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Abstract
We study the effect of thermophoresis on boundary layer magneto-nanofluid flow
over a stretching sheet. The model includes the effects of Brownian motion and
cross-diffusion effects. The governing partial differential equations are transformed to
a system of ordinary differential equations and solved numerically using a spectral
linearisation method. The effects of the magnetic influence number, the Prandtl
number, Lewis number, the Brownian motion parameter, thermophoresis parameter,
the modified Dufour parameter and the Dufour-solutal Lewis number on the fluid
properties as well as on the heat, regular and nano mass transfer coefficients are
determined and shown graphically.

1 Introduction
Most commonfluids such as water, ethylene, glycol, toluene or oil generally have poor heat
transfer characteristics owing to their low thermal conductivity. A recent technique to im-
prove the thermal conductivity of these fluids is to suspend nano-sized metallic particles
such as aluminum, titanium, gold, copper, iron or their oxides in the fluid to enhance its
thermal properties, Choi []. The enhancement of thermal conductivity in nanofluids has
been studied by, among others, Kakac and Pramuanjaroenkij [], Choi et al. [], Masuda
et al. [], Eapen et al. [] and Fan andWang []. Nield and Kuznetsov [] analyzed the be-
haviour of boundary layer flow on the Chen-Minkowycz problem in a porous layer satu-
ratedwith a nanofluid.Nield andKuznetsov [] investigated thermal instability in a porous
medium saturated with nanofluid using the Brinkman model. The model incorporated
the effects of Brownian motion and thermophoresis of nanoparticles. They found that the
critical thermal Rayleigh number can be reduced or increased by a substantial amount de-
pending on whether the nanoparticle distribution is top-heavy or bottom-heavy. Aziz et
al. [] studied steady boundary layer flow past a horizontal flat plate embedded in a porous
mediumfilledwith awater-based nanofluid containing gyrotacticmicroorganisms. Cheng
[] investigated the behaviour of boundary layer flow over a horizontal cylinder of elliptic
cross section in a porous medium saturated with a nanofluid. Chamkha et al. [] investi-
gated the non-similar solutions for natural convective boundary layer flow over a sphere
embedded in a porous medium saturated with a nanofluid.
During the last few decades, fluid flow over a stretching surface has received consid-

erable attention because of its engineering applications such as in melt-spinning, hot
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rolling, wire drawing, glass-fiber production and the manufacture of polymer and rub-
ber sheets, Altan and Gegel [], Fisher [], and Tidmore and Klein []. Nanofluid flow
over a stretching surface has been investigated by many researchers. The first study on a
stretching sheet in nanofluids was published by Khan and Pop []. Makinde and Aziz []
performed a numerical study of boundary layer flow over a linear stretching sheet. Both
Brownian motion and thermophoresis effects on the transport equations were presented.
They reported that stronger Brownian motion and thermophoresis lead to an increase in
the rate of heat transfer. However, the opposite was observed in the case of the rate of
mass transfer. Recent studies in this area include those of Narayana and Sibanda [] and
Kameswaran et al. [].
Magnetic nanofluids have numerous uses or potential applications in engineering and

medicine. Using magnetic nanofluids has the potential to regulate the flow rate and heat
transfer by controlling the thermo-magnetic convection current and the fluid velocity (see
Shima et al. [], Ganguly et al. []). The effects of amagnetic field on nanofluid flow over
a stretching sheet have been investigated by, among others, Bachok et al. [] and Hanad
and Ferdows [].
The aim of this study is to analyse Dufour and Soret effects in a magneto-nanofluid

flow over a stretching sheet. In addition, we study Brownian motion and thermophore-
sis effects using a spectral linearisation method to obtain numerical solutions of the mo-
mentum, energy, concentration and mass fraction equations. The successive linearisation
method (SLM) is an accurate method for solving non-linear coupled equations (see [–
]). Recent studies such as [–] have suggested that the SLM is accurate and con-
verges rapidly to the numerical results when compared to other semi-analytical methods
such as the Adomian decomposition method, the variational iteration method and the
homotopy perturbation method.

