Zhao et al. Boundary Value Problems 2013, 2013:111 0 Boundary Value PrOblemS

http://www.boundaryvalueproblems.com/content/2013/1/111 a SpringerOpen Journal

RESEARCH Open Access

Averaging of the 3D non-autonomous
Benjamin-Bona-Mahony equation with
singularly oscillating forces

Mingxia Zhao', Xinguang Yang?" and Lingrui Zhang®

“Correspondence:
yangxinguangyxg@yahoo.cn
2College of Mathematics and
Information Science, Henan Normal
University, Xinxiang, 453007, PR.
China

Full list of author information is
available at the end of the article

@ Springer

Abstract

For e € (0, 1), we investigate the convergence of corresponding uniform attractors of
the 3D non-autonomous Benjamin-Bona-Mahony equation with singularly oscillating
force contrast with the averaged Benjamin-Bona-Mahony equation (corresponding to
the limiting case € = 0). Under suitable assumptions on the external force, we shall
obtain the uniform boundedness and convergence of the related uniform attractors
ase — 0%,
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1 Introduction
Let p € [0,1) be a fixed parameter, 2 C R® be a bounded domain with sufficiently
smooth boundary 9€2. We investigate the long-time behavior for the non-autonomous

3D Benjamin-Bona-Mahony (BBM) equation with singularly oscillating forces:

Up = Dty —vAu+V - E () =folt,x) + e fi(tle,x), xe, (L)
u(t,x)|se =0, (1.2)
u(t,x) =u.(x), tTe€R (1.3)

Here, t € R;, R; = (t,00), and u = u(t,x) = (u1(¢, %), ua(t, %), us(t, x)) is the velocity vector
field, v > 0 is the kinematic viscosity, F is a nonlinear vector function, fy (¢, %) + £ °f1(¢/¢, x)
is the singularly oscillating force.

Along with (1.1)-(1.3), we consider the averaged Benjamin-Bona-Mahony equation

Uy — ANy —vAu+V ~?(u) =fo(t,x), x€Q, (1.4)
u(t,x)|39 =0, (15)
u(t,x) =u.(x), 7€R (1.6)

formally corresponding to the case ¢ = 0 in (1.1).
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The function

Jo(x, ) + e fi(x,tle), O0<e<l,

St folx, ), £=0

1.7)

represents the external forces of problem (1.1)-(1.3) for ¢ > 0 and of problem (1.4)-(1.6) for
& =0, respectively.
The functions fy(x,s) and fi(x,s) are taken from the space Li(R,H) of translational

bounded functions in L2 (R, H), namely,

loc

t+1
2
Vol2agasn=s0p [ [0 ds =212 L8)
b teR Jt
t+1 3
A2 ‘=S“p/ [A@)] ds = Mz, (19)
b teR Jt

for some constants My, M; > 0.
Defining

o - My +2Mie™”, 0O0<e<l,
MO; &= 0:

as a straightforward consequence of (1.7), we have

1 g = @ (1.10)

note that Q¢ is of the order 7" as ¢ — 0*.

The BBM equation is a well-known model for long waves in shallow water which was in-
troduced by Benjamin, Bona, and Mahony ([1], 1972) as an improvement of the Korteweg-
de Vries equation (KdV equation) for modeling long waves of small amplitude in two
dimensions. Contrasting with the KdV equation, the BBM equation is unstable in high
wavenumber components. Further, while the KdV equation has an infinite number of in-
tegrals of motion, the BBM equation only has three. For more results on the wellposedness
and infinite dimensional dynamical systems for BBM equations, we can refer to [2-7].

In this paper, firstly, we shall study the asymptotic behavior of the non-autonomous BBM
equation depending on the small parameter ¢, which reflects the rate of fast time oscil-
lations in the term e™*fi(x, ¢t/e) with amplitude of order ¢, then we shall consider the
boundedness and convergence of corresponding uniform attractors of (1.1)-(1.3) in con-
trast to (1.4)-(1.6).

