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Abstract
We consider the fractional differential equation

DI u®) =f(t,u®), 0<t<1,

satisfying the boundary conditions
DR, uli=o = DF, ulco = - = 05" "u®lieo =0, u(D)=)_ (&),

where D{, is the Riemann-Liouville fractional order derivative. The parameters in the
multi-point boundary conditions are such that the corresponding differential
operator is a Fredholm map of index zero. As a result, the minimal and maximal
nonnegative solutions for the problem are obtained by using a fixed point theorem of
increasing operators.
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1 Introduction
Let us consider the fractional differential equation

DY, u(®) =f(t,ul®), 0<t<l, (1.1)
with the boundary conditions (BCs)

DY u(t)l1=0 = DY ()| =0 = - - - = D, ul) 120 = 0,

s (1.2)
u(l) = Zi=1 a;u(&;),

where n > 1, max{g - 2,0} <p<g-l,n<g<n+l, Zgztxiéiq_lzl, o;>0,0<& <
& < - <&y <1, m> 3. We assume that f : [0,1] x [0,00) — [0,00) is continuous.
A boundary value problem at resonance for ordinary or fractional differential equations
has been studied by several authors, including the most recent works [1-7] and the ref-
erences therein. In the most papers mentioned above, the coincidence degree theory was
© 2013 Qu and Liy; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.


http://www.boundaryvalueproblems.com/content/2013/1/127
mailto:qhaidong@163.com
http://creativecommons.org/licenses/by/2.0

Qu and Liu Boundary Value Problems 2013, 2013:127 Page 2 of 10
http://www.boundaryvalueproblems.com/content/2013/1/127

applied to establish existence theorems. But in [8], Wang obtained the minimal and max-
imal nonnegative solutions for a second-order m-point boundary value problem at reso-
nance by using a new fixed point theorem of increasing operators, and in this paper we
use this method of Wang to establish the existence theorem of equations (1.1) and (1.2).

For the convenience of the reader, we briefly recall some notations.

Let X, Z be real Banach spaces, L : dom(L) C X — Z be a Fredholm map of index zero
and P: X — X, Q:Z — Z be continuous projectors such that Im(P) = Ker(L), Ker(Q) =
Im(L) and X = Ker(L) @ Ker(P), Z = Im(L) & Im(Q). It follows that L|ker(p)ndom(z) : Ker(P) N
dom(L) — Im(L) is invertible. We denote the inverse of the map by Kp : Im(L) — Ker(P) N
dom(L). Since dimIm(Q) = dim Ker(L), there exists an isomorphism J : Im(Q) — Ker(L).
Let £2 be an open bounded subset of X. The map N : X — Z will be called L-compact on £2
if QN (£2) and Kp(I — Q)($2) are compact. We take H = L + J7'P, then H : dom(L) C X — Z
is a linear bijection with bounded inverse and (JQ + Kp(I — Q))(L +J7'P) = (L + J'P)(JQ +
Kp(I - Q)) =1. We know from [9] that K; = H(K Ndom(L)) is a cone in Z.

Theorem 1.1 [9] N(u) + J 'P(x) = H(i1), where
i = P(u) + JQN (1) + Kp(I - Q)N (1)
and u is uniquely determined.

From the above theorem, the author [9] obtained that the assertions
(i) P(u)+JQN(u)+ Kp(I — Q)N (1) : K Ndom(L) — K Ndom(L) and
(i) N(u)+J'P(u): K Ndom(L) — K; are equivalent.

We also need the following definition and theorem.

Definition 1.1 [8] Let K be a normal cone in a Banach space X, uy < vy, and u, vy €
K Ndom(L) are said to be coupled lower and upper solutions of the equation Lx = Nx if

Luy < Nuy,

Lvg > Nvy.

Theorem 1.2 [8] Let L :dom(L) C X — Z be a Fredholm operator of index zero, K be a
normal cone in a Banach space X, uy, vy € K Ndom(L), ug < vy, and N : [ug,vo] — Z be
L-compact and continuous. Suppose that the following conditions are satisfied:

(C1) uo and vy are coupled lower and upper solutions of the equation Lx = Nx;
(Cy) N+JtP:KNndom(L) — Kj is an increasing operator.

Then the equation Lx = Nx has a minimal solution u* and a maximal solution v* in [ug, vo).