2 Mathematical formulation
Consider two-dimensional nanofluid flow over a linearly stretching sheet with velocity
uw = ax, where a is a real positive number. The coordinate system is assumed to define the
x-axis along the surface of the sheet and y is the coordinate normal to the surface of the
sheet. The surface temperature Tw and nanoparticle concentration φ̂w are higher than the
ambient values T∞ and φ̂∞, respectively. The governing equations for the problem can be
written in the form
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with the boundary conditions

v = , u = uw(= ax), T = Tw, C = Cw and φ̂ = φ̂w on y = ,

u→ , T → T∞, C → C∞ and φ̂ → φ̂∞ when ŷ→ ∞,
()

where u and v are the velocity components along the x and y direction respectively, σ is
the electrical conductivity, B is magnetic field flux density, ν kinematic viscosity of the
base fluid, α is the thermal diffusivity of the porous medium,DB is the Brownian diffusion
coefficient, DT is thermophoresis diffusion coefficient, DCT and DTC are the Soret and
Dufour diffusivities,DS is the solutal diffusivity, T is the fluid temperature, C is the solutal
concentration, φ̂ is the nanoparticle volume fraction, (ρc)f and (ρc)p are the heat capacity
of the fluid and the effective heat capacity of the nanoparticle material respectively, τ is a
parameter defined by (ρc)f /(ρc)P . Using the similarity variables

η = y
√
a
ν
, ψ = (aν)


 f (η), θ (η) =

T – T∞
Tw – T∞

,

S(η) =
C –C∞
Cw –C∞

, φ(η) =
φ̂ – φ̂∞
φ̂w – φ̂∞

,
()

equations ()-() reduce to the following non-similar forms where primes denote differ-
entiation with respect to η:

f ′′′ + ff ′′ – f ′ –Mf ′ = , ()

θ ′′ + Prf θ ′ + PrNbθ ′φ′ + PrNtθ ′ +NdS′′ = , ()

S′′ + LefS′ + Ldθ ′′ = , ()

φ′′ + Lnf φ′ +
Nt
Nb

θ ′′ = , ()

subject to the boundary conditions

f = , f ′ = , θ = , S = , φ =  at η = ,

f ′ → , θ → , S → , φ →  as η → ∞.
()

The parameters in equations ()-() are the magnetic numberM, the Prandtl number Pr,
the Lewis number Le, the Brownianmotion parameterNb, the thermophoresis parameter
Nt, the nanofluid Lewis number Ln, the modified Dufour parameter Nd and the Dufour-
solutal Lewis number Ld. These parameters are defined as

M =
σB


ρf a

, Pr =
ν

α
, Le =

α

DS
, Nb =

τDB(φ̂w – φ̂∞)
ν

,

Nt =
τDT (Tw – T∞)

T∞ν
, Ln =

ν

DB
,

Nd =
DTC(Cw –C∞)
α(Tw – T∞)

, Ld =
DCT (Tw – T∞)
DS(Cw –C∞)

.

The parameters of engineering interest in heat and mass transport problems are the local
Nusselt number Nux, the Sherwood number Shx and the nanofluid Sherwood number
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Shx,n. These parameters characterise the wall heat, the regular and nano mass transfer
rates, respectively, and are defined by

Nux =
–x

Tw – T∞

(
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)∣∣∣∣
y=

= –Re


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
x S′(),
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∂φ̂

∂y

)∣∣∣∣
y=

= –Re


x φ′().

Following Khan and Aziz [], the physical parameters of interest are the reduced Nus-
selt Nur, the Sherwood number Ŝh and the reduced Sherwood Shr defined as

Nur =Nux/Re


x , Shr = Shx,n/Re



x and Sh = Ŝhx/Re



x .

3 Method of solution
The system of equations ()-() together with the boundary conditions () were solved
using the successive linearisation method (SLM) (see [, , ]). The unknown func-
tions f (η), θ (η), S(η) and φ(η) are expanded as

f (η) = fi(η) +
∑i–

m= Fm(η), θ (η) = θi(η) +
∑i–

m= �m(η),
S(η) = Si(η) +

∑i–
m= S̃m(η), φ(η) = φi(η) +

∑i–
m= 
m(η),

}
()

where fi, θi, Si and φi are unknown and Fm, �m, S̃m and 
m (m ≥ ) are successive ap-
proximations that are obtained by recursively solving the linear forms of the equation sys-
tem that results from substituting () into equations ()-(). In particular, the linearised
equations to be solved are

F ′′′
i + a,i–F ′′

i + a,i–F ′
i + a,i–Fi = r,i–, ()