2 Preliminaries

Throughout this paper, L#(2) (1 < p < +00) is the generic Lebesgue space, H*(R2) is the
Sobolev space. We set E := {u|u € (C°(R2))%}, H, V, W is the closure of the set E in the
topology of (L2(R))3, (H*(R))3, (H?(R2))? respectively. ‘—’ stands for the weak convergence

of sequences.
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Lemma 2.1 For each t € R, every nonnegative locally summable function ¢ on R, and
every B >0, we have

t 1 0+1
/ P(s)e P ds < sup ¢(s)ds, (2.1)
T l1-e# 6>t Jo
holds forall t > t.
Proof See, e.g, [8]. O

Lemma 2.2 Let ¢ : R; — R* fulfill that for almost every t > t, the differential inequality

d
250+ 108 (1) = da(0), (2.2)

where, for every t > t, the scalar functions ¢, and ¢, satisfy

f¢1 Yds > B(t - 1) / P (s)ds < M, (2.3)

forsome $ >0,y >0and M > 0. Then

Me”

-Blt-7)
c() <e’i(r)e Ay

vVt > . (2.4)
Proof See, e.g., [8]. d

For the non-autonomous general Benjamin-Bona-Mahony (BBM) equation,

—Au; —vAu+V ~7—")(u) =glt,x), x€QteR,, (2.5)
u(txx)laﬂ = O’ (26)
u(t,x) =u.(x), Te€R (2.7)

Assume that &, € Hj(2), the nonlinear vector function?—") (8) = (Fi(s), Fa(s), F5(s)), Vs € R,

we denote
f)=Fls),  Fils)= / Ei(r)dr, (2.8)
0
where
F©) = (6 L6LA6), ) = (Fis), Fals), Fs(s). 2.9)

In addition, F; (i =1,2,3) is a smooth function satisfying

F(0)=0,  |F(s)| = Cilsl + Calsl, (2.10)
Cl+Cllsl < i) < CL+ Colsl, | Fils)| < Culs® + Calsl? (2.11)

for all s € R, where C; and C, are positive constants.
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Similar to [5], by the Galerkin method and a priori estimate, we easily derive the exis-
tence of a global weak solution and a uniform attractor which shall be stated in the follow-
ing theorems.

Theorem 2.3 Assume that (2.8)-(2.11) hold, g € L. (R, H), u, € Hy() (or V) , then there

loc

exists a unique global weak solution u(x,t) of the problem (2.5)-(2.7) which satisfies
ueC((r,TsV), wel*((r,T)V) (2.12)
forallteRand T > .

Theorem 2.4 Assume that the external force g € L> (R, H) and (2.8)-(2.11) hold, then the

loc
processes {L(t,T),t > T} generated by the global solution possess uniform attractors Ag4(t)

in Hy () for the non-autonomous system (2.5)-(2.7).

3 Some lemmas

Lemma 3.1 The functions fy(x,s) and fi(x,s) are taken from the space L}(R, H) of transla-

2
loc

ated by system (1.1)-(1.3) have a uniformly (w.r.t. o =f° € ) compact attractor A® for any
fixed € € (0,1).

tional bounded functions in L; (R, H), then the processes {Uy:(t,T),t > T,t,T € R} gener-

Proof As asimilar argument in Section 2, we choose g(t, x) = f*(¢,x) in Theorem 2.4, since
fo and f; are translational bounded in L%OC(R,H), then for any fixed ¢ € (0,1], f*(¢,x) is

translational bounded in L? (R, H) and we can easily deduce the existence of uniformly

loc
compact attractors A°. O

We can briefly describe the structure of the uniform attractor as follows: if the func-
tions fy(¢) and fi(¢) are translational bounded, problem (1.1)-(1.3) generates the dynamical
processes {U*°(t,7),t > 7,7 € R} acting on V which is defined by U*(¢, T)ul = u®(£), t > 7,
where u°(¢) is the solution to (1.1)-(1.3). The processes {U*(t,t),t > T, T € R} have a uni-
formly (w.r.t. £ € R) absorbing set

