,.g, E,; and both sides of the recurrence re-

lation (2.6) with respect to y, respectively, we write

F)
E () = 8—yEr,o(x,y) =0, (2.22)
3 2¢ 1
E(O,l) ) = —Er ] = Er = _E 00 X, - _E(O,O) ’ 2'23
o (%) 5 1(%,9) = E-(x) EER (x,9) 2Er2 (x,y) (2.23)
and

rs+1(x’y)_ [2Er010 (% 9)ES (x,9) — EX0) (x,9)]

:215,3'1 @ NECO(x,9) + 2ES0 (6, ) EOD (x,9) - EON (x,9),  r=0. (2.24)

r,s—1

Then with the help of the relations (2.22)-(2.24), the elements d, g of the matrices of partial

derivatives D, can be obtained from

E;('f)(;l) (x’y) =0,
ES"(w9) = 1B (03) - 1E5” @),
0 LE®, 1E.; (2.25)

ESP(,y) = 2EO0 (6,9) - 2EO (%), 1> 0.

We have noted here that ES,IS’O)(x, y) = ,0 0) (x,9) =0 forr > mand E,S (x, y) = Eﬁ%o)(x, y) =
0 for s > n.

From (2.21) and (2.25), the following equalities hold for i = 0,1,2,...and j=0,1,2,...
E®O(x,9) = E(x,y)Ds,
E®%(x,3) = E*(x,5)D; = (E(x,9)D.) D, = E(x,7)(Dx),

(2.26)

EC0(x,y) = E19(x, D, = E(x,)(D.)

Page 6 of 13
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and

E®V(x,y) = E(x,7)D,,

E®?(x,y) = E*Y(x,9)D, = (E(x,y)D,)D, = E(x,5)(D,)%,
(2.27)

E%(x,y) = E%V(x,9)D, = E(x,5)(D,),

where E©9(x, y) = E(x,y) and (D,)° = (D,)° = I and I denotes (m +1)(n + 1) identity matrix.
Then utilizing the equalities in (2.26) and (2.27), the explicit relation between the double

EC polynomial row vector and those of its derivatives has been proved as follows:

E®)(x,9) = E)(x,9)(DT) = (E°9(x,5)(D,)’)(D,y

= E(x! y)(Dx)l(Dy)]

or

E@(x,59) = E%(x,) (DY)’ = (E*%(x,5)(D,y) (DT)’

= E(x,9)(D,)(D5)". O
Remark (D,)(D,) = (D,)(D,)".

Corollary From Egs. (2.16) and (2.17), it is clear that the derivatives of the function are

expressed in terms of double EC coefficients as follows:
u (x,y) = Ex,y)(D,) (DY A. (2:28)

3 Collocation method with double EC polynomials
In the process of obtaining the numerical solutions of partial differential equations with
the double EC method, the main idea or major step is to evaluate the necessary Cheby-
shev coefficients of the unknown function. So, in Section 2, we give the explicit relations
between the polynomials E, ;(x,y) of an unknown function and those of its derivatives
Eﬁl!) (%, y) for different nonnegative integer values of i and j.

In this section, we consider the higher-order linear PDE with variable coefficients of a

general form

p r
DO e (xy) = f(x,y), —00<x,y<oo 3.)

i=0 j=0
with the conditions mentioned in [23] as three possible cases:

>

t=1 i

Z btwu(l‘]) (CL)[, nt) =A (3'2)

p r
=0 j=0

Page 7 of 13
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and/or

v p r
Y3 ey @ (x,v) = g() (33)

t=1 i=0 j=0
and/or

>

t=1 i

dsy; ) (81,9) = (). (3.4)

p r
=0 j=0

Bt+/'

Here, 1% (x,9) = u(x,y), u(x,5) = 5525 ulx,y) and q;;(x9), f(®), ¢y, (%), gW), dy, (),
h(y) are known functions on the square S(—00 < x,y < 00). We now describe an approxi-
mate solution of this problem by means of double EC series as defined in (2.10). Our aim
is to find the EC coefficients in the vector A. For this reason, we can represent the given
problem and its conditions by a system of linear algebraic equations by using collocation
points.

Now, the collocation points can be determined in the inner domain as

<1 + cos(krr/m))
X =In[ ——— ),

1—cos(km /m)
(3.5)
(1 + cos(lr/n)
Ji=

m) k=1,2,....m-1;1=1,2,...,n—1)
and at the boundaries

(i) x,, — oo andy, — oo,

(i) xwgp — —oo and y, — —o0.
Since EC polynomials are convergent at both boundaries, namely their values are either
1 or —1, the appearance of infinity in the collocation points does not cause a loss in the
method.

Therefore, when we substitute the collocation points into the problem (3.1), we get

p r
Y3 i@ y)u () = fley)  (k=0,1,...,m,0=0,1,...,n). (3.6)

i=0 j=0

The system (3.6) can be written in the matrix form as follows:

P r
Y QUP=E p<mr<n (37)

i=0 j=0

where Q;; denotes the diagonal matrix with the elements g;;(x,y) (k = 0,1,...,m;
[=0,1,...,n) and F denotes the column matrix with the elements f(x;,y;) (k=0,1,...,m;
[=0,1,...,n).