Moreover,
u* = lim u,, v = lim v,,
n— 00 n—oQ
where

y=(L+J'P) N+ Py, vu=(L+J7'P) (N+T Py,

n=123,...anduy <uy <up <--- <, <--- <V, <--- <y <V <.
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2 Preliminaries
In this section, we present some necessary basic knowledge and definitions about frac-

tional calculus theory.

Definition 2.1 (see Equation 2.1.1in [10]) The R-L fractional integral I¢, u of order g € R
(g > 0) is defined by

p B u(t)dr
Iy, u( ) / (>0).

(t—1)1

Here I'(g) is the gamma function.

Definition 2.2 (see Equation 2.1.5 in [10]) The R-L fractional derivative D}, u of order
q € R (g > 0) is defined by

D u(t) = (%)nﬂgqu(t)

1 d\" [t u(r)dr
zﬂT—an(E) /0 o (1=lal+Le>0),

where [g] means the integral part of g.

Lemma 2.1 [11] If q1,92 > 0, q > 0, then, for u(t) € L,(0,1), the relations
IR I u(t) = I8 P u(t)

and
DEIE u(t) = u(t)

hold a.e. on [0,1].

Lemma 2.2 (see [11]) Let g >0, n=[q] +1, D¢, u(t) € L1(0,1), then we have the equality
12D u(t) = ult) + Z Cit",

where C; €R (i=1,2,...,n) are some constants.

Lemma 2.3 (see Corollary 2.1in [10]) Letg >0 and n = [q] +1, the equation DY u(t) = 0 is
valid if and only if u(t) = Y -, Cit1™, where C; € R (i = ..., n) are arbitrary constants.

Let X = Z = C[0,1] with the norm ||u|| = sup,¢[o; |#(£)|, then X and Z are Banach spaces.

Let K = {u € X : u(t) > 0,t € [0,1]}. It follows from Theorem 1.1.1 in [12] that K is a
normal cone.

Let dom(L) = {u(t) € X | DI, u(t) € Z, u(t) satisfies BCs (1.2)}.

We define the operators L : dom(L) — Z by

(Lu)(2) = Dy, u(t) (2.1)
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and N:K — Z by

(Nu)(t) = f (2, u(D)),
then BVPs (1.1) and (1.2) can be written as Lu = Nu, u € K N dom(L).

Lemma 2.4 Ifthe operator L is defined in (2.1), then
(i) Ker(L) ={c-t?'|ceR)},
(i) () ={yeZ| [yA-s)> Y ag? Jey(@)drds=0}=: L

Proof (i) It can be seen from Lemma 2.3 and BCs (1.2) that Ker(L) = {c- 9! | c € R}.
(i) If y € Im(L), then there exists a function u € dom(L) such that y(t) = D, u(t), by
Lemma 2.2, we have

Ig+y(t) =u(t) + it 44t

It follows from BCs (1.2) and the equation Y772 ;€7 =1 that

m-2
Igy() =) I8, aiy(&)

i=1

and noting the definition of Ig ,» we have

g,y = )f(t— )T y(s) ds = q)f(t sq-/ t)dr ds.

Thus,
% /0 (1-gp /0 y()drds= ‘}— mZ / Y sy fo y(0)de ds
-13 [ L[5
- ) 2 [ g9 [ ymraras
-1 1 ! L[5
- L /0 (1-s) ]0 yo)dr ds

which is

1 m-2 s
/ (1-s)12 Z oz,“‘g‘l.q*l / y(t)dt ds=0.
0 i=1 &s

Then y € £, hence Im(L) C L.

Onthe other hand, ify € £, letu(¢) = I{, y(t), then u € dom(L), and D{, u(¢t) = D¢ 18, y(¢) =
y(£), which implies that y € Im(L), thus £ C Im(L). In general Im(L) = L. Clearly, Im(L) is
closed in Z and dim Ker(L) = codimIm(L) = 1, thus L is a Fredholm operator of index zero.
This completes the proof. d
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In what follows, some property operators are defined. We define continuous projectors
P:X — X by

1
(Pu)(t) =q /0 u(s)ds - 17}

and Q:Z — Z by

(Qu)(2) = %/ 1-s)7" ZZaSq 1/ (v)drt ds,

where

yozf _quzalsqlf dt ds

1 m-2
= / s(1-5)12ds (1 - Zai‘i?)
0 i=1
B(2,q-1) ( Z 3 )
B(x,y) is the beta function defined by
1
B(x,y) = / 11—t tae.
0

By calculating, we easily obtain P? = P, Q*> = Q, and X = Ker(L) @ Ker(P), Z = Im(L) ®
Im(Q). We also define J : Im(Q) — Ker(L) by

