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Abstract

Under Neumann or Dirichlet boundary conditions, the stability of a class of delayed
impulsive Markovian jumping stochastic fuzzy p-Laplace partial differential equations
(PDEs) is considered. Thanks to some methods different from those of previous
literature, the difficulties brought by fuzzy stochastic mathematical model and
impulsive model have been overcome. By way of the Lyapunov-Krasovskii functional,
[t formula, Dynkin formula and a differential inequality, new LMI-based global
stochastic exponential stability criteria for the above-mentioned PDEs are established.
Some applications of the obtained results improve some existing results on neural
networks. And some numerical examples are presented to illustrate the effectiveness
of the proposed method due to the significant improvement in the allowable upper
bounds of time delays.
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1 Introduction
In this paper, we are concerned with the following delayed impulsive Markovian jumping

stochastic fuzzy p-Laplace partial differential equations (PDEs):

0xk

- b;(vi(t, %) + /\7:1 Ci(r()Ei (v, %))
+ /I E(reD (6 0) + ALy di(r(£) &, (vt - 75(0), %)
+ /1Ly di(r(£)®; (vt — (8), )] it

) = (i 5 Dl IVl D250

; (1.1)
+2 o (vi(t, %), vi(t — 7;(£), %) dw;(t),
forallt>0,t # ty,x € ,
v(tt,x) = Mi(r(O)v(e™,x) + N(r@)h(v(t” - t(t),x), t=trnk=12,...,
v(@,x)=¢0,x), (,x)e[-1,0] x L,
equipped with the boundary condition
%[Vi(t,x)] =0, (t,x)e[-1,400)x0,i=1,2,...,n, (1.1a)
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where p > 1 is a positive scalar, Q € R” is a bounded domain with a smooth bound-
ary 992 of class C? by Q,v(t,x) = (vi(t,x), va(t,%), ..., v,(t,x))T € R". The smooth functions
Di(t,x,v) > 0. Denote t(£) = (r1(£), 72 (£), ..., 7,(t))7, and 7i(t) (0 < 7;(¢) < 1) corresponds
to the transmission delays at time ¢. v(t — t(¢),x) = (vi(t — T1(2), x), vo(t — T2(£), %), ..., vu(t —
7,(t),x))T € R". t; is called impulsive moment, satisfying 0 < #; < ; < --- < t; < --- with
limy_, o0 & = 00. (¢, %) and v(¢;,x) denote the left-hand and right-hand limits at #, re-
spectively. h(v(t; — 7(£),%)) = (v (& — (&), ho (Vo — T2(8))); - - o B (Vi — Tu(8)) T
and /;(v;(£; — 7;(£x))) is the impulsive perturbation at time ;. We always assume v(t,x) =
v(tx, x). b;(vi(t, %)), §;(vj(t,x)) and &;(v;(t,x)) are continuous functions. /\ and \/ denote
the fuzzy AND and OR operation, respectively. Each w;(t) is scalar standard Brownian
motion defined on a complete probability space (2, F,P) with a natural filtration {F;};>o.
The noise perturbation oj; : R X R — R is a Borel measurable function. {r(¢),t > 0} is a
right-continuous Markov process on the probability space which takes values in the finite

space S = {1,2,...,N} with generator IT = {7;} given by

P(r(t+8) =j | (t) = i) = T o), i
L+myé+0(8), j=i,
where ;; > 0 is transition probability rate from i to j (j # i) and 7 = — Z;=1,; i Tijs §>0
and lim;s_,q 0(8)/8 = 0. In addition, the transition rates of the Markovian chain are con-
sidered to be partially available, namely, some elements in transition rates matrix II
are time-invariant but unknown. For notational clarity, we denote S = Si U S with
St £ {j, if m; is known} and S, £ {j, if 7; is unknown, and j # i} for a given i € S. ; is
a nonnegative scalar, satisfying o; > maxjesz T for any giveni € S. Inmode r(f) =re S =
{1,2,...,N}, we denote &;(r(t)) = &, dy(r(t) = dY), &;(r(t)) = & and dj(r(t)) = d . Be-
sides, impulse parameters matrices M (r(¢)) and N (r(¢)) are denoted by My, and N, for
convenience. The boundary condition (1.1a) is called the Dirichlet boundary condition

if ®B[v;(¢,x)] = vi(¢, %), and the Neumann boundary condition if B[v;(t,x)] = M , where
81/, (tx) (Bvl (tx) 0vi(tx) av;(tx)
- dxl ’ 3x2 reee 3x

)T denotes the outward normal derivative on BQ

Remark 1.1 PDEs (1.1) own a wide range of physics and engineering backgrounds. They
admit the following three Cohen-Grossberg neural networks (CGNNSs) as their special
cases.

