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Abstract

An algorithm for constructing two sequences of successive approximations of a
solution of the nonlinear boundary value problem for a nonlinear differential
equation with ‘maxima’ is given. The case of a boundary condition of anti-periodic
type is investigated. This algorithm is based on the monotone iterative technique.
Two sequences of successive approximations are constructed. It is proved both
sequences are monotonically convergent. Each term of the constructed sequences is
a solution of an initial value problem for a linear differential equation with ‘maxima’
and itis a lower/upper solution of the given problem. A computer realization of the
algorithm is suggested and it is illustrated on a particular example.
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1 Introduction

Differential equations with ‘maxima’ are adequate models of real world problems, in which
the present state depends significantly on its maximum value on a past time interval (see
[1-4], monograph [5]).

Note that usually differential equations with ‘maxima’ are not possible to be solved in
an explicit form and that requires the application of approximate methods. In the current
paper, the monotone iterative technique [6, 7], based on the method of lower and upper
solutions, is theoretically proved to a boundary value problem for a nonlinear differential
equation with ‘maxima’ The case when the nonlinear boundary function is a nondecreas-
ing one with respect to its second argument is studied. This type of the boundary func-
tion covers the case of an anti-periodic boundary condition. An improved algorithm of
monotone-iterative techniques is suggested. The main advantage of this scheme is con-

nected with the construction of the initial conditions.

2 Preliminary notes and definitions

Let 0 < T < oo be a given fixed point and % be a positive constant. Consider the set

P(h,T)={u:[-hT) - R:ue C([-h0],R),u € C'([0, T],R)}.
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Consider the following nonlinear differential equation with ‘maxima’:

x'(¢) =f<t,x(t), max x(s)) fort€[0,T], 1)

s€(t-h,t]

with a boundary condition

g(%(0),x(T)) =0, (2)
and an initial condition

x(t) =x(0) forte [-h,0], (3)

wherex eR, f: [0, T]x RxR—->R,g:RxR—R.

In this paper, we study boundary condition (2) in the case when the function g(x,y) is
nondecreasing with respect to its second argument y. So, the anti-periodic boundary value
problem is a partial case of boundary condition (2). Note that similar problems are investi-
gated for ordinary differential equations [8], delay differential equations [9] and impulsive
differential equations [10], and some approximate methods are suggested. The presence
of the maximum of the unknown function requires additionally some new comparison
results, existence results as well as a new algorithm for constructing successive approxi-
mations to the exact unknown solution.

Let o, B € C([-h, T],R) be such that «(t) < B(¢) on [-h, T]. Define the following sets:

W (e, B) = [(0), B(0)] x [a(T), B(T)],
S(@,B) = {u:[-h, T] — R:a(t) < u(t) < B(0) for t € [-h, T},

a(t) <x < p(r)

Qa, B) =3 (&, 0, T] xR xR:
(@, B) (6:%) €10, T1 xR x max o(s) <y < max f(s)
s€[t-h,t] s€t—h,t)

Definition1 The function g: W(«, ) — R is said to be from the class L(y, «, B) if for any
v e [a(T), B(T)] and for any uy, uy € [a(0), 8(0)] such that uy > uy, the inequality g(u;,v) —
g(uy,v) < y(u — uy) holds.

Definition 2 The function g: W (e, f) — R is said to be quasi-nondecreasing in W(«, 8)
if for any x € [«(0), 8(0)] and for any y1,y» € [e(T), B(T)] such that y; < y,, the inequality
g(x, y1) < g(x,2) holds.

In connection with the construction of successive approximations, we will introduce a

couple of quasi-solutions of boundary value problem (1)-(3).

Definition 3 We will say that the functions «,8 € P(h, T) form a couple of quasi-
solutions of boundary value problem (1)-(3), if they satisfy the equations g(«(0), 8(T)) =
£(B(0),a(T)) =0, (1) and (3).
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Definition 4 We will say that the functions «, 8 € P(h, T) form a couple of quasi-lower
and quasi-upper solutions of boundary value problem (1)-(3), if

o' (t) Sf(t,a(t),sggli”a(s)) fort € [0, T],
g(«(0), 8(T)) <0, 4)
a(t) =a(0) forte[-h,0],

and

B0 = (6.0, max p()) fortelo,T)
selt-h,t)
2(B(0),a(T)) > 0, (5)
B(t)=p(0) forte[-h0].
In the proof of our main results, we will use the following lemma.