Jc)=cti™t, VceR

and Kp : Im(L) — dom(L) N Ker(P) by

1 )
(Kp(@))(2) = (I, u)(2) = Tq)/o (t - 5)T u(s) ds,

thus

(QN(w))(1) = %/ —s)T ZZa,Eq ! f T,u(t))dt ds

and
(Kp(I = QN (u))(2)

:L ‘ Yt
F(q)/o(t s) f(s,u(s))ds

1 ¢ 3 1 1 s m-2 o 3 )
_mfo(t—s)q %/0 (1-51 ;a@ /Eisf(T’u(r))drdes'
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Lemma 2.5 Let 2 be any open bounded subset of K N dom(L), then QN(2) and Kp(I —

Q)N (82) are compact, which implies that N is L-compact on $2 for any open bounded set
2 C KNdom(L).

Proof For a positive integer n, let £2 = {u € K Ndom(L) : |lu|| < n}, M = sup,,,f (¢ u(t)),
(t,u) € [0,1] x [0,n]. It is easy to see that QN(£2) is compact. Now, we prove that Kp(I —
Q)N(£2) is compact. For Yu € £2, we have

| (Kp(Z = QN (w)) (@)
= sup

q-1
seon| T q)/(t $)7f (s,u(s)) ds
1 ¢ - 1 1 s m-2 ' . 5 )
_mfo(t—s)q %/o (1-3)1 ;a@ /Eigf(T,u(r))drdsds
%q) fo (-9 (s, u(9) ds

q)/( oy ‘SHZO‘E‘] ' f t,u(t)) dr dsds

Vo
/(t s ds

< sup

te[0,1]

+ sup
telo 1]

sup
te [0,1]

(q+1)

which implies that Kp(I — Q)N(£2) is bounded.
Moreover, for each u € §2, let t;, ¢, € [0,1] and # > £, then

| (Kp(I = QN () (t1) - (Kp(I = QN (w)) (1)

‘F( )/ (t1—9)Tf (s, uls)) S_I"( )/ (ts — )7 f (s, u(s)) ds

+ %q)/oq(tl—s)q_l%/ —sq’ZZocéq ! f t,u(t)) dr dsds

1 -2 -1 e
F()/ (t2—8)"" /(1 51 Zas fru(t)drdsds

&is

1 1 ) ~
< 'F— (t —s)? 1f(s, u(s )) ds — 761)/0 (ty —s)? 1f(s,u(s)) ds

(t1 - s)q‘lf(s, u(s)) ds

‘ )t2

r()/ (t—s)T = /(1-s)q22ag‘“ fru(t))drdsds

&s

1 ) 1 ) ]
_Tq)fo ("‘2‘*‘"“%/ “Zaé‘“ fru( ) de ds ds

Page 6 of 10
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+

! ! -1 1 ' *\q4-2 - £q-1 § ~
Tq)_/t2 (tr—s)1 %/0(1—8)4 ;aléi /gigf(r,u(t))dfdsds

oM | (1 & M | (8
5—/ (tl—s)q_lds—/ (b — )T ds| + /(tl—s)q_lds
I'(q)|Jo 0 INCIIPS
2M 4 b 2M
<ol [ @-9rtds [N -grtas) e 2o
I'(q)|Jo 0 I'(q)
2M 1 ! M
=—|¢ bh-hs)ld —t/ by —trs)T d bt
'@ 1/0(1 197 ds 20(2 25) S+F(q)|1 2
2M 2M
= -t + ——1|t -t
F(q+1)| 1 2|+F(q)|1 2|
2M lgn®™| - 1t - &2 —2M|t b h+60(t—-1),0<60<1
- . — + - , =0+ —0)U<<0<
F(q+1)qn 1— 1l I.,(q)l 2 n=un 22— 0
(29 + 2)M
Swﬂl—tﬂ'
Thus
r
Ve >0, 38=¢8
(27 +2)M
such that

|Kp(I = QN (u)(11) - Kp(I - QN (u)(t) || < &
for
|t1 - t2| <

and each

ues.
It is concluded that N is L-compact on £2. This completes the proof. d

3 Main result
In this section, we establish the existence of the nonnegative solution to equations (1.1)

and (1.2).
Theorem 3.1 Suppose

(Hy) There exist ug, vy € K Ndom(L) such that ug < vy and

D, uo(t) <f(t,uo(¥)), Vee[0,1],
D vo(t) > f(t,vo(t)), Vte[0,1].