av(t,x) = {V - (D(¢,x,v) o V,u(t, %)) — A(v(t, %)) [B(v(t, %)) — Cf (v(2, %))

—Dg(v(t — t(¢),x)]} dt + o (v(¢, %), v(t — T(2))) dw(t)

forallt>0,t # ty,x € 2, (1.2)
v(ty,x) = Myv(te,x) + Nh(v(ty — (te),x)), k=1,2,...,
v(0,x) = ¢(0,x), (0,x) €[-1(¢),0] x 2,

= DAv(t,x) - A(v(¢, %)) [B(v(t,x)) — Cf (v(t, %)) — Dg(v(t — T(2),x))],
forall t > tg,t # tr,x € 2,

v(ty,x) = Mpv(te, %) + Nh(v(t; — (te), %), k=1,2,...,

v(0,x) = ¢(0,x), (0,x) €[-1(¢),0] x 2,

1.3)
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dxi(t) = {~ai(x: () [bi(x:(0)) = Ny Cafi((0) = Vi €af(6i(2))

— N\ digi(axy(t — 1)) = \/7L, digi(os (& — 7))} dit

+ ;':1 0 (% (8), % (¢ — 7)) dw;(2), (1.4)
x(ty) = Myx(t) + Nh(v(t, —t(t)), k=1,2,...,
xi(t) = ¢i(t), -T=<t<0,

where D(¢,x,v) o V,v(f,x) denotes the Hadamard product of matrix D(¢,x,v) and V,v
(see, [1] or [2]), and D(t,%,v) = (Dj(t, %, V) uxm satisfies Dy (t,x,v) > 0 for all j, k, (¢, x, v).
o (0, v(E - T(0) = (05 ERVE = GEOWhwen and w(E) = W) wa(O)... wa(O)T.
Throughout this paper, for the mode r(¢) =r € S ={1,2,...,N}, we denote C(r(¢)) = C, =
() nxnr and D(r(t) = Dy = (A Yuscn- AV(E,%) = (Avi(t,x), Ava(6,),..., Av,(£:%))T, and

Avi(t,%) = Tty 7 (). 2(6) = (a0, a(8) . a8 T € RV

The stability of p-Laplace diffusion stochastic CGNNs (1.2) was discussed by Xiongrui
Wang, Ruofeng Rao and Shouming Zhong in 2012 [2], and the stability of deterministic
system (1.3) was investigated by Xinhua Zhang, Shulin Wu and Kelin Li in 2011 [3]. Im-
pulsive fuzzy CGNNs with nonlinear p-Laplace diffusion has never been studied as far as
we know, and such a situation motivates our present study. Both the nonlinear p-Laplace
diffusion and fuzzy mathematical model bring a great difficulty in setting up LMI criteria
for the stability, and the stochastic functional differential equations model with nonlinear
diffusion makes it harder. To study the stability of fuzzy CGNNs with diffusion, we have
to construct a Lyapunov-Krasovskii functional in a non-matrix form (see, e.g., [4]). But
stochastic mathematical formulae are always described in matrix forms. Furthermore, an
impulsive model makes it harder. Recently, some new methods were employed to study
the exponential stability for Markovian jumping, fuzzy neural networks in some related
literature (see, e.g., [5—14]). Inspired by some methods and the idea of [3, 4] and the other
above-mentioned papers, we overcame the difficulties brought by the Markovian jump-
ing fuzzy impulsive model. By way of the Lyapunov-Krasovskii functional, It6 formula,
Dynkin formula, the variational methods in Sobolev space W?(Q2) (Lemma 2.1), and a
differential inequality, new LMI-based global exponential stability criteria for the above-
mentioned PDEs are established; we obtain an LMI-based global stochastic exponential
stability criterion of PDEs (1.1). Some applications to neural networks improve some ex-
isting results, which are illustrated by some numerical examples thanks to the significant
improvement in the allowable upper bounds of time delays.

2 Preliminaries
Throughout this paper, we always assume that the following five conditions hold.
(H1) There exists a positive definite diagonal matrix 8 = diag(8;, B, ..., B,) such that

b;(r)

>8, Vji=12,...,n and0#reRr.

(H2) There exist positive definite diagonal matrices F = diag(Fy, Fa, ..., Fy),
G =diag(Gy, Gy, ..., G,) and H = diag(Hy, Hs, ..., H,,) such that

I3i(r1) = 3;(r2)| < Fjlry =12, |8,(r1) — &;(r2)| < Gjlr1 =72,
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|j(r1) = hi(r2)| < Hjlri — 1o

forallr,mn eR,j=1,2,...,n.
(H3) There exist nonnegative symmetric matrices U = (i4j)nxn and V = (vj),xn such
that

trace[oT(u, v)o (u, V)] <uTUu+vT Vv,

where u,v € R", 0 (u,v) = (05(14, V) uxcn-

(H4) b;(0) = §;(0) = &;(0) = ;(0) = 0, 5;(0,0) = 0, i,j = 1,2,..., .