�′′
i + b,i–�′

i + b,i–Fi + b,i–̃S′′
i + b,i–
′

i = r,i–, ()

S̃′′
i + c,i–̃S′

i + c,i–Fi + c,i–�′′
i = r,i–, ()


′′
i + d,i–
′

i + d,i–Fi + d,i–�′′
i = r,i–, ()

subject to the boundary conditions

Fi() = F ′
i () = F ′

i (∞) = �i() =�i(∞) = S̃i() = S̃i(∞) = 
i() =
i(∞) = , ()

where coefficient parameters ak,i–, bk,i–, ck,i–, dk,i– (k = , . . . , ) and rj,i– (j = , . . . , ) are
known constants. The initial guesses F(η), �(η), S̃(η) and 
(η) are chosen to satisfy
the boundary conditions

F(η) = , F ′
(η) = , �(η) = , S̃(η) = , 
(η) =  at η = ,

F ′
(η) → , �(η)→ , S̃(η) → , 
(η) →  as η → ∞

}

()
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and are chosen as

F(η) =  – e–η, �(η) = e–η, S̃ = e–η, 
(η) = e–η. ()

Starting from the initial guesses and iterating M times, the functions f (η), θ (η) and φ(η)
are written as

f (η) ≈
M∑
m=

Fm(η), θ (η)≈
M∑
m=

�m(η),

S(η)≈
M∑
m=

S̃m(η), 
(η)≈
M∑
m=


m(η),

()

whereM is the order of the SLM approximation. Equations ()-() are solved using the
Chebyshev spectral collocation method. The method is based on the Chebyshev polyno-
mials defined on the interval [–, ]. We first transform the domain of solution [,∞) into
the domain [–, ] using the domain truncation technique where the problem is solved in
the interval [,L] where L is a scaling parameter used to invoke the boundary condition
at infinity. This is achieved by using the mapping

η

L
=

ξ + 


, – ≤ ξ ≤ . ()

We discretise the domain [–, ] using the Gauss-Lobatto collocation points given by

ξ = cos
π j
N

, j = , , , . . . ,N , ()

whereN is the number of collocation points used. The functions Fi, �i, S̃i and 
i for i ≥ 
are approximated at the collocation points as follows:

Fi(ξj)≈ ∑N
k= Fi(ξk)Tk(ξj), �i(ξj) ≈ ∑N

k= �i(ξk)Tk(ξj),
S̃i(ξj)≈ ∑N

k= S̃i(ξk)Tk(ξj), 
i(ξj) ≈ ∑N
k= 
i(ξk)Tk(ξj),

}
j = , , . . . ,N , ()

where Tk is the kth Chebyshev polynomial given by

Tk(ξ ) = cos
[
k cos–(ξ )

]
. ()

The derivatives of the variables evaluated at the collocation points ξ = ξj are represented
as

drFi
dηr =

∑N
k=Dr

jkFi(ξk),
dr�i
dηr =

∑N
k=Dr

jk�i(ξk),
dr�i
dηr =

∑N
k=Dr

jk�i(ξk), dr
i
dηr =

∑N
k=Dr

jk
i(ξk),

}
j = , , . . . ,N , ()
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where r is the order of differentiation and D = 
LD with D being the Chebyshev spectral

differentiation matrix (see, for example, [–]), whose entries are defined as

D = N+
 ,

Djk =
cj
ck

(–)j+k
ξj–ξk

, j �= k; j,k = , , . . . ,N ,

Dkk = – ξk
(–ξk )

, k = , , . . . ,N – ,

DNN = –N+
 .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
()

Substituting equations ()-() into equations ()-() leads to the matrix equation

Ai–Xi = Ri–, ()

whereAi– is a (N +)× (N +) square matrix andXi and Ri– are (N +)×  column
vectors defined by

Ai– =

⎡⎢⎢⎢⎣
A A A A

A A A A

A A A A

A A A A

⎤⎥⎥⎥⎦ , Xi =

⎡⎢⎢⎢⎣
Fi
�i

S̃

i

⎤⎥⎥⎥⎦ , Ri– =

⎡⎢⎢⎢⎣
r,i–
r,i–
r,i–
r,i–

⎤⎥⎥⎥⎦ . ()

The functions and parameters in equation () are

Fi =
[
fi(ξ), fi(ξ), . . . , fi(ξN–), fi(ξN )