Page 8 of 13
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Putting the collocation points into derivatives of the unknown function as in Eq. (2.28)
yields

[ (e, 71) ]| = E i, 1) (D) (D, VA,

_M(i’j) (xo,yo)_

™ (%0, ¥n)
N 1) (%1, 0) - ) . (38)
Ul = . =EWA = E(D,)(D,YA,

u (x1,,)

_M(Lj) (xm: yn)_

where E is the block matrix given by

E = [E(x0,50) E(xo,51) -+ E(xo,yx) E(x1, %) E(x1,01) -+ E@1,p.) -+
EGomy0) E@my1) - E@omya)]

and for i =j = 0, we see
U=EA. (3.9)

Therefore, from Eq. (3.7), we get a system of the matrix equation for the PDE

p r
(Z > QiJE(Dx)i(Dyy')A =F, (3.10)

i=0 j=0

which corresponds to a system of (m + 1)(n + 1) linear algebraic equations with unknown
double EC coefficients a,.;.

It is also noted that the structures of matrices Q;; and F vary according to the number of
collocation points and the structure of the problem. However, E, D, and D, do not change
their nature for fixed values of m and #n which are truncation limits of the EC series. In
other words, the changes in E, D, and D, are just dependent on the number of collocation
points.

Briefly, we can denote the expression in the parenthesis of (3.10) by W and write

WA =F. (3.11)
Then the augmented matrix of Eq. (3.11) becomes

[W : E]. (3.12)
Applying the same procedure for the given conditions (3.2)-(3.4), we have

(=

p r
t=1 i=0

Z bti‘jE(a)t’ nt)(Dx)l(Dy)]>A = )\: -0 < wy, N < oo, (3'13)
j=0
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Table 1 Absolute errors of Example at different points

X y m=n=15

4.5056 45056 331 E-08
4.5056 2.248 2.09 E-08
4.5056 1618 1.48 E-08
45056  -2.248 3.18 E-08
45056  -4.5056  3.38E-08
3.0970 45056  1.58 E-08
3.0970 1618 6.00 E-10
3.0970  -0.209 1.90 E-10
2.248 30970  440E-09
2.248 -3.0970  530E-09
16183  -0.2098 3.50E-10
0.2098  -0.2098  1.80E-10
-0.2098  -0.2098  1.00E-10
-2.248 -1.098 1.90 E-09
-3.0970 2.248 2.20 E-09
-3.0970  -2248 1.30 E-09

v o p r
( > Cti,j(xk)E(xk:Vt)(Dx)i(Dyy)A:g(xk):

t=1 i=0 j=0
—00<y<00,k=0,1,...,m, (3.14)
» p o r
<Z d;, (w)E(et,yz)(Dx)"(DyV)A = h(y),
t=0 i=0 j=0
—00< g <00,l=0,1,...,n. (3.15)

Then these can be written in a compact form
VA =R, (3.16)

where Visan & x (m +1)(n + 1) matrix and R is an / x 1 matrix, so that / is the rank of all
row matrices belonging to the given condition. The augmented matrices of the conditions
become

[V:R]. (3.17)
Consequently, (3.12) together with (3.17) can be written in a new augmented matrix form
(W F]. (3.18)

This form can be achieved by replacing some rows of (3.12) by the rows of (3.17) accord-
ingly, or adding those rows to the matrix (3.12) provided that (det W") # 0. Then it can be
written in the following compact form:

WA=F. (3.19)

Finally, the vector A (thereby the coefficients 4,) is determined by applying some nu-
merical methods (e.g., Gauss elimination) designed especially to solve the system of linear
equations. Therefore, the approximate solution can be obtained. In other words, it gives
the double EC series solution of the problem (3.1) with given conditions.
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(a) Contour plot of the exact solution (b) Contour plot of the approximate

for 2<x,y<10 solution for -2<x,y <10

- ]/ T .y -
S \»\ j;’/.//‘ B \\\\ \2;/// -

:
v VL
e %

(c) Contour plot of the exact solution (d) Contour plot of the approximate
for 3<x<3, -5<y<5 solution for -3<x<3, -5<y<5

Figure 1 Contour plots of exact and approximate solutions.

4 lllustration
Now, we give an example to show the ability and efficiency of the double EC polynomial

approximation method.

Example Let us consider the linear partial differential equation

2 4¢e
— U, =
ef+1 7 (¥ +1)2(er +1)2

Uxy

with the conditions

u,(0,y) = 0, u(x,0) = 0.

&) +1

It is known that the exact solution of the problem is u(x, y) = E@


http://www.boundaryvalueproblems.com/content/2013/1/10

Kog and Kurnaz Boundary Value Problems 2013, 2013:10 Page 12 0f 13
http://www.boundaryvalueproblems.com/content/2013/1/10

o -10

Figure 2 Exact and approximate solution of the example.

Absolute errors of the proposed procedure at the grid points are tabulated for m = n =15
in Table 1.

Contour plots of the exact solutions and the approximate solutions are given for the
region —2 < x,y <10 in (a) and (b) and for the region -3 <x <3, -5 <y <5in (c) and (d)
of Figure 1, respectively. Figure 2 shows a graphical representation of the exact solution
and, for m = n = 15, the approximate solution of the example.

5 Conclusion

In this article, a new solution scheme for the partial differential equation with variable
coeflicients defined on unbounded domains has been investigated and EC polynomials
have been extended to double EC polynomials to solve multi-variable problems. It is also
noted that the double EC-collocation method is very effective and has a direct ability to
solve multi-variable (especially two-variable) problems in the infinite domain. For com-
putational purposes, this approach also avoids more computations by using sparse oper-
ational matrices and saves much memory. On the other hand, the double EC polynomial
approach deals directly with infinite boundaries, and their operational matrices are of few
non-zero entries lain along two subdiagonals.
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