Lemma 1 (Comparison result) Let the following conditions be fulfilled:
1. The functions M, L € C([0, T],R,) satisfy the inequality

max [M(¢) + L()] < T (6)
te[0,T]

2. The function u € P(h, T) satisfies the inequalities

u'(t) < —-M(t)u(t) - L(¢) er[ltl-iilt] u(s), tel0,T], (7)

u(t) =u(0) <0, tel[-h0]. (8)
Then u(t) <0 fort e [-h,T].

Proof Assume the statement of Lemma 1 is not true. Consider the following two cases.

Case 1: Let #(0) < 0. According to the assumption, it follows that there exists € (0, T')
such that u(t) < 0 for t € [-h,n), u(n) = 0 and «'(n — 0) > 0.

Denote min;e[_s, 4(t) = =4 < 0, where A is a positive constant. Let the point & € [0,7)
be such that u(¢) = —A.

According to the mean value theorem, it follows that there exists ¢ € (§, ) such that

u(n) — u(€) =u'(£)(n - £). )

From inequalities —A < minge[;_p,¢) u(s), -1 < u(¢) and (7), we obtain

A = ()~ u(§) =/ (§)(n - §)
< [-M@u) - 1) _min_u()|(r-£)

se[¢-h,¢
< [M(@)+L(&)]r(n - )
<(M(¢) + L(Z))AT. (10)
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Inequality (10) contradicts (6).

Case 2: Let u(0) = 0. Define a function iz € P(h, T) by the equality #(t) = u(t) — §, where
8 > 0 is a small enough constant.

Therefore, #(0) < 0 and #(¢) satisfies inequality (7). From case 1 it follows #(¢) < 0 for
t € [-h, T]. Take a limit as § — 0 and obtain u(¢) <0 for t € [-h, T]. O

In our further investigations, we will use the following result for differential equations
with ‘maxima’ which is a partial case of Theorem 3.1.1 [5].

Lemma 2 (Existence and uniqueness) Let the following conditions be fulfilled:
1. The function Q € C([0, T],R).
2. The functions M, L € C([0, T, R) and satisfy inequality (6).
Then the initial value problem for a linear differential equation with ‘maxima’

u'(t) = Q(t) — M(t)u(t) — L(¢t) maxt] u(s), tel0,T],

se(t-h,

u(t) =u(0), te[-h,0]
has a unique solution u(t) € P(h, T).

3 Monotone-iterative method
We will give an algorithm for obtaining an approximate solution of the boundary value
problem for a nonlinear differential equation with ‘maxima’ (1)-(3).

Theorem 1 Let the following conditions be fulfilled:
1. The functions oy, Bo € P(h, T) form a couple of quasi-lower and quasi-upper solutions
of (1)-(3) such that ay(t) < Bo(t) for t € [-h, T].
2. The function g € C(W (o, o), R) is quasi-nondecreasing in W(ao, fo) and
g€ L(y,ao, Bo).
3. The function f € C(Q(wo, Bo), R) and for (t,x1,y1), (t, x2,¥2) € Qeto, Bo) such that
x1 < %9, Y1 < ¥, the inequality

ftx0,) —f (%2, ¥2) < —M(£)[%1 — x2] — L(£) [)1 — y-]

holds, where the functions M,L € C([0, T],R,) satisfy inequality (6).
Then there exist two sequences {o,(t)};2 o and {B,(t)};2, such that
(@) The functions ay, B, € P(h, T) (n=1,2,...) and (a,, By) is a couple of quasi-lower
and quasi-upper solutions of boundary value problem (1)-(3).
(b) The sequence {o,(t)}52, is nondecreasing.
(c) The sequence {B,(t)}:°, is nonincreasing.
(d) Forte [~h,T) the inequalities

ao(t) < - <au(t) < Balt) <--- < Bolt), (11)

V(©) = lim a,(t), W) = lim ,(t)

hold.
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(e) Both sequences are uniformly convergent on [-h, T, and (V, W) is a couple of
quasi-solutions of boundary value problem (1)-(3) in S(a, Bo)-

(f) If additionally the function f(t,,y) is Lipschitz in Q(a, Bo), then there exists a
unique solution u(t) of boundary value problem (1)-(3) and
Himy,—s 00 0 (£) = limy— 00 B () = V(£) = W(t) = u(t) for t € [-h, T].

