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1 Introduction

In the paper, we consider the initial value problem for the micropolar fluid equations in R?

v—(V+K)Av+v-Vv+Vp-2kV x w=0,
oIw—yAw—(a+B)VV -w+dkw+v-Vw—-2«V xv=0, (L1)
V.v=0

with the initial value
t=0: v=vo(x), w=wyx), 1.2)

where v(¢,x), w(¢, x) and p(¢, x) represent the divergence free velocity field, non-divergence
free micro-rotation field and the scalar pressure, respectively. v > 0 is the Newtonian ki-
netic viscosity and k > 0 is the dynamics micro-rotation viscosity, «, 8, > 0 are the an-
gular viscosity (see [1]).

The micropolar fluid equations were first proposed by Eringen [2]. The micropolar fluid
equations are a generalization of the Navier-Stokes model. It takes into account the mi-
crostructure of the fluid, by which we mean the geometry and microrotation of particles.
It is a type of fluids which exhibit the micro-rotational effects and micro-rotational inertia,
and can be viewed as a non-Newtonian fluid. Physically, it may represent adequately the
fluids consisting of bar-like elements. Certain anisotropic fluids, e.g., liquid crystals that
are made up of dumbbell molecules, are of the type. For more background, we refer to [1]
and references therein.

Due to its importance in mathematics and physics, there is lots of literature devoted to
the mathematical theory of the 3D micropolar fluid equations. Fundamental mathematical
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issues such as the global regularity of their solutions have generated extensive research and
many interesting results have been established (see [3—12]). The regularity of weak solu-
tions is examined by imposing some critical growth conditions only on the pressure field in
the Lebesgue space, Morrey space, multiplier space, BMO space and Besov space, respec-
tively (see [4]). A new logarithmically improved blow-up criterion for the 3D micropolar
fluid equations in an appropriate homogeneous Besov space was obtained by Wang and
Yuan [9]. A Serrin-type regularity criterion for the weak solutions to the micropolar fluid
equations in R3 in the critical Morrey-Campanato space was built [10]. Wang and Zhao
[12] established logarithmically improved blow-up criteria of a smooth solution to (1.1),
(1.2) in the Morrey-Campanto space.

If « = 0 and w = 0, then equations (1.1) reduce to be the Navier-Stokes equations. The
Leray-Hopf weak solution was constructed by Leray [13] and Hopf [14], respectively. Later
on, much effort has been devoted to establishing the global existence and uniqueness of
smooth solutions to the Navier-Stokes equations. Different criteria for regularity of the
weak solutions have been proposed and many interesting results were established (see
[15-24]).

Without loss of generality, we set v =k = %, y =a + B =1 in the rest of the paper. The
purpose of this paper is to establish a new logarithmically improved blow-up criterion to
(1.1), (1.2) in a weak multiplier space. Now we state our results as follows.

Theorem 1.1 Assume that vy, wy € H™(R3), m > 3 with V - vy = 0. Let (v, w) be a smooth
solution to equations (1.1), (1.2) for 0 <t < T. If v satisfies

Y
f MU >HT) dt<oo, 0<r<l, (1.3)
0

1+1In(e+ || V| )
then the solution (v, w) can be extended beyond t = T.

We have the following corollary immediately.

Corollary 1.1 Assume that vy, wy € H™(R®), m > 3 with V - vy = 0. Let (v, w) be a smooth
solution to equations (1.1), (1.2) for 0 < t < T. Suppose that T is the maximal existence
time, then

T ||VV||17r'r -1
/ MU >HT) dt=00, 0<r<l. (1.4)
0

1+1In(e+ || Vv| )

The paper is organized as follows. We first state some preliminaries on functional set-
tings and some important inequalities in Section 2, which play an important role in the
proof of our main result. Then we prove the main result in Section 3.

2 Preliminaries
Definition 2.1 [25] For 0 <r < g, M(H" — H™) is a Banach space of all distributions f
on R? such that there exists a constant C such that for all « € D, we have fu € A" and

fuull i < Cllaall -

where we denote by H” the completion of the space C°(R3) with respect to the norm
leellr = 1(=2) S el 2.
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The norm of M(H" — H™") is given by the operator norm of pointwise multiplication

W W ez iy = sup{ Ifeell g < Nl gy < 1, € DY.
The following lemma comes from [26].

Lemma 2.2 Assume that1<p < oo. Forf,ge W™, and1<q <00,1<r< o0, wehave

(2.1)

|Vt —fvegl,, < CUVAla |V gy + gl | VF

er)r

wherelfozfmand}%:qil+i=

rn q2

E .
We also need the following interpolation inequalities in three space dimensions.