B ={u eV||u|, =CQ}, (3.1)

which is bounded in V for any fixed ¢ € (0,1).
On the other hand, A° is also bounded in V for each fixed ¢ since A® C Bf. Assuming
fo.fi € LE(R, H), the external force f*(t) appearing in equation (1.1) belongs to L2(R, H)

also. Moreover, if £ > 0 and f* € H(f¢), then
. . NG
Jew) ko i (2, (52

for some ﬁ) € H(fo) and fl € H(f1). In this case, to describe the structure of the uniform
attractor A?, we consider the family of equations

il + Ally + vAL+ V- F(@) = f2(8),  f* € H(f*). (33)

For every external forcefAS € H(f?), equation (3.3) generates a class of processes {U;. (¢, T)}
on V, which shares similar properties to those of the processes {Uy: (¢, 7)}, corresponding
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to the original equation (1.1) with the external force f*(¢). Moreover, the map
(e, f%) > U (&, 7Yt (3.4)
is (V x H(f*®), V)-continuous.

Lemma 3.2 If the function fy(t,x) in (1.4) is taken from the space L3(R, H) of translational

2

bounded functions in Lj,

(R, H), then the processes {Uy, (t,7),t > T, T € R} generated by sys-
tem (1.4)-(1.6) have a uniformly (w.r.t. o = fo € ¥) compact attractor A°.

Proof Use a similar technique as that in Theorem 2.4, we can easily deduce the existence
of a uniformly compact attractor A° if we choose g(t,x) = fy (¢, x). (]

4 Uniform boundedness of .A°

Firstly, we shall consider the auxiliary linear equation with a non-autonomous external
force and give some useful lemmas, and then we shall prove the uniform boundedness
of A°.

Considering the linear equation
Y: +AY, + vAY =K(t), Yl|;—r =0, (4.1)
we get the following lemma.

Lemma 4.1 Assume that K € L?

loc

(R, H), then problem (4.1) has a unique solution

Yel*((r, T W)NC((xr,T); V), (4.2)

»Y e L*((r, T); W'). (4.3)

Moreover, the following inequalities
t
ly[? <c / 9| K ()| ds, (4.4)

t+1 t+1
/ﬁ ||Y(s)||2vds§c(||w)||2v+ / ||1<(s)||§[ds) (45)

hold for every t > t and some constant C > 0, independent of the initial time T € R.

Proof Firstly, using the Galerkin approximation method, we can deduce the existence of
a global solution for (4.1), here we omit the details.
Then multiplying (4.1) by Y and AY respectively, we get

1d 9 b

5 7 IYIP+IVY ) + v VY2 = (K0, Y) < ~[K@[" + S 1Y) (4.6)
and

1d 2 2 2 2 2 D 2

Eﬁ(IIVYII + |AY[?) + v[[AY|]* = (K(2),AY) < ;||I<(t){| + o IAY P, (4.7)

By the Gronwall inequality and Poincaré inequality, we can easily prove the lemma. O
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Setting K(t,7) = f: k(s)ds, t > 7, T € R, we have the following lemma.

Lemma 4.2 Assume that the formula

t+1
sup {”I((t,l’)”2+/ HK(s,r)HLds} <2 (4.8)
R t

t>1,7€

holds for some constant | > 0, let k € L2 (R, H). Then the solution y(t) yields the following

loc

problem:
Vi + Ay + VAy = k(t/e),  yli=c =0, (4.9)
with ¢ € (0,1) satisfying the inequality
9 t+1 9
o + / O ds < e, Vi1, (4.10)
t

where C > 0 is constant independent of K.
Moreover, we also have

t+1
/ |&.6)| ds < C. (4.11)

Proof Noting that

t tle
K.(t) = / k(s/e)ds = 8/ k(s)ds = eK(t/e,t/¢), (4.12)
T T/e

we can derive the following estimates from (4.8):

stup||1(g(t) I, <l
t+1 3 t+1 3
/ | 5)|2, ds = & / |K(ste, o/e)|, ds
t t
t+1 9
< Ce? sup{/ ||K(s,r)||Hds} < CP2&2.
t>7 t
From Lemma 2.1, we have
¢ 2
[ ek ds

t t-1
< / eV 6| K (s) ||2 ds + f eS| Ko (s) ||2 ds+---
t-1 t—

2

t t-1
5/ | Ke(s) ”2ds+e’C”/ ”Ks(s)szs+e_2C"/ [ Ke(s) ||2ds+
t-1 t-2 t-3

= (e e ) KO

1
S Tpp=—n 1 5)
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1 t+1 3
e LI

< CPée (4.13)