Proof We will give an algorithm for construction of successive approximations to the un-
known exact solution of nonlinear boundary value problem (1)-(3).
Assume the functions o;(¢) and g;(¢), j = 0,1,..., n, are constructed. Then consider both

initial value problems for the linear differential equations with ‘maxima’

#(0)= Qualt) - MOKO - L) max ), ¢€[0.7), (12)

50 =,(0) - ~glan(O)BT)), ¢ € [-h0] (13)
and

(@) =Py (t) - M(e)y(0) - L(0) SE?Zt]y(S)’ tel0,T], (14)

70 = 5,(0) - —g(A 0D, t€l-h0] (15)
where

Qua () = f(t,ozn(t), max otn(s)) + M(E)ay () + L(£) max ay(s)
selt-hytl selt-htl
and
Pun(®) = (6,B,(0), max £,(9)) + MOB,(0) + L) max B (s).

According to Lemma 2, initial value problems (12), (13) and (14), (15) have unique solu-
tions a,41, Bus1 € P(h, T).

So, step by step we can construct two sequences of functions {,(¢)}32, and {B,()}52,.

Now, we will prove by induction that for j=0,1,2,...,

(H1) o,1(2) > o(2) and B (2) < B;(¢) for £ € [, TT;

(H2) a1 (t) < Bjaa(t) for t € [-h, TT;

(H3) (ajs1, Bj+1) is a couple of quasi-lower and quasi-upper solutions of boundary value

problem (1)-(3).

Assume the claims (H1)-(H3) are satisfied forj=0,1,...,n— 1.

We will prove (H1) for j = n.

Define the function p; € P(h, T') by the equality p1(£) = a,,(¢) — a1 ().

Let ¢ € [-/,0]. Then according to condition 2 of Theorem 1, the inductive assumption
and the definition of the functions o, (¢), a,,.1(£), we have

p1(t) = 0,-1(0) — 4 (0)

s %[g(an(oxﬂnm) = g(e1(0), Bur (T))]
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= a;-1(0) — 0, (0)

+ %[g(anm),ﬂnm) ~ g(@na(0), (1))

1
+ ; [g(an—l (0), /Bn(T)) _g(an—l(o): ,Bn—l(T))]
<0. (16)
Let ¢t € [0, T]. From (H1) for j = n — 1, condition 3 of Theorem 1, the definition of the
functions «,(t), a,41(2) and (12), we get

pi(t) = _M(t)[an(t) - an+1(t)]

—L(t)[ max «,(s) — maxt aml(s)]. @17)

s€[t—h,t] se[t-h,t]

Note that for any ¢ € [0, T] the following inequality holds:

max a,(s) — max o,,1(s)> min [a,(s) —a,.q()]. 18
B &) = I, n+1()_se[t—h,t][ W)~ ()] (18)

From inequalities (17) and (18) it follows

pit) < -M(0)pi(t) - L(®) min pi(s).

elt-h,t]

According to Lemma 1, we get pi(¢) < 0 for t € [-h, T]. Thus, o,(t) < ap(t) for t €
[=h, T.
Define the function p, € P(h, T) by the equality p5(£) = By11(£) - B4(¢). Thenfor t € [-h, 0]
we have
pa(t) = Bu(0) = B,-1(0)
1
+ ; [g(/gn—l (0), an—l(T)) - g(,Bn (0): an(T))]
= Bu(0) = B-1(0)

+ %[g(ﬂn_m),an_l(z")) — 2(B.(0),ur(T)]

. %[g(ﬂn(O),an_l(T)) ~ g(Br(0)o(T))]
<o. (19)

From equation (14), the inductive assumption, the definition of the functions g,(¢),
Bu:1(t) and condition 3 of Theorem 1, it follows the validity of the inequality

py(t) < =M(t)p(t) - L(t) min ps(s).
selt—h,t]
According to Lemma 1, we get py(£) < 0 for ¢ € [-h, T], i.e., the claim (H1) is true for
j=n.
Define the function p3 € P(h, T) by the equality p3(¢) = ot41(£) — Bus1(2).


http://www.boundaryvalueproblems.com/content/2013/1/12

Hristova et al. Boundary Value Problems 2013, 2013:12

Page 7 of 11
http://www.boundaryvalueproblems.com/content/2013/1/12

Let t € [-h,0]. From condition 2 of Theorem 1, the inductive assumption and the defi-
nition of the functions «,,,1(£), B.41(£), we obtain

p3(t) = a,(0) — B,(0) + %[g(ﬁn(o): an(T)) _g(an(o)jan(T))]

+ %[g(anm),anm) ~ g(@n(0), BulT))]
<0.

Let ¢ € [0, T]. According to the choice of the functions «y.1(£), Bu+1(£), condition 3 of

Theorem 1 and inequality maXge(s—p, 00n+1(S) — MaXse[r—is] Brs1(S) = Mingefr—p[0te1(S) —
Bur1(s)], we get

p5(0) < -M(0)ps(t) - L&) min ps(s)-

According to Lemma 1, it follows p3(¢) < 0 for ¢ € [-h, T]. Therefore, the claim (H2) is
satisfied for j = n.

