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Abstract

We study the effect of thermophoresis on boundary layer magneto-nanofluid flow
over a stretching sheet. The model includes the effects of Brownian motion and
cross-diffusion effects. The governing partial differential equations are transformed to
a system of ordinary differential equations and solved numerically using a spectral
linearisation method. The effects of the magnetic influence number, the Prandtl
number, Lewis number, the Brownian motion parameter, thermophoresis parameter,
the modified Dufour parameter and the Dufour-solutal Lewis number on the fluid
properties as well as on the heat, regular and nano mass transfer coefficients are
determined and shown graphically.

1 Introduction
Most common fluids such as water, ethylene, glycol, toluene or oil generally have poor heat
transfer characteristics owing to their low thermal conductivity. A recent technique to im-
prove the thermal conductivity of these fluids is to suspend nano-sized metallic particles
such as aluminum, titanium, gold, copper, iron or their oxides in the fluid to enhance its
thermal properties, Choi [1]. The enhancement of thermal conductivity in nanofluids has
been studied by, among others, Kakac and Pramuanjaroenkij [2], Choi et al. [3], Masuda
et al. [4], Eapen et al. [5] and Fan and Wang [6]. Nield and Kuznetsov [7] analyzed the be-
haviour of boundary layer flow on the Chen-Minkowycz problem in a porous layer satu-
rated with a nanofluid. Nield and Kuznetsov [8] investigated thermal instability in a porous
medium saturated with nanofluid using the Brinkman model. The model incorporated
the effects of Brownian motion and thermophoresis of nanoparticles. They found that the
critical thermal Rayleigh number can be reduced or increased by a substantial amount de-
pending on whether the nanoparticle distribution is top-heavy or bottom-heavy. Aziz et
al. [9] studied steady boundary layer flow past a horizontal flat plate embedded in a porous
medium filled with a water-based nanofluid containing gyrotactic microorganisms. Cheng
[10] investigated the behaviour of boundary layer flow over a horizontal cylinder of elliptic
cross section in a porous medium saturated with a nanofluid. Chamkha et al. [11] investi-
gated the non-similar solutions for natural convective boundary layer flow over a sphere
embedded in a porous medium saturated with a nanofluid.

During the last few decades, fluid flow over a stretching surface has received consid-
erable attention because of its engineering applications such as in melt-spinning, hot
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rolling, wire drawing, glass-fiber production and the manufacture of polymer and rub-
ber sheets, Altan and Gegel [12], Fisher [13], and Tidmore and Klein [14]. Nanofluid flow
over a stretching surface has been investigated by many researchers. The first study on a
stretching sheet in nanofluids was published by Khan and Pop [15]. Makinde and Aziz [16]
performed a numerical study of boundary layer flow over a linear stretching sheet. Both
Brownian motion and thermophoresis effects on the transport equations were presented.
They reported that stronger Brownian motion and thermophoresis lead to an increase in
the rate of heat transfer. However, the opposite was observed in the case of the rate of
mass transfer. Recent studies in this area include those of Narayana and Sibanda [17] and
Kameswaran et al. [18].

Magnetic nanofluids have numerous uses or potential applications in engineering and
medicine. Using magnetic nanofluids has the potential to regulate the flow rate and heat
transfer by controlling the thermo-magnetic convection current and the fluid velocity (see
Shima et al. [19], Ganguly et al. [20]). The effects of a magnetic field on nanofluid flow over
a stretching sheet have been investigated by, among others, Bachok et al. [21] and Hanad
and Ferdows [22].

The aim of this study is to analyse Dufour and Soret effects in a magneto-nanofluid
flow over a stretching sheet. In addition, we study Brownian motion and thermophore-
sis effects using a spectral linearisation method to obtain numerical solutions of the mo-
mentum, energy, concentration and mass fraction equations. The successive linearisation
method (SLM) is an accurate method for solving non-linear coupled equations (see [23—
25]). Recent studies such as [26-28] have suggested that the SLM is accurate and con-
verges rapidly to the numerical results when compared to other semi-analytical methods
such as the Adomian decomposition method, the variational iteration method and the

homotopy perturbation method.