It is obvious from (H4) that system (1.1) admits a zero solution v(£,x;0) = 0 corre-
sponding to the initial data ¢ = 0. For simplicity, we write v(t,x;¢) = v(¢,x). Denote
B(v(£,x)) = (b1(n1(£, %)), by (va (£, %)), ..., Bu(va(t, %) T, FW(t,%)) = (Fr(n1(E,%)), Fo(va(t, ),
s Tt )T, Bt x) = (B1(v1(5 %)), ..., B, (va(t,%)))T. Denote o (t) = o (V(t, %), v(t —
7(t),x)) for short.

For convenience’s sake, we introduce the following standard notations similar to those
of [2].

L*(R x ), L2}-0([—r,0] X 2 R"), Q= (gi)nxn >0 (<0), Q= (gi)nxn =0 (< 0), Q1 = Q2
(Q1<Q2), Q1> Q2 (A1 <Q2), max (D), Amin(P), the identity matrix I and the
symmetric terms .
In addition, we denote |C| = (|c;l)nxn for any matrix C = (ci)uxn; |u(t,%)| = (Jur(£,%)|,
|z (£,%)],..., |ua(t,%)])T for any u(t,x) = (u1(t, %), us (t, %), ..., w,(t, %)) 7.
Next, we give the following lemma, which is completely similar to [1, Lemma 2.3]. It can

be derived by the Gauss formula (see, e.g., [2]).

Lemma 2.1 ([1, Lemma 2.3], [11, Lemma 6]) Let P = diag(ps,pa,...,pn) be a positive defi-
nite matrix, and let v be a solution of system (1.1) with the boundary condition (1.1a). Then

we have

/ vIP(V - (D(t,%,v) o V,v)) dx
Q

m n

ov: 2
:_ZZ/p]D}k(t;x;V”VV]'p_Z(l) dx
Q 8xk

k=1 j=1

= L(V (D(t,x,v) 0 va))TPvdx.

3 Main results
Theorem 3.1 Assume that p > 1. If the following three conditions hold:
(C1) there exist a sequence of positive scalars &, (r € S) and positive definite diagonal
matrices P, = diag(p1, pras - - -» Pru) (r € S) such that the following LMI conditions
hold:

0,>0, res, (3.1)

P.<a,ld, res, (3.2)

Page 4 of 14
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where matrices C, = (8l(-jr)),,><n, D, = (d;‘r))nxnr C = (Eg))nxn, D, = (dl(}r))

|Zi(’)| = max;,; |£i§].r)|, Go = max; Gj, Igl(’)l = max;,; Igig)l, and

nxmn»

0, = - <Z TP+ or Y Pr—2P,B + P,(|C,| +|C|)F + F(|C]| + [C]|) P,
jeSy, J€Sin

(|29 + |39)) GoP, +a,‘u>;

(@ A0 +140)
(Cz) a>b > 0 where a = mlanS( min ©, ) b= max,c S(Amdx(arVH’l(\i »I;D‘d |)G)~maxpr));
minr

(C3) there exists a constant § >1 such that infrez(t — tia) > 87, 827 > In(pe*?) and
2}Vmax(|M]2;|Pr|Mjr|)

P (‘;e >0, where p = max{l,a; + bje’"} with a; = sup”(T),
T
b; = max,cs (W)foraﬂj €Z=1{1,2,...},and » > 0 is the unique

solution of the equation ) = a — be*™
Then the null solution of impulsive Markovian jumping stochastic fuzzy system (1.1) is
globally stochastically exponentially stable in the mean square with the convergence rate
Lon - ln(pe)“))
2 8t :

Proof Consider the Lyapunov-Krasovskii functional

n
V(t, v(t),r) :f Zp,,'v?(t,x) dx, Vres,
g

where v(t,x) = (vi(t,x), 2(t,%), ..., va(t,x))T is a solution for stochastic fuzzy system (L.1).
Sometimes we may denote v(¢,x) by v, v;(¢,x) by v;, and o (v(¢,x), v(¢ — 7(£),%)) by o (¢) for
simplicity.