Lemma 2.3 [n three space dimensions, the following inequalities hold:

7

1 7
19/ ls < CIFIS VA1,
5 3
I+ < CIFIS VA1,

1

1 u
IV%flls < CIFIZIV3FIS,

2

1 2
IV*fll2 < CIFI L NVESI -

(2.2)

3 Proof of Theorem 1.1
Multiplying the first equation of (1.1) by v and integrating with x respect to on R3, using
integration by parts, we obtain

d
3 5t O+ 190 = [ (7 xw)-val 3D

Similarly, we get

1d

——Hw(t) ||i2 + ||Vw(t) HEQ +|V- w||i2 + 2||w||%2 = / (V xv)-wdkx. (3.2)
2 dt R3

Summing up (3.1)-(3.2), we deduce that

1d
5 71 1MO1 + IwOL2) + [9vO 2 + [VwO L + 1V - i, + 20w,

:/ (Vxw)-vdx+ | (Vxv) wdx. (3.3)
R3 R3
We apply integration by parts and the Cauchy inequality. This yields
1
/ (Vxw)- vdx+f (Vxv) -wdx< —||Vv||iz + 2||w||i2. (3.4)
R3 R3 2
Substituting (3.3) into (3.4) yields

1d 1
> e P01+ W@ ) + S 1V [ + [V [ + 1V -wii <o.
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Integrating with respect to ¢, we have

[0 + s+ [ (9ol + 20 Vw2 de +2 [ 19w dr

2 2
< lvoll72 + lIwoll72- (3.5)

Multiplying the first equation of (1.1) by [v|?v, then integrating the resulting equation with
respect to x over R? and using integrating by parts, we obtain

1d 1
7 M+ VY]« S viv?]

=/ wV X (|v|2v)dx—/ (v- Vp)|v|*dx. (3.6)
R3 R3

We multiply the second equation of (1.1) by |w|?w, then integrate the resulting equation

with respect to x over R® and use integrating by parts. This yields

1d 2 1 2

Eauwng + [ IwlVw|, + 5 NIV w5+ 2wl < /Ra vV x (Iwl*w) dx, (3.7)
where we have used

/ (V-w)V. (w|w|2) dx :/ |V - w|2|w|2dx+/ (V-ww- V|w|®dx
R3 R3 R3

1 1
> —/ |V-w|2|w|2dx——/ |V|w|2|2dx.
2 R3 2 R3

Equations (3.6) and (3.7) give

d 1
2 (VI + wilza) + | vIvv|2, + 5||V|v|2||iz

-

1
#[wiow] oo S 1wV w7 + 20w
5/ wV x (|v|2v)dx—f (V-Vp)|v|2dx+f vV x (|w|2w)dx. (3.8)
R3 R3 R3

Making use of the Young inequality, we have

f wV x (|[v[*v) dx+/ v x (lwl*w) dx
R3 R3

< Clvllallwll e (| VIVv] o + | 1wl VW] ,2)

1 1
< 29wl + ZIwIvwlys + Clivids + Cliwia. (3.9)

Applying the divergence operator V- to the first equation of (1.1) produces the expression
of the pressure

p=(A)"V-(v- V). (3.10)
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It follows from (3.10) that
Iplz <ClviZ, VPl < C|IvIVY] .. (3.11)

By integration by parts and (3.11), we obtain

- [ P < Py ol

V2| IS 191
e AR 72

< CIVVLurirn VIS 10199 2

< CIVVllyiir—irn

=< CIVVI yar—n)

2 —
< ]| WIVY[ 32 + CUVVI i on IV (312)

Combining (3.8), (3.9), (3.12) and (3.5) yields

d
— (Vs + wifa) + | IV 5+ | VIR + (WY w5 + WV - w]) 5 + s

4 4 1- 4
< Clvlls + Cllwley + CIVVILT, o VI

”vv”i‘szr*)H—r)
1+In(e+ || VV| o)
1-r

”vv”M(Hr*)H—r)
1+1In(e+ | V| o)

< Clvliza + Cliwlizs + C IVIZa[1+In(e+ [ Vvliz)]

<Clvlits + Clwll}s + C IvIIa[1+1In(e+ VVi2)]
IV,
1+In(e+ || VV| o)

1-
1990
1+1In(e+ || VV| o)
1-
1990
1+1In(e+ || Vv| o)

< Clvlifs + Cliwljs + C IVIga[1+In(e+ IVll3)]

< Clvliza + Cliwljs + C IVIga[1+In(e+ IvII75)]

<Clvl%, + Clwlk +C vI% 1+ In(e+ | V3v]2)]

4 4
= Clvilza + Cliwll;a

1-
IV e

1+1In(e+ || VY1)

WAL+ In(e + | V3] + | V3w]5)], (3.13)
where we have used
H? <[>,

By (1.3), we know that for any small constant ¢ > 0, there exists T, < T such that

T ||VV||17r'r -1
/ MITZHT) g < g, (3.14)
T.