Hence, from the Poincaré inequality, combining (4.12) and (4.4)-(4.5), we conclude that

Y@, <cie, (4.14)
t+1 9 9 t+1 9
[ 1vola< c(u vl [ ke ||Hds) < cre. (4.15)
Setting
Y(t) = /ty(s) ds, (4.16)

we deduce that for any ¢ > 7,

B Y () = y(t) = f diy(s)ds, (4.17)

since y(t) = 0.
Integrating (4.9) with respect to time variable from t to ¢, we see that Y (¢) is a solution
to the problem
3 Y(t) + 0, (AY () + vAY (£) = K. (1), qY (®)]s=c =0, (4.18)

such that from (4.13) and (4.14)), we can derive
t+1
Yo+ |vY®l;, + / | Y| ds < Ci2e?. (4.19)
t

By virtue of y(¢) = 9, Y (¢), (AY(¢), Y (¢)) ~ ||Y(t)||%,, IAY ()| ~ 1Y (£)]l w, we have
[ ® | + [6AY )] = [0 + 40| < v] Y@, + |K.0)] < Cle. (4.20)

Hence, we conclude

ly®l, = c(y@] + |a@]) = cely@l,, + [K@]) < cls (4.21)
and
t+1 9
/ ||y(s) || v as< Cl?e?. (4.22)
t
The proof is finished. g

Now, we shall use the auxiliary linear equation and some estimates to prove the uniform
boundedness of A° in V. For convenience, we set

Fi(t,T) = /[fl(s) ds, t>rt, (4.23)

Page 7 of 14
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and assume that

su {”mt,f)uz o - HFl(s,r)Hf_lds} - (8.24)
€R t

t>1,7

holds for some constants [ > 0.

Theorem 4.3 The attractors A® of problem (1.1)-(1.3) (or (1.4)-(1.6)) are uniformly (w.r.t.
&) bounded in V, namely,

sup ||.A8 || Y < +00. (4.25)
£€[0,1)

Proof Let u®(t) = U°(¢, T)ul be the solution to (1.1)-(1.3) with the initial data u% € V. For

& > 0, we consider the auxiliary linear equation

Ve + Ave + VAv = e Pfi(tle), V|=r =0. (4.26)
From Lemma 4.2, we have the estimate

9 t+1 2 2 2(1-p)
||v(t) || vt ”v(s) || yads<Cle , Vi>rt. (4.27)
t

Setting the function w(t) as

w(t) = u(t) — v(t), (4.28)
which satisfies the problem

—
Wwe+ Aw, + VAW + V- F(W+v) =fy, W= = Uy (4.29)

Taking the scalar product of (4.28) with w, we obtain

%%(nwuz FIVWIR) + VWl + (V- F W+ ), w) = (fo, w). (4.30)
Using the inequality

v = v@;, < Clv@ |}, < cre), ve=r, (4.31)
we have

(V- (Ew+v)),w) < Cs(1+ w2+ [V]1%) + — [|w]

|

4x
Vv

= Go(L+ I + 2e2077) + —flw?

v
< Cu(L+ w|* + Pe209)) + Hnwnz, (4.32)

where A is the first eigenvalue of —A.
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Moreover, notice that

v 4
(forw) = 21wl + ~ 16 1%, (4.33)

and inserting (4.29)-(4.30) into (4.28), we have

| &

(Iwl? + IVwl®) + v Vw]?