Let £ be the weak infinitesimal operator. Then it follows by Lemma 2.1 that

2
(tvt)r —ZZZ/}% tktx’ |Vv|p2< )

k=1 i=1
-2 Z / Privi |:[bi(Vi) - /\83)3}'(‘7) - \/53)&'(‘/]’)
=1 /€ j=1 j=1
—/\dl/ v, t 7(¢), x \/du v} t—T(t) x)):| x

+/QVTijPjvdx+/Qtrace(aT(t)P,a(t)) dx. (3.3)

jes
On the other hand, we have

n n
2 Zpri|vi| Z|Zlf;)’Gj|v,»(t— t(t),x)|
i-1 j-1

VT(n|cAl(’) |GoPy)v + v (£ - 1(8),x) (n|£1(’) o, G)v(t - 7(2), %), (3.4)

Page 5 of 14
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2 Zpri|Vi| Z|Zig)|Gj|Vj(t— (2),%)|

i=1 j=1
VT(n|¢V1(’) |G0Pr)v + VT(t - r(t),x) (n|gl(’) |E,G)V(t - r(t),x). (3.5)
From 7, < 0 and the definition of g,, it is clear that Z,es P <

Or Z]ES;n P
So, we can conclude by (H1)-(H4)

jesy, Tilj +

LV (tv(t),r) < /]vT|<Zm,p+g,Zp 2P,B +2P,(IC,| + |G/ F

JE€Skn jeShn

+n(|d?| + |d”])GoP, +a,u)|v| dx

v

+ / &, [V (t = (0, %) (V + n(|d?] + [27))G)v(t - <(8), %) ] d. (3.6)
Q

Completely similar to (2.7)-(2.9) in [2], we can get by the It6 formula
D'V t v(e),r /|VT|® |v| dx
+ f &,[VT(t - r(t),x) (V + n(|£{<’)| + |ovi(’) |)G)V(t - r(t),x)] dx
Q
. A i ®r
-min (522 ) Vo)

max+ r

D@V + (A7) +1dD ) Ginan Py
+max( (O( +n(|)\‘ |; | |) ))[V(t,v(t),r)]r. (3'7)

reS§

Owing to V(t,v(t),7) = [, |vT|P,|v| dx, we can get

V(tk,v(tk),r) = f v (&, %) Pv(te, %) dax

_ /Q (Mav(t5) + Noh(v(85 - (60, %))) " Po(Muv(5%)

+ Noh(v(t - T(t),%))) dx
2)\max(|MkTr|Pr|Mkr|)

B }\minPr V(t/:,v(t]:),r)
2 max (H| N, || N | H ) i
ax L I|) | N H) f|vT(tk —T(tk),?C)|Pr|V(tk — f(tk),x)|dx
mind’r Q
< axV (6 V(). ) + BV (6 v(te). )] 63

From (C3), it is not difficult to conclude that p**1e¥*7 < e®*-V7ed% where A, ay, by, p are
defined in (C3), and so p = maxcz {1, ax + bre™}. Then, by (C2), the differential inequality
lemma ([2, Lemma 1.6]) yields EV(£) < p[EV(0)],e* by

2 2 —(k—ln(peh))t
CominPEMO; < p (P sup E(5)[)e 57, (3.9)
—T<s<i
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E|v@); < ﬂ[%(ﬁ“‘f‘*ﬁ’) sup E[#(s) H<>
min

r/ —t<s<

(3.10)

Therefore, we can see by the definition of global stochastic exponential stability (see, e.g.,
[15]) that the null solution of impulsive Markovian jumping stochastic fuzzy system (1.1) is
globally stochastically exponentially stable in the mean square with the convergence rate

1 In(pe??)
7 (A= =5, O

Particularly for the case of p = 2, we get from the Poincaré inequality (see, e.g., [16,
Lemma 2.4]) that Ay [(, [vi(t,x)|*dx < [, |Vvi(t,x)|> dx, where 1, is the lowest positive

eigenvalue of the boundary value problem

-Ap(t,x) = o(t,x), x€L,

Blet,x)] =0, x€df.
Theorem 3.2 Let p = 2, and Dy = inf, i (1) Dik(t,%,v). Then all the conclusions of The-
orem 3.1 are true if its conditions are satisfied except that the ©, is replaced by ©, =
~(=2mDoPr + Yoy WP + 0 Yjesy, P = 2B + P(ICyl + |C)E + F(CT| + ICT Py +
n(|d?| + 1dD)GoP, + @, U).

Proof Indeed, if p = 2, we can get by the Poincaré inequality

"o av; 2
-2 riDi tr: Vip_Z il d
ZZ/QP () |V (a) x

k=1 i=1
2
) dx

=2 /Q PPt , V)(
2
) dx < —2A1DO/ vIP,vdx.
Q

81/,»
k=1 i=1 Ok

S—ZDO/QZIMZ

) (
i=1 k=1

Vi

a
8xk

Then, by (3.3), we can similarly complete the rest of the proof by way of the methods in
(3.4)-(3.10). O

4 Applications of main results in neural networks

Let B(v(¢,x)) = A(v(¢,x))B(v(¢,x)) with A(v(¢,x)) = diag(a;(vi(t, %)), az(va(E, %)), ..., an(vu(L,
x))) and B(v(t,x)) = (bi(v1(£, %)), by (va(t,%)), ..., b (va(t,%)))T € R", F(v(t, %)) = A(v(t, %)) x
f(t,x)), and &(v(t, x)) = A(v(t, x))g(v(t, x)) satisfy the following.