]T ,
�i =

[
θi(ξ), θi(ξ), . . . , θi(ξN–), θi(ξN )

]T ,
S̃i =

[
Si(ξ), θi(ξ), . . . ,Si(ξN–),Si(ξN )

]T ,

i =

[
φi(ξ),φi(ξ), . . . ,φi(ξN–),φi(ξN )

]T ,
r,i– =

[
r,i–(ξ), r,i–(ξ), . . . , r,i–(ξN–), r,i–(ξN )

]T ,
r,i– =

[
r,i–(ξ), r,i–(ξ), . . . , r,i–(ξN–), r,i–(ξN )

]T ,
r,i– =

[
r,i–(ξ), r,i–(ξ), . . . , r,i–(ξN–), r,i–(ξN )

]T ,
r,i– =

[
r,i–(ξ), r,i–(ξ), . . . , r,i–(ξN–), r,i–(ξN )

]T ,
A =D + a,i–D + a,i–D + a,i–I, A = [], A = [], A = [],

A = b,i–I, A =D + b,i–D, A = b,i–D, A = b,i–D,

A = c,i–I, A = c,i–D, A =D + c,i–D, A = [],

A = d,i–I, A = d,i–D, A = [], A =D + d,i–D.

In the definitions above, T stands for transpose, ak,i– (k = , . . . , ), bk,i– (k = , . . . , ),
ck,i– (k = , . . . , ), dk,i– (k = , . . . , ) and rk,i– (k = , . . . , ) are diagonal matrices of order
(N + )× (N + ), I is an identity matrix of order (N + )× (N + ) and [] is a zero matrix
of order (N + )× (N + ). The solution is obtained as

Xi =A–
i–Ri–. ()
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Table 1 Comparison of results for the reduced Nusselt number –θ (0) withM = 0, Pr = 10,
Le = 10

Nb Nt –θ (0)

Khan and Pop [15] Present results

Ord 2 Ord 4 Ord 5 Ord 6

0.1 0.1 0.9524 0.954110803008 0.952376830835 0.952376830835 0.952376830835
0.2 0.6932 0.696282777163 0.693174335745 0.693174335745 0.693174335745
0.3 0.5201 0.523772737719 0.520079246363 0.520079246361 0.520079246361
0.4 0.4026 0.406474865249 0.402579651548 0.402579651503 0.402579651503
0.5 0.3211 0.325192006813 0.321057339674 0.321057339175 0.321057339175

0.2 0.1 0.5056 0.507610155261 0.505578818179 0.505578818179 0.505578818179
0.2 0.3654 0.367853633248 0.365368345283 0.365368345283 0.365368345283
0.3 0.2731 0.275387707176 0.273079280934 0.273079280931 0.273079280931
0.4 0.2110 0.213054455507 0.210961536564 0.210961536512 0.210961536512
0.5 0.1681 0.170080726148 0.168004798568 0.168004798105 0.168004798105

0.3 0.1 0.2522 0.253142109948 0.252145911886 0.252145911886 0.252145911886
0.2 0.1816 0.182448890243 0.181611610633 0.181611610633 0.181611610633
0.3 0.1355 0.136247585715 0.135548634738 0.135548634736 0.135548634736
0.4 0.1046 0.105143130395 0.104494777320 0.104494777289 0.104494777289
0.5 0.0833 0.083748729977 0.083300228592 0.083300228332 0.083300228332

0.4 0.1 0.1194 0.119563178994 0.119374160613 0.119374160613 0.119374160613
0.2 0.0859 0.086351287057 0.085925168149 0.085925168149 0.085925168149
0.3 0.0641 0.064969735925 0.064079763378 0.064079763377 0.064079763377
0.4 0.0495 0.050308680850 0.049312783009 0.049312782995 0.049312782995
0.5 0.0394 0.040068826105 0.039480432439 0.039480432335 0.039480432335

0.5 0.1 0.0543 0.055006822209 0.054252883744 0.054252883744 0.054252883744
0.2 0.0390 0.041220738923 0.039039843265 0.039039843265 0.039039843265
0.3 0.0291 0.032448207734 0.029136702982 0.029136702982 0.029136702982
0.4 0.0225 0.025991804960 0.022499022345 0.022499022340 0.022499022340
0.5 0.0179 0.020636326976 0.017899977204 0.017899977138 0.017899977138