N =
QU

t

v v 4
< Cy(1+ W) + Pe®2) 4 —qlw|2 + = W] + —lfo 12
< Ca(1+lIwl ) o WIE+ 2 Iwlly + il

B v v 4
< Co(L+ Wl + P20 4 — i} + Zuwnzv + ;Hfollz

4
2, 2.20-p) , Y 2 4 2
= Cy(1+ wl* + e )+§|IWIIV+;|lfo|| ) (4.34)
which implies that
d 2 2 2
E(IIWII +[wly) + dullwlly, < ¢ (4.35)
where
$i(t) = 2[% - Cs(1+ ) + 1282<“’>)], (4.36)
8 2
$a(t) = ;Hﬁ)(t) I°. (4.37)
Therefore using (1.8), we derive from (4.33)-(4.36) that for any £ > 7,
t p
/ Pr(s)ds > E(t_ 1), (4.38)
t+1
/ $a(s)ds < CM. (4.39)
t
Applying Lemma 2.2 with ¢ (¢) = [|w||* + |wll},, B = 5, ¥ =0, M = CM, we have
Iwl* + wl} < Ce P (e |” + lluclly) + CMG,  VE>1, (4.40)
which gives
Iwll? < Ce P (lue |1 + llueI3) + CME,  VE> 1. (4.41)

Recalling that # = w + v, and using (4.25) and (4.37), we end up with
2 -p(t-t
|lu@], < Iwl3 + IvIl}, < CeP¢ W + lluc ) + C(2+M3), VE=t1. (4.42)
Thus, for every 0 < ¢ < &, the processes {U,(t, T)} have an absorbing set

Bo:={ue Vl|ul} <2C(P +M3)}. (4.43)
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On the other hand, if g < &€ < 1, the processes {U (¢, 7)} also possess an absorbing set

B ={ue Vl|ully < CQq,}. (4.44)
In conclusion, for every &g € [0,1), the set

B. := By U B (4.45)

is an absorbing set for {U (¢, )} which is independent of €. Since .A* C B-, (4.24) follows

and hence the proof is complete. d

5 Convergence of A° to .A°
The main result of the paper reads as follows.

Theorem 5.1 Assume that fy,fi € L3(R,H) C L}(R, H) and (4.23) holds. Then the uniform

C

attractor A°® (for problem (1.1)-(1.3)) converges to A° (for problem (1.4)-(1.6)) as ¢ — 0* in

the following sense:
lim disty (A%, A°) = 0. (5.1)
e—0*

Next, we shall study the difference of two solutions for (1.1) with ¢ > 0 and (1.4) with
& = 0 which share the same initial data. Denote

u®(t) .= U (L, T) e, (5.2)

with u#, belonging to the absorbing set B- which can be found in Section 4. In particular,

since u, € B, the formula corresponding to ¢ = 0

e+ [l as< R 53)
t

holds for some Ry = Ry(p), as the size of B" depends on p.
Lemma 5.2 Forevery e € (0,1), T € R, u, € B- and u®(0) = u®(0) = u., the difference

w(t) = u(¢) — u(2) (5.4)
satisfies the estimate

||w(t) H y < Del PR e > o, (5.5)
for some positive constants D = D(p, 1) and R = R(p,[), both independent of ¢ > 0.
Proof Since the difference w(t) solves the equation

W+ Aw + VAW + V - (7—“) (u) _7_2(”0)) =& Pfi(elt), Wi =0, (5.6)
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the difference
q(t) = w(t) — v(t), (5.7)

fulfills the Cauchy problem

q: +Aq, + vAg+ V - (TV) (u) _7_2(”0)) =0, qlir=0, (5.8)

where v(t) is the solution to (4.25).
Taking an inner product of equation (5.8) with g in H, we obtain

1d

5 dt(llqllz +1IVgI?) +vIVal? + (V - (F () = F (u°)),q) = 0. (5.9)

Noting that

< Gy(1+ [u | + | )ow)? + %nqnz

IA

Co(1+ |uf|” + R2) VW) + ﬁnqnz

IA

2 v
C4(1+ ||u8|| +R%)||Q+V||%/+ﬁ||qn2
<C(1+K2+R 2 Yy o Voo
<GCs(1+K§+ 0)||V||v+2||61||v+4)\||61||
v
=f(6) + EIIqII%’/ +h(®)llql? (5.10)

where A is the first eigenvalue of — A, Kj is the upper bound for 4° (by Lemma 3.1) and