(H1*) There exist positive definite diagonal matrices A = diag(a,,4,,...,a,) and A=

diag(a;,ay, .. .,a,) such that
O<a;<ar)<a;

forallreR,i=1,2,...,n.

Page 7 of 14
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(H2*) There exists a positive definite diagonal matrix B = diag(By, By, . .., B,) such that

bi(r
i) >B;, Vj=12,..,n and0+#rer.
r

(H3*) There exist positive definite diagonal matrices F = diag(Fy, Fa, ..., Fy), G = diag(G,
Gy,...,G,) and H = diag(H;, Hy, ..., H,) such that

lﬂ'(i’l) —ﬁ(r2)| <Filn-rl, |g;(1”1) —g;(r2)| < Gjlrn—ra,
(1) = ()| < Hjlry =12,

forallr,rneR,j=1,2,...,n.
(H4*) There exist nonnegative symmetric matrices U = (14;)nxn and 'V = (vj),1x such that

trace[o " (u,v)o (u, V)] < u” Uu + v Vv,
where u,v € R?, o (u,v) = (0j(1t, V) nscn-
(H5*) b;(0) =£(0) = g(0) = 1;(0) = 0, 05(0,0) = 0, i,j = 1,2,...., 1.
Applying our main results to Cohen-Grossberg neural networks (CGNNSs), we can con-

clude the following corollary from Theorem 3.1 directly.

Corollary 4.1 If the following three conditions hold:
(D1) there exist a positive scalar & and a positive definite diagonal matrix P such that
the following LMI conditions hold:

© = —(-2PAB + PA(|C| + |C|)F + F(|CT| + |CT|)AP
+n(ld| + |d))GoPA +@U) > 0, (4.1)
P<al, (4.2)
where matrices C = (eij)nxn: D = (aij)nxnr C = (Eij)nxm b = (aij)nxn: |£Z| = max;; |;1ij|’

Ay = max; @, Go = max; Gj, |d| = max;; |dl;

(DZ) a>b>0, wherea = Amin© b= Amax(av“fu;ﬂ*\a\)ZOkaaxp) .
- " maxP’ - AminP ’

(D3) there exists a constant 8 > 1 such that infrez(tx — tr_1) > 8T, 821 > In(pe*?) and

AT . 2)»max(‘M'T‘P‘M'|)
A— % >0, where p = max{l,a; + bje’"} with a; = StueZ(W}),
T
b= wfor allje Z=A1,2,...}, and X > 0 is the unique solution of the

equation A = a — be**.
Then the null solution of impulsive stochastic fuzzy system (1.4) is globally stochastically
In(pe*?)

exponentially stable in the mean square with the convergence rate %(A - =)

Remark 4.1 Corollary 4.1 not only extends [4, Theorem 3.1] from non-impulsive stochas-
tic fuzzy CGNNSs to impulsive stochastic fuzzy CGNNSs, but also improves the criterion
of [4, Theorem 3.1] from the non-matrix form to the more condensed matrix form, which
can be efficiently tested and verified by computer Matlab LMI toolbox.

If Markovian jumping and fuzzy factors are ignored, we can conclude the following
corollary.
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Corollary 4.2 Assume that p > 1. If the following three conditions hold:
(E1) there exist a sequence of positive scalars & and positive definite diagonal matrices P
such that the following LMI conditions hold:

0 >0, (4.3)

P<ul, (4.4)

where matrices C = (Cij)nxn» D = (dif) nxcns |d| = max;; |dy], Ao = max; d;,
Go = max; Gj, and © = —(—2PAB + PA|C|F + F|C” |AP + n|d|GoPA + @U);
(E2) a>b>0, wherea = )Lmin(? b= Mmax @V +1]d|Ag GrmaxP) .
—_— ) )Lmax ) b

AminP
(E3) there exists a constant 8 > 1 such that infrez(ty — ty_1) > 67, 82T > In(pe**) and
2hmax (1M |P|M;1)

A— 1“<§e >0, where p = max{1,a; + bje*"} with a; = sup;z/( )
T
b= max,eg(w# )foralljeZ =1{1,2,...}, and A > 0 is the unique

solution of the equation ) = a — be*®
then the null solution of impulsive stochastic system (1.2) is globally stochastically exponen-

tially stable in the mean square with the convergence rate (A — In(p e”))

Remark4.2 Ifletting & = 0, system (1.2) was investigated by [2]. However, LMIs criterion
of Corollary 4.2 is more feasible and effective than that of [2, Theorem 2.1]. In fact, we
know from the Schur complement theorem that the LMI condition of [2, Theorem 2.1] is
equivalent to the inequality Y = 2P,AB — P,A|C||C|TAP; — PiA|D||D|TAP, - F> - P, U —
P, > 0, where the term PA|C||CT|AP actually makes parameters amplify against - < 0

if AminA > 1 OF Amin|C| > 1. In other words, Corollary 4.2 can judge what [2, Theorem 2.1]
cannot do, which may be illustrated by Example 5.2 (below).