Now, we will prove the claim (H3) for j = n.
Let ¢ € [-h,0]. Then from (13) we get

i1 (£) = an(0) - %g(an(O),ﬂn(T)) = a1 (0).

(20)

From (H1) for j = n, condition 2 of Theorem 1 and the choice of the function «,,,;(t), we
obtain

g(aml(o)r ﬁn+1(T))
= [g(a,,+1(0), IBVH-I(T)) _g(an(o)’ ,Bn+1(T))] + g(oz,,(O), ;3n+1(T))
=y [an+1(0) - 0(,,(0)] + g(O(,,(O), ,3;'1+1(T))

= =g(ea(0), Bu(T)) + g(n(0), Bra(T)) < O. (21)

Let ¢ € [0, T]. From condition 3 of Theorem 1, inequalities (18) and (H1), we get
a;,1+1(t) = _M(t)[anﬂ(t) - an(t)]

—L(t)[ max o,,1(s) — max an(s)]
h,t]

se[t-h,t s€[t-h,t]

+f('f, (1), max aml(s))

se[t-h,t]

[ (B, max 0,9)

s€(t-h,t]
—f(t, an+1(t)’ max an+1(s)>:|
s€[t—h,t)

ff(t:anﬂ(t): max Otn+1(5)>. (22)
s€(t-h,t]

Similarly, we prove the function f,,1(f) satisfies inequalities (5). Therefore, the claim
(H3) is true for j = n. Furthermore, the functions «,,,1(£), B41(£) € S(ay, Br)-
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For any fixed ¢ € [-h, T], the sequences {a,(£)}352, and {B,(¢)}52, are nondecreasing and
nonincreasing, respectively, and they are bounded by «(¢) and Bo(2).

Therefore, both sequences converge pointwisely and monotonically. Let lim,,_, o0 0, () =
V(t) and lim,,_, o B,(£) = W(¢) for t € [-h, T]. According to Dini’s theorem, both sequences
converge uniformly and the functions V/(¢), W(¢) are continuous. Additionally, the claims
(H1), (H2) prove V, W € S(ao, Bo)-

Now, we will prove that for any ¢ € [0, T'] the following equality holds:

lim | max o,(&)|[= max | lim «,(&) (23)

n»oo[se[t-h,t] ] Eclt-ht] [Hoo ]

For any ¢ € [0, T], we introduce the notation maxg, e[z, &n (&) = A, (¢). From condition
(H1) it follows that for any &; € [¢ — 4, £] the inequalities a1 (§;) < o,(&;) < A,(¢) hold and
thus, 4,1 (t) <A,(£),n=1,2,..., ie, the sequence {A,(£)}3, is monotone nondecreasing
and bounded from above by By(¢) for any ¢ € [-h, T]. Therefore, there exists the limit
A() = lim,,_, o0 A, (2).

From the monotonicity of the sequence of the quasi-lower solutions «,(t), we get that
for & € [t — h,t] the inequality «,(&) < V(&) holds. Let n, € [t — h,t] be such that
maxe, (s V(&) = V(ne).

Assume V(n;) < A(n;). Then there exists a natural number N such that the inequal-
ities V(n;) < An(n;) < A(n;) hold. Therefore, there exists & € [, — h,n] such that
() = MaXe,e(yy ) (&) = An(02) or V(ny) < an(&) < V(&). The obtained contra-
diction proves the assumption is not valid.

Assume V(n,) > A(n;). According to the definition of the function V(¢), it follows that for
the fixed number n;, we have lim,,_, o, &, (n;) = V(n,). Then there exists a natural number
N such that A(n) < an(n:) < V() and max;, ee—nzy on (1) = An(n,). Therefore, an(n,) <
maxy,ez—nq &n (7:) < A(ne). The obtained contradiction proves the assumption is not valid.

Therefore, the required equality (23) is fulfilled.

In a similar way, we can prove that for any ¢ € [0, T] the equality

tim [ max £,(6)] = max [ im 5,6 @
holds.
Take a limit as n — 0o in (13) and get

V(t)=V(0)- %g(V(O), W(T)) forte[-h,0] (25)

From (25) for ¢ = 0, we get g(V(0), W(T)) = 0.

Taking a limit in the integral equation equivalent to (12), we obtain the function V(¢)
satisfies equation (1) for ¢ € [0, T'].