_ V
T4

f@®) =Cs(1+ K3 +R)IvI3 < C(1+KG +R3) P>,

h(t)

thus, it follows from (5.9) and (5.10) that

d v
g(llqll2 +Vql®) + EIILIII2 < Ch(®)llq* +f(t)

< Ch®) (g + IVall?) +£(). (5.11)

N =

Noting that ||g(7)|l = |lg(z)|lv = 0, by the Gronwall inequality, we get

gl + IVql?* < 2exp{2C/th(s) ds} /tf(s) ds. (5.12)

Moreover, we can derive the following formulas:

/T th(s) ds < %(t Y (5.13)
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and

t t
/ fls)ds = / [C(1+KG +RY) VI ] ds
t
< f [C(1+KZ + RY) P> ds
= [C(1+ KT + R3) X)) (¢ - 7). (5.14)
Consequently,

la@ |}, < c(llgl® + 1Vql?)
< C[(l + K2+ Ré)lzsz(l’p)](t — 7 +1)edrt=T+D
< C/D%SZ(I—p)eﬁ(FT) (515)

holds for some positive constants D; = D;(p, ). Finally, since w = g + v, using (4.26) to
control ||v|ly, we may obtain

w3, < c(liglh? + vi2)

< C'D2e21Pear -0 4 C2g20-0)

< D*?0 PR, (5.16)
where R is a positive constant. The proof is finished. d

Next, we want to generalize Lemma 5.2 to derive the convergence of corresponding
uniform attractors. Let the external force in equation (3.3) as f = f ¢ e H(f?), then fl e H(f)
satisfies inequality (5.22).

Define
A t A
Gilt,7) = f heds, =1, (5.17)
T
we have
R 9 t+1 9
sup R{ |G D)5, + / 1G5, ds} <P (5.18)
t>1,7€ t

For any ¢ € [0,1], we observe that #°(¢) = L[fg (¢, 7)y, is a solution to (3.3) with the external
forcefA8 =ﬁ) + e’pf;(-/s) € H(f?) and y.(f*) € B-. For ¢ > 0, we investigate the property of
the difference

w(t) = i (t) — 2°(¢). (5.19)
Lemma 5.3 The inequality

()| < Deref="), we>r, (5.20)

holds, here D and R are defined in Lemma 5.2.
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Proof As the similar discussion in the proof of Lemma 5.2, replacing #*, fo and fl by
u®, fo and f;, respectively, noting that (5.1) still holds for #°, and the family {i/; (¢, 1)}
(}?’3 € H(f?)), is (H x H*(f*), H)-continuous, using (5.18) in place of (4.23), we can finally
complete the proof of the lemma. O

Proof of Theorem 5.1 For ¢ >0, u® € A®, we obtain that there exists a complete bounded
trajectory u°(t) of equation (3.3), with some external force

Fe=fo+ e fi(-1e) e H(f*), (5.21)

such that z°(0) = u®.
We choose L > 0 such that

u'(-L) e A® C B-. (5.22)
From the equality
u® = Uy (0,-L)it" (-L), (5.23)

applying Lemma 5.3 with £ = 0, t = —L, we obtain
|u® = Uzo (0, -L)is*(-L) ||, < De' €. (5.24)

On the other hand, the set A” attracts all sets Ujo (¢, —L)B- uniformly when fo € H(FO).
Then, for all § > 0, there exists some time 7 = T(§) > 0 which is independent of L such
that

disty (Upo (T - L, -L)ir*(-1), A°%) <. (5.25)
Choosing L = T and collecting (5.15)-(5.16), we readily get

disty (u°, A°) < [u® = Upo (0,-T)it* (=T, + disty (U0 (0, -T)it* (-T), A%)

< De'PefT 4 5. (5.26)

Since u® € A® and § > 0 is arbitrary, taking the limit ¢ — 0%, we can prove the theorem.
O
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