Corollary 4.3 If the following three conditions hold:
(F1) there exist a positive scalar & and a positive definite diagonal matrix P such that the
following LMI conditions hold:

0>0, (4.5)

where matrices C = (Cij)nxns D = (dij)nxn> |d| = max;; |dyl, Ay = max; a;,
Go = max; Gj, and © = —(~211PD — 2PAB + PA|C|F + F|CT|AP + n|d|GoPA);

(F2) a>b>0, wherea = —;f‘::;(l),, b = ‘max(dlA0 GhmaxP)

AminP
(F3) there exists a constant 8 > 1 such that infrez(t — t_1) > 87, 821 > In(pe**) and
T .
2hmax (1M 1P1M;])

A— ln(ge >0, where p = max{l,a; + bje’"} with a; = supjez( P )
b= max,eg(z’\“““(]'f\‘M ) foralljeZ =1{1,2,...}, and A > 0 is the unique

solution of the equation ) = a — be**
then the null solution of impulsive deterministic system (1.3) is globally stochastically ex-
ponentially stable in the mean square with the convergence rate %(A - %).
Remark 4.3 For the same reason as in Remark 4.2, the LMI (4.5) of Corollary 4.3 is more
feasible and effective than that of [3, Theorem 3.1], which may be illustrated by a numerical
example below (Example 5.1).
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5 Numerical examples

In this section, two examples are given to illustrate that the criteria of Corollary 4.2 and
Corollary 4.3 can judge what some existing criteria cannot do. The third numerical exam-
ple is presented to illustrate the effectiveness of our main results (Theorems 3.1-3.2).

Example 5.1 Consider impulsive system (1.3) with the following parameters:

A =diad(0.1,0.1), A = diag(0.2,0.2), B =diag(2,2),
(5.1)
F =diag(0.1,0.2), M = diag(1.2,1.2).

In this section, we denote

a b
la,b;c,d] = (c d).

Assume, in addition, G = diag(1,1), D = diag(0.005,0.005), & = diag(0.0003,0.0003),
C = [3.2,-0.003;-0.003,3.2], D = [0.11,-0.003;-0.003,0.12], H = F, My = M, Vk =
L2,....v= (%), (6x)T € R, x = (x1,%)7 € Q = {(x1,%)7 € R?: |xj] < +/2,j = 1,2}.
Assume that the boundary condition is the Dirichlet boundary one, and then A; = 7% =
9.8696 (see, e.g,, [16]). Assume that the lower limit of the time interval between impulses
infrez(tx — tr-1) = 19. From the differential inequality lemma [2, Lemma 1.6] we know that
8t <19 and § > 1, and hence the upper limit of time delay 7 < 19.

With the above data, one can use computer Matlab LMI toolbox to solve the LMI (C1) of

[3, Theorem 3.1], and obtain ¢t min = —0.0516 < 0, P = diag(0.5169, 0.5147). Next, we need

Amin® _ 0.0624 _
AmaxP — 05169

0.1207 < 0.1749 = % = M}"\L(iz) = b, which implies 7 < b. Hence, [3, Theorem 3.1] cannot

judge the stability of impulsive system (1.3) with the above data.
However, we can solve LMI (4.5) by Matlab LMI toolbox, ancl obtain ¢ min = —0.5298,
P = diag(2.4462,2.3729). Further computation yields a = 2min® 05417 _ 9914, p =

TmaxP | 2.4462
Pmax (1A A0 GhmaxP) _ 0.0352 _ 0.0148, and hence a > b > 0. In addition, a direct calculation

verify (C2) in [3, Theorem 3.1]. However, a direct computation derives @ =

*minP 2.3729
derives p = max;{l,a; + b/e“} =2.9689. Let § =1.8093, T = 10.5, and then §t = 18.9977 <
19 = infrez (b — f51), A = 0.1499, 827 — In(pe**) = 31.7105 > 0 and A — "€ = 0,0098 > 0.

All the conditions (F1)-(F3) of Corollary 4.3 are satisfied, then by Corollary 4.3 the null
solution of impulsive deterministic system (1.3) is globally stochastically exponentially sta-
ble in the mean square with the convergence rate 0.0049 and the allowable upper bound
of time delays t =10.5.