In a similar way, we can prove that W(¢) satisfies equation (1) for ¢ € [0,T] and
g(W(0), V(T)) = 0. Therefore, the couple (V, W) is a couple of quasi-solutions of (1)-(3)
in S(ag, Bo) such that V(¢) < W(¢) for t € [-h, T.

Let the function f (¢, x, y) be Lipschitz. Then if (1) has a solution u(¢), it is unique (see [11]).
In this case, V(¢) = W (¢) and for t € [-h, T,

im a,(6) = lim () = V(&) = W(t) = u(t). O
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4 Applications
We will apply the given above algorithm for approximate solving of a nonlinear boundary

value problem.

Example Consider the following nonlinear boundary value problem for a nonlinear dif-

ferential equation with ‘maxima’:

, 1

2 (s) 1 t€[0,0.3] (26)
W =———— -2 max u(s)- -, ,0.3],
2 —u(t) se[t-0.1,t] 2

3u(0) + (u(O))2 +e403) =,

u(t) =u(0), te[-0.1,0].

Boundary value problem (26), (27) is of type (1)-(3), where 7 =0.1, T = 0.3, f(£,x,y) =
5= —2y—3andg(xy) =3x+x*+& - 1.

Let ap(t) = —1 and By(t) = 1. The couple (xo(2), Bo(2)) is a couple of quasi-lower and
quasi-upper solutions of boundary value problem (26), (27).

Let (¢t,%1,%3), (£, y1,¥2) € {(t,u,v) € [0,0.3] x [-1,1] x [-1,1]} and x; < y;, i =1,2. There-

fore,

X1 =N

P 2[x = y2] < =M(£)(x1 — 1) — L()(x2 = y2),

S@&x,x) = f(t91,92) =
where M(t) =1, L(t) =2 for ¢ € [0,0.3]. Thus, condition 3 of Theorem 1 holds.
The function g(x, y) is quasi-nondecreasing with respect to y and g € L(y, a0, o), ¥ = 5.
The above given problem has a zero solution. We will apply the procedure given in The-
orem 1 to obtain two sequences, which are monotonically convergent to 0.
The function «,(t), n > 1, is a solution of problem (12), (13), which is reduced to the

following linear initial value problem:

1
o (t) = -a,() -2 max a,(s)— =
se[t-0.1,¢] 2

+a,a(8), t€[0,03], (28)

+ S
2 — o, (8)
u(t) = 0.4, 1(0) - 0.2(a,1(0))

—0.2¢"103 1 0.2, ¢e[-0.1,0].

The function B,(t), n > 1, is a solution of problem (14), (15), which is reduced to the

following linear initial value problem:

Bi(t) ==Ba(t) =2 max B(s) - L
se[t-0.1,] 2
1
Yo a0 Bua(t), t€[0,0.3], 09

Bu() = 0.48,1(0) - 0.2(B,-1(0))°
- 0.2¢%103 1 02, ¢e[-0.1,0].
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Table 1 Values of the successive approximations o, (t) and B,(t),n=1,2,3,4,5

t 0.001 0.002 ... 0.299 0.3
Bi() 032694 032746  --- 042923 042944
B0 0.20089 0.20071 e 0.18124 0.18127
B3 0.14342 0.14324 ... 0.09975 0.09966
Ba(® 0.10273 0.10261 e 0.06662 0.06652
Bs(®) 0.0692 006912 .- 0.04563 0.04556
as(t)  -0.10599  -0.10593 ... -0.08765  -0.08759
aq(t) -020876  -0.20861 e -0.16411 -0.16397
as(t)  -039236 -039197 ... -028498 -0.28466
ay(t) -066195 -0.66107 e -044103  -0.44044
o(t)  -094199  -094034 ... -061509 -0.61441
0.4 — B
J:2)
B
0 —| 1135 B
as
oy
-0.4 as
J @
-0.8 —
a
b N R
0 0.01 0.02 0.03 0.04
Figure 1 Graphic of the successive approximations a,(t) and f,(t),n=1,2,3,4,5.

According to Lemma 2, initial value problems (28) and (29) have unique solutions e, (¢)
and B,(t), respectively. Because of the presence of the maximum of the unknown func-
tion over a past time interval, there is no explicit formula for the exact solutions of (28)
and (29). We use a computer program based on a modified numerical method to solve
these problems (see [12]).

Also, by a computer realization of the scheme given in Theorem 1 and applied to prob-
lems (28) and (29), we obtain the values in Table 1.

From Table 1 and Figure 1, it is obvious that the sequence {o,(¢)} is increasing and the
sequence {B,(?)} is decreasing and both monotonically converge to the unique solution 0
of nonlinear boundary value problem (26), (27).
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