4 Results and discussion
In this section we present solutions of equations ()-() along with the boundary condi-
tions () using the SLM iteration scheme. Tables  and  give a comparison between the
present results and Khan and Pop [] for the reduced Nusselt and Sherwood numbers
respectively. There is a good agreement between the two sets of results with the SLM hav-
ing converged at the fourth order up to eleven decimal places. The velocity components
f (η) and f ′(η) are plotted in Figures (a) and (b) for different values of the magnetic field
parameterM. As is nowwell known, the velocity decreases with increases in themagnetic
field parameter due to an increase in the Lorentz drag force that opposes the fluid motion.
Figures (a) and (b) show the effect of the thermophoresis parameter on the tempera-

ture and mass volume fraction profiles. The thermophoretic force generated by the tem-
perature gradient creates a fast flow away from the stretching surface. In this way more
fluid is heated away from the surface, and consequently, as Nt increases, the temperature
within the boundary layer increases. The fast flow from the stretching sheet carries with it
nanoparticles leading to an increase in themass volume fraction boundary layer thickness.
Figures (a) and (b) show the effect of the Lewis number Le, and the Dufour-solutal

Lewis number Ld on the species concentration in the boundary layer. The concentration
profiles significantly contract as the Lewis number increases. The effect of the random
motion of the nanoparticles suspended in the fluid on the temperature and nanoparticle
volume fraction is shown in Figures (a) and (b). As expected, the increased Brownian
motion of the nanoparticles carries with it heat and the thickness of the thermal bound-
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Table 2 Comparison of results for the reduced Sherwood number –φ(0) withM = 0, Pr = 10,
Le = 10

Nb Nt –φ(0)

Khan and Pop [15] Present results

Ord 2 Ord 4 Ord 5 Ord 6

0.1 0.1 2.1294 2.127980595220 2.129393826738 2.129393826738 2.129393826738
0.2 2.2740 2.269600795082 2.274021155237 2.274021155237 2.274021155237
0.3 2.5286 2.522442790300 2.528634341968 2.528634341973 2.528634341973
0.4 2.7952 2.789547614977 2.795197381386 2.795197381518 2.795197381518
0.5 3.0351 3.031692110921 3.035086541257 3.035086542806 3.035086542806

0.2 0.1 2.3819 2.381135534775 2.381870765082 2.381870765082 2.381870765082
0.2 2.5152 2.513872542870 2.515221791508 2.515221791508 2.515221791508
0.3 2.6555 2.654621334344 2.655461783297 2.655461783300 2.655461783300
0.4 2.7818 2.782448136707 2.781787213285 2.781787213347 2.781787213347
0.5 2.8883 2.891077315907 2.888289878800 2.888289879328 2.888289879328

0.3 0.1 2.4100 2.409868561539 2.410018897249 2.410018897249 2.410018897249
0.2 2.5150 2.515064990923 2.514994504216 2.514994504216 2.514994504216
0.3 2.6088 2.609550527921 2.608824244439 2.608824244440 2.608824244440
0.4 2.6876 2.689475214512 2.687604301826 2.687604301841 2.687604301841
0.5 2.7519 2.755453212842 2.751842541500 2.751842541544 2.751842541544

0.4 0.1 2.3997 2.399691610597 2.399650250624 2.399650250624 2.399650250624
0.2 2.4807 2.480840530130 2.480738445269 2.480738445269 2.480738445269
0.3 2.5486 2.548758207066 2.548611975329 2.548611975329 2.548611975329
0.4 2.6038 2.604477947716 2.603832566300 2.603832566297 2.603832566297
0.5 2.6483 2.650218941812 2.648243871234 2.648243871122 2.648243871122

0.5 0.1 2.3836 2.383468564586 2.383571426509 2.383571426509 2.383571426509
0.2 2.4468 2.446168708773 2.446806984545 2.446806984545 2.446806984545
0.3 2.4984 2.497045285759 2.498378497565 2.498378497565 2.498378497565
0.4 2.5399 2.538409035362 2.539849811783 2.539849811777 2.539849811777
0.5 2.5731 2.572599764241 2.573109330795 2.573109330658 2.573109330658

Figure 1 Effect of the magnetic fieldM on the velocity components (a) f (η) and (b) f ′(η).

ary layer increases. The Brownian motion of the nanoparticles increases thermal trans-
port which is an important mechanism for the enhancement of thermal conductivity of
nanofluids. However, we note that increasing the Brownian motion parameter leads to
a clustering of the nanoparticles near the stretching sheet. An increase in the Brownian
motion of the nanoparticles leads to a decrease in the mass volume fraction profiles.
Figures (a) and (b) show the temperature profiles for several values of the Prandtl

number Pr and mass volume fraction profile for several values of the modified Dufour
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Figure 2 Effect of the thermophoresis parameter Nt on the temperature θ and nanoparticle φ
profiles.