Example 5.2 Under the Neumann boundary condition, we consider stochastic system
(1.2) with the data (4.1) and the following parameters:
G = diag(0.3,0.3), D(t,v,x) = [0.005,0.003;0.003,0.005],
C=1[2.2,-0.003;-0.003,2.2], D =10.11,-0.003;-0.003,0.12],
U = diag(0.0003,0.0003), 'V =1[0,0;0,0] = V.

Let 7(¢) = 7, and then u = 0. Now, one can use Matlab LMI toolbox to solve the LMI
condition of [2, Theorem 2.1] and obtain ¢t min = —-0.0628 < 0, P; = diag(0.9084,0.9237),
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P, = diag(0.0920,0.0778). Further computation yields that min{ A""“ ,(1-uw)} =0.0832 <

1.1568 = AmaxG , which implies that the condition (C2) of [2, Theorem 2.1] is not satisfied.
Hence, the stablllty of system (1.2) with the above data cannot be judged by [2, Theo-
rem 2.1].

However, we solve LMIs (4.3)-(4.4), and obtain fmin = —0.9343 < 0, a = 42.5544,
P = diag(24.7366,23.9523). Moreover, we can get by direct computation that a = 0.1978 >
0.0149 = b, and p =2.9743. Let 1 =10.3,5 = 1. 8445 so that 67 =18.9979 < 19 = infiez (¢ —
te1), 82T — In(pe*?) = 32.5410 > 0 and A — pe =0.0053 > 0. All (E1)-(E3) of Corol-
lary 4.2 are satisfied, then by Corollary 4.2 the null solution of impulsive stochastic sys-

tem (1.2) is globally stochastically exponentially stable in the mean square with the con-
vergence rate 0.0027 and the allowable upper bound of time delays 7 = 10.3.

Example 5.3 Consider impulsive stochastic Markovian jumping fuzzy system (1.1) with
the following parameters:
D(t,x,v) = [0.003,0.005;0.004,0.006], B =diag(2,2), F =diag(0.1,0.2),
H=G=F,  U=diag(0.0003,0.0003) ="V =N,
My, =diag(1.2,12), VreS={1,2,3},k=1,2,....
In addition, C; = [0.11,-0.003;-0.003,0.12] = Dy, C; = [0.16,-0.003;-0.003,0.18] =
Dy, €, = [0.13,-0.003;-0.003,0.15] = D,, C, = [0.17,-0.003;-0.003,0.19] = D, C; =

[0.12,-0.003;-0.003,0.13] = f)g, ég =[0.175,-0.003;-0.003,0.196] =
The two cases of the transition rates matrices are considered as follows:

-0.2 0.1 0.1 -0.2 ? ?
Case(1):I1=}| 0.2 -03 01 |, Case (2):I1=] 0.2 -03 01 |,
0.3 01 -04 0.3 01 -0.4

v = n(t,x),va(x)T € R?, x = (w1, 22)T € Q = {(x1,%2)7 € R? : x| < +/2,j = 1,2}. Assume
that the boundary condition is the Dirichlet boundary one, and then A; = 7% = 9.8696.
Assume that the lower limit of the time interval between pulses infyc 7 (£x — £x_1) = 19. From
the differential inequality lemma (see, [17] or [2, Lemma 1.3]), we know that 7 < 19 and
8 >1, and hence the upper limit of time delay t <19 (see, Remark 5.1).

Now one can use Matlab LMI toolbox to solve the LMI conditions (3.1)-(3.2) of The-
orem 3.1 for Case (1) and p > 1, and obtain ¢tmin = —-0.5607 < 0, and oy = 25.4531,
ay = 25.4421, az = 25.4273, P; = diag(6.6617,6.7783), P, = diag(6.6320,6.7643), P3 =
diag(6.6066,6.7304).

Moreover, a direct computation derives a = 3.7256, b = 0.1399. So, the condition (C2)
a > b > 0 holds in this case.

By the definition of a;, b;, further computation derives p = max;{1,a; + bje’"} = 2.9375.
Let = 14 and § = 1.3569. Then solving the equation A = a — be*? yields A = 0.2299. By
these data, one can calculate that 87 = 18.9972 < 19 = infrez (& — tx_1), 82T — In(pe*?) =
21.4822 > 0 and A — pe =0.0037 > 0, which implies the condition (C3) of Theorem 3.1
holds. By Theorem 3.1, the null solution of impulsive Markovian jumping stochastic fuzzy
system (1.1) is globally stochastically exponentially stable in the mean square with the con-
vergence rate 0.00185 and the allowable upper bounds of time delays 7 = 14.
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Assume that the boundary condition is the Dirichlet boundary one, and then A; =
72 = 9.8696 (see, e.g, [16]). Similarly, we can solve the corresponding conditions of
Theorem 3.2 for Case (1) and p = 2, and obtain ¢£min = —0.5580 < 0, @; = 25.3516,
o, = 25.3408, @3 = 25.3262, and P; = diag(6.5896,6.7043), P, = diag(6.5604,6.6905),
Ps = diag(6.5354, 6.6572).