1+In(e+ || Vv )

*

Let

Al)=_sup (V3|2 + |VPw|), T.<t<T. (3.15)
¥<T=t
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The Gronwall inequality and (3.13)-(3.15) give

[vIIs + Iwlfs < Cexp{Ce(1 +1In(e+A(2)))}

< Cexp{2Celn(e+A(t))}

)ZCS

< C(e +A@R)), T.<t<T. (3.16)

Applying V to the first equation, then multiplying the resulting equation by Vv and using
integration by parts, the Holder inequality, (2.2) and the Young inequality, we obtain

E%HVVH%z + ”V%”iz = ,/RS Vv-VyvVvdsx + /H;g(v X W)V2vdx
< I [+ U 9
Lo 51 i
= C”V”H”V”EZ HV V“LSZ + —”V V”LZ + C||W||L2 ”V W||L2

1
<3 [V2v]7 + - ||v2w||L2 +CIvIS VT + Clwl},.  (317)

Similarly, we have

1d

5 dt||Vw||L2 [ V2w, + IV Y - wil, + 2 Vw2,

=/ Vv-Vwdex+/ (V x v)\V2wdx
R3 R3
< Clvlla | Vwlga [ V2w 2 + CIVYI2 || VW] s
1 15 1
< Clvllgalwll || V2w 5 + = H V2w, + Clvle |V

1
=3 |V2wl;, + —H VzVHLZ + CIVIS IWIZ: + CllviZ,. (3.18)

Adding (3.17) and (3.18), we arrive at

d
S (IVVIZ, + 19wI3,) + V2|5 + | V2w])2s + 19V - wli2 + VWl

< CIVILS (V32 + 1wl32) + C(IVIZ + Iwll ). (3.19)
Equations (3.5), (3.16), (3.19) and the Gronwall inequality give
IVvIZ + IVwl%, < Cle+ A@)*, T.<t<T. (3.20)

Applying V"™ to the first equation in (1.1), then taking L? inner product of the resulting
equation with Vv and using integration by parts, we have

1d

e L R N

= —/ V’”(v-Vv)V”’vdx+/ V™"V x w)V"vdx. (3.21)
R3 R3
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Similarly, we obtain

1d

S gVl + 19wl + V9wl + 2 v

= —/ V" (v - Vw)V"wdx +/ V"V x v)V"wdx. (3.22)
R3 R3
Summing (3.21), (3.22) and using V - v = 0, we get
ld m_, |2 m 2 m+1, |2 m+1 2 m 2 m 2
5 g UVl [V wl) + [V vl + [V wl o + 97V w1+ 2] 97w
= —/ [V"*(v-Vv)—v-V"Vv]V"vdx - / [V"(v-Vw)—v-V"Vw|V"wdx
R3 R3

+/ V™V x w)vadx+/ V"V x v)V"wdx
R3 R3
SEh+hL+1+14. (3.23)

In what follows, for simplicity, we set m = 3.
By the Holder inequality, (2.1), (2.2) and the Young inequality, we obtain

—/ [V(v-Vv)—v-VV]Virdx
]R3
<[P 90 = T [T
< ClIVVl [ V2| 4 V3V||Lz
<C||VV|| Hv%HLGan HV“ng%nwn ||v4v||L2
< CIVVIZ | V)5 v 2
< Livn 2, 1 cpvvls, [ vR
= g1Vl + CIVVIR [ V2]

20Ce+ 1

= %||V4V||iz +C(e+A(1)) (3.24)

and
_/Rg[v?’(v.VW)—V.Vv3w]V3wdx

<[V V) —v- VW], [VPW] .

< CIVla ] Viw] o [VPw] o+ VWL [ Vo0 o[ VoW 2

S !W%!le zuv‘*wu N
+CIvwl, ||V3w||L2||vV|| ||v4v|| B vl | Vw2,

<C||VV||82||v3v||L2||vW|| ||V‘*WH
v CIVWE [V SIS [V B 9w

9
2+ VYIS VWl | V2 2,

1
<glvili+ —|| Vi,
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2 23 3 9
+ CIVVIL VW5 [ Viw] 5

1 1 9
< g9l + GIVi Wl + Cler A) . (3.25)
From the Young inequality and (2.2), we deduce that
L=C[V|p[Viw],
1
< gVl + Cl Vvl
1 2 4
< IVl + CIvwis [ vivl s
1 1
< gVl + g IV 4wlia + CIvwiz,
< %||V4v||i2 + éHV4W||i2 +Cle+A@®)*”, T.<t<T. (3.26)
Similarly, we have
Iy = %||V4V||i2 + %“V4W||i2 +Cle +A(t))8cs, T,<t<T. (3.27)

Inserting (3.24)-(3.27) into (3.23) and taking ¢ small enough such that 20Ce¢ < %, we ob-

tain
S+ [9w]5) < ClevAW), To<t<T, (3.28)

forall T, <t<T.
Integrating (3.28) with respect to time from T to t, we have

e+ [V + | VPwD)| 2

<e+ ||V3V(T*)||i2 + ||V3W(T*)||i2 + sz (e +A(s)) ds. (3.29)
Tx
We get from (3.29)
t
e+ Alt) <e+ || VPUT)| 2 + | VPw(T)|} + c2/ (e +A(r)) dr. (3.30)
T

For all T, < ¢ < T, with the help of Gronwall inequality and (3.30), we have
e+ |V + | Vw5 < C, (331)
where C depends on [VW(T,)|2, + [[VW(T.)2,. (3.31) and (3.5) imply (v,w) € L®(0, T;

H3(R3)). Thus, (v, w) can be extended smoothly beyond ¢ = 7. We have completed the
proof of Theorem 1.1.
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