(Hy) Foranyx,y € K Ndom(L), satisfying

1

1
F(6x(0) —f(r,y(t))z—q( /0 () dt - /0 y(r)dt),
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where YVt € [0,1] and uy(t) < y(t) < x(t) < vo(2), then problems (1.1) and (1.2) have a
minimal solution u* and a maximal solution v* in [ug, vo), respectively.

Proof By condition (H;), we know that
Lugy < Nuy, Lvg > Nvy,

so condition (C;) in Theorem 1.1 holds.
In addition, for each u € K,

(P(u) + JON (u) + Kp(I - QN (w))(t)
1 ) 1 1 ) m=2 s )
ZQfO uls)ds - 197" + %/0 1-9)1 Z;Gifiq 1/Eisf(r,u(r))drdytq 1
- %q)/;(t—s)q_l%/ -3 2Za,§q ! f T, u(r)) dr dsds

1
— q-1 _ )1
q/ u(s)ds -t + e )f (t—3s) fs,u(s))

+— (1 —5)172 Za & /;f(r,u(t)) dr ds(tq‘l - %q) /Ot(t—s)"_1 ds)

1! 2 t1
>— | -5 " / 7,u(t))dt afs(tq1 - ) >0
Yo Jo lzzl 5 g,vsf( ) I'(g+1)

Thus (P +JQN + Kp(I — Q)N)(K) C K, that is, N +J'P: K N dom(L) — K; by virtue of the
equivalence. From condition (H,), we have that N + J7'P: K Ndom(L) — K] is a monotone
increasing operator. Then, in accordance with Lemma 2.5 and Theorem 1.2, we obtain a
minimal solution #* and a maximal solution v* in [u, vo] for problems (1.1) and (1.2). Thus

we can define iterative sequences {u,(¢)} and {v,(£)} by

= (L+]7'P) (N +T7'P)itys = (JQ + Kp(I = Q) (N + T P)uy

1
= (JQ+Kp(I - Q) (f (t,una(t)) +q / Un-1(s) dS>
0

1
-1 (1—s)q2Zazs‘” [ () va [ @ s)aras- o
&is 0

Yo

1
o
F( )/(t 5) (f(s,un 1(S))+q/ Up- 1(S)d5)
_L ' _ qfli ' _~t172m_ £q-1
ARy K 0L
s 1
. / (f(‘r,un_l(t))+q / un_l(ﬁ)dﬁ)drdids
0

&S
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and
V= (L+77P) (N +T7'P)v,s = (JQ+ Kp(I = Q) (N + T P)v,.y
1
= (JQ+Kp(I - Q) (f (t,vaa(®) +q /0 Va1(s) ds)

1 1 m-2 1
= 1-5)772 i - < » V- n— 3 d,\) drds-t71
(1-s) ;:aé‘l / f(ov 1(())+q/0 Vo (5)ds ) dr ds - t

S
Yo Jo — &;s

¢ 1
+ %q)/o (t—S)q—l <f(S, Vn—l(S)) + q/o V1 (3) d§) ds
_L ' _ q—li ! _~q_2m—2 v'q—l
R AR KR D as

s 1
. f (f(f,vn_l(t))w / vn_1(§)d§>drd§ds, n=1,23,...
§ 0

is

Then from Theorem 1.2 we get {u,} and {v,} converge uniformly to #*(¢) and v*(¢), re-
spectively. Moreover,

UpSU SUp =S Uy S SV S SV SV S . O

4 Example
We consider the following problem:

3 2 "
D3, u(t) = <2u_ +t) , 0<t<l,m>0, (4.1)
u*+1
subject to BCs
1 1
DEu(®)iz0=0,  u(l)= fzu<§) (4.2)

We can choose

1
reé

t 1 t
uo(t) = /(t—s)%smds+t%§ 3 /(t—s)%(s+1)mds+t%=vo(t),
0 @) Jo

then

3 u? m 3
D§,uo(2) =t" < <u2 1 + t) < (t+1)" =Dg,vo(t).

3
Let dom(L) = {u(t) € X | Dg,u(t) € Z, u(t) satisfies BCs (4.2)}, then for any x,y € K N
dom(L), we have

x2 m yz m> 3 1 1
(x2+1+t) _(y2+1+t) __§<./o x(t)dt_/o y(t)dt),

where uo(t) < y(t) < x(t) < vo(¢). Finally, by Theorem 3.1, equation (4.1) with BCs (4.2) has
a minimal solution #* and a maximal solution v* in [ug, vg].
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