Similarly, we can calculate and obtain a = 3.7294, b = 0.1399, p = 2.9371.

Let § = 1.3473 and t = 14.1, and then A = 0.2284, 87 = 18.9972 < 19, 8%t — In(pe**) =
21.2557 > 0 and 1 — % =0.0029 > 0. By Theorem 3.2, the null solution of impulsive
Markovian jumping stochastic fuzzy system (1.1) with p = 2 is stochastically exponen-
tially stable in the mean square with the convergence rate 0.00145 and the allowable upper
bounds of time delays 7 = 14.1.

Obviously in Case (2) we can assume @; = 0.2. Next, we employ Matlab LMI toolbox
to solve LMI conditions (3.1)-(3.2) of Theorem 3.1 for Case (2) and p > 1, and obtain
tmin = —0.3196 < 0, o = 25.7897, wy = 25.6385, a3 = 25.6264, P; = diag(7.0171,7.1446),
P, =diag(6.7114, 6.8458), P; = diag(6.6913, 6.8174). So, a = 3.5752, b = 0.1399, p = 2.9377.

Let § = 1.4072 and 7 = 13.5, and then A = 0.2350, 87 = 18.9973 < 19, 827 — In(pe*?) =
22.4827 >0 and A — % = 0.0113 > 0. By Theorem 3.1, the null solution of impulsive
Markovian jumping stochastic fuzzy system (1.1) is stochastically exponentially stable in
the mean square with the convergence rate 0.00565 and the allowable upper bounds of
time delays t =13.5.

Similarly, we can solve the corresponding conditions of Theorem 3.2 for Case (1) and
p =2, and obtain £ min = —0.5614 < 0, or; = 25.5625, o» = 25.4289, o3 = 25.4165, and P; =
diag(6.8412,6.9638), P, = (6.5701,6.7003), P; = (6.5494, 6.6714), and then a = 3.5777, b =
0.1399, p =2.9371. Let § = 1.3969 and t =13.6, and then A = 0.0845.

Further computation yields 87 = 18.9973 < 19, 82t — In(pe’?) = 22.2850 > 0 and A —
% = 0.0096 > 0. By Theorem 3.2, the null solution of impulsive Markovian jumping
stochastic fuzzy system (1.1) with p = 2 is stochastically exponentially stable in the mean
square with the convergence rate 0.0048 and the allowable upper bounds of time delays
T =13.6.

Table 1 shows that the upper bounds of time delay decrease when there exist unknown
elements of a transition rates matrix. This means that unknown elements of transition
rates bring a great difficulty in judging the stability.

In some related literature [18, 19], their impulsive assumption is M kT PM; < P. However,
our impulse matrix M may not satisfy the assumption of decreasing impulse. In all the
above numerical examples, impulsive parameters matrices My satisfy AminMi =1.2 > 1 so
that M PMy > P. Thereby, the increasing impulse not only brings some unstable factors
to CGNN:Ss, but also limits the time-delays’ upper limit 7 < infxcz (¢ — tx_1) (see [17] or [2,
Lemma 1.6]).

Table 1 Allowable upper bounds of time delays and the convergence rate

Theorem 3.1 (p>1) Theorem 3.2 (p=2)
Case (1) Case (2) Case (1) Case (2)
Upper bound © 14 135 14.1 13.6

Convergence rate 0.00185 0.00565 0.00145 0.0048
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Remark 5.1 The parameters of impulsive deterministic system (1.3) do not satisfy the
conditions of [3, Theorem 3.1] so that we are not sure whether system (1.3) is stable, for
the conditions of [3, Theorem 3.1] are only sufficient ones, not necessary for the stabil-
ity of system (1.3). However, we can conclude the stability by our Corollary 4.3, which
implies that Corollary 4.3 allows for more effectiveness and less conservatism than [3,
Theorem 3.1]. By the same token as in Remark 5.2, Corollary 4.2 is better than [2, Theo-

rem 2.1].

Remark 5.2 Table 1 shows that the diffusion plays a positive role in the criterion of Theo-
rem 3.2, which admits a wider range of time delays. Table 1 also illustrates the effectiveness
and less conservatism of Theorems 3.1-3.2 due to the significant improvement in the al-

lowable upper bounds of time delays.

Remark 5.3 Finding a solution x to the LMI system A(x) < B(x) is called the feasibil-
ity problem. So, in Examples 5.1-5.3, the system is feasible if £ min < 0, and infeasible if
tmin > 0 (see [11, Remark 29(3)] for detail).
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