Figure 3 Effect of the Lewis number Le and the Dufour-solutal Lewis number Ld on concentration
profiles.

Figure 4 Effect of the Brownian motion parameter Nb on the temperature and nanoparticle volume
fraction profiles.
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Figure 5 Effect of Pr and Nd on the temperature θ , profiles respectively.

Figure 6 Effect of Nt, Le, Pr, Nd andM on the heat transfer coefficient Nur.

number Nd. The temperature profiles decrease as the Prandtl number increases since, for
high Prandtl numbers, the flow is governed by momentum and viscous diffusion rather
than thermal diffusion. On the other hand, the thickness of the mass volume fraction
boundary layer increases with an increase in Nd.
Figures (a) and (b) show the effects of the thermophoresis parameter Nt, the Lewis

number Le, the magnetic field parameter M, the Prandtl number Pr and the modified
Dufour number Nd on the wall heat and mass fraction transfer rates. It can be seen that
the thermal boundary layer thickness increases when the thermophoresis parameter Nt
increases, thus decreasing the reduced Nusselt number. However, increasing the Lewis
number Le leads to a decrease in the reduced Nusselt number. On the other hand, the
results show that the reducedNusselt number increases with increasing Prandtl numbers.
Increasing both the magnetic field parameter M and the modified Dufour parameter Nd
leads to an increase in the thermal boundary layer thickness, thus reducing the Nusselt
number.
Figures (a) and (b) show the effects of the Dufour-solutal Lewis number Ld and the

nanofluid Lewis number Ln on the reduced Nusselt number Nur as the Brownian motion
parameter Nb increases. We note a decrease in the reduced Nusselt number when Ln
increases, and an increase in the reduced Nusselt number when Ld increases.
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Figure 7 Effect of the Dufour-solutal Lewis number Ld and the nanofluid Lewis number Ln on the
reduced Nusselt number Nur.

Figure 8 Effect of the Lewis number Le, the thermophoresis parameter Nt and the Brownian motion
parameter Nb on (a) the reduced Nusselt number –θ ′(0) and (b) the local Sherwood number –S′(0).

Figures (a) and (b) show the graphs of –θ ′() and S′() plotted against the Dufour-
solutal Lewis number Ld for different values of the parametersNt,Nb and Le. We observe
that –θ ′() increases in the absence of the Brownian motion and the thermophoresis pa-
rameter while –θ ′() decreases in the presence of Brownian motion and thermophoresis
parameters. An increase in –S′() is observed in the presence of both the Brownian mo-
tion and the thermophoresis parameter. Figures (a) and (b) show the effect of increasing
Nt and Nb respectively on the reduced Sherwood number –φ().

5 Conclusions
A numerical study of the magneto-nanofluid boundary layer flow over a stretching sheet
was carried out. We determined the effects of various parameters on the fluid proper-
ties as well as on the heat, and the regular and nano mass transfer rates. We have shown
that increasing the magnetic field parameter M tends to retard the fluid flow within the
boundary layer. The effects of the Prandtl number, the Lewis number, the Brownian mo-
tion parameter, the thermophoresis parameter, the nanofluid Lewis number, the modified
Dufour parameter and the Dufour-solutal Lewis number on the heat, regular and nano
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Figure 9 Effect of the nanofluid Lewis number Ln, the thermophoresis parameter Nt and the
Brownian motion parameter Nb on the nanofluid Sherwood number –φ′(0).

mass transfer coefficients and fluid flow characteristics have been studied.We have shown
inter alia that:
– the thermal boundary layer thickness increases with the thermophoresis parameter;
– increasing the Lewis number reduces the heat transfer coefficient;
– the heat transfer coefficient increases in the absence of the Brownian motion and the

thermophoresis parameter and decreases in the presence of Brownian motion and
thermophoresis parameters.
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