2 Mathematical formulation

Consider two-dimensional nanofluid flow over a linearly stretching sheet with velocity
u,, = ax, where a is a real positive number. The coordinate system is assumed to define the
x-axis along the surface of the sheet and y is the coordinate normal to the surface of the
sheet. The surface temperature T, and nanoparticle concentration ¢,, are higher than the
ambient values T, and ¢, respectively. The governing equations for the problem can be

written in the form
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with the boundary conditions

v=0, u = u,(=ax), T=T,, C=C, and (ﬁ:(ﬁw ony=0,
(6)

u—0, T — T, C— Cyx and (;3—>¢300 when y — o0,

where u and v are the velocity components along the x and y direction respectively, o is
the electrical conductivity, By is magnetic field flux density, v kinematic viscosity of the
base fluid, « is the thermal diffusivity of the porous medium, Dy is the Brownian diffusion
coefficient, Dy is thermophoresis diffusion coefficient, D¢y and D¢ are the Soret and
Dufour diffusivities, Ds is the solutal diffusivity, T is the fluid temperature, C is the solutal
concentration, ¢A> is the nanoparticle volume fraction, (oc)r and (poc), are the heat capacity
of the fluid and the effective heat capacity of the nanoparticle material respectively, 7 is a
parameter defined by (oc)s/(poc)p. Using the similarity variables

a 1 T-Ts
n :J’\/;; Y =(av)2f(n), 0(n) = T T

c-C b-¢ : 7
S(n) = m’ o(n) = m,

equations (1)-(5) reduce to the following non-similar forms where primes denote differ-
entiation with respect to n:

f/// +ﬁ// _f/2 _Mf/ — 0, (8)

0" + Prf0' + PrNbO'¢’ + PrNto"* + NdS" = 0, 9)

S" + LefS + Ldo" = 0, (10)
Nt

" L / _9// - 0, ].1

" +Lnfd' + b (11)

subject to the boundary conditions

f=0, f'=1, 6=1, S=1, ¢=1 atn=0,
(12)
f =0, 6—0, S—0, ¢—>0 asn— oo.

The parameters in equations (8)-(11) are the magnetic number M, the Prandtl number Pr,
the Lewis number Le, the Brownian motion parameter Nb, the thermophoresis parameter
Nt, the nanofluid Lewis number Lz, the modified Dufour parameter Nd and the Dufour-
solutal Lewis number Ld. These parameters are defined as

32 D Aw_ b

M=u, Pr:K, Le:i, Nb:M’
ora o Dg v

Dr(T,, — T

Nt = M, Lu= 1,
Tool) DB

Nd = DTC(CW_COO) _ DCT(TW_ Too)

a(Ty, - Ty) ’ Ds(Cy, — Co) )

The parameters of engineering interest in heat and mass transport problems are the local
Nusselt number Nu,, the Sherwood number Sk, and the nanofluid Sherwood number
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Shy,,. These parameters characterise the wall heat, the regular and nano mass transfer
rates, respectively, and are defined by

- 9T 1
Nogy= — (—) = _Re26'(0),
Tw—Te \ 3y =0
- aC L
Shry=—— (22} = _ReZs(0),
Co—Coo \ 0y /|0
_ 9é 1
Sty = ——— (—¢> = —ReZ¢'(0).
¢w - ¢oo ay y=0

Following Khan and Aziz [29], the physical parameters of interest are the reduced Nus-
selt Nur, the Sherwood number Sk and the reduced Sherwood Shr defined as

1 1 ~ 1
Nur = Nu,/Re2, Shr = Sh,,/Re; and Sh=Sh/Re}.

3 Method of solution

The system of equations (8)-(11) together with the boundary conditions (12) were solved
using the successive linearisation method (SLM) (see [25, 26, 30]). The unknown func-
tions f (1), 0(n), S(n) and ¢(n) are expanded as

S =fi) + L0 Enln), - 001) = 6:0) + 32,,5 Om() (13)
S(m) = Sim) + Xlo Sl () = din) + 3,00 Prn(),

where f;, 6;, S; and ¢; are unknown and F,,, ©®,,, §m and ®,, (m > 1) are successive ap-
proximations that are obtained by recursively solving the linear forms of the equation sys-
tem that results from substituting (13) into equations (8)-(11). In particular, the linearised
equations to be solved are

F" + a1;.F] + az;1F} + az; 1 F; =111, (14)
O +b1i10) + by 1 Fi + bs,i_1§§’ +bai1 P =191, (15)
E;’ + Cl,i-1§; +c,i1Fi +03,;0] =131, (16)
D) +dh;i1 D) + doiaFi + ds i 10] =141, (17)

subject to the boundary conditions
F(0) = F}(0) = F{(00) = ©,(0) = ©;(00) = 5,(0) = S;(00) = @(0) = P;(00) =0, (18

where coefficient parameters ay;_1, bx,i_1, Ckic1, diio1 (k=1,...,4)and ;1 (=1,...,4) are
known constants. The initial guesses Fy(1), ®¢(n), So(n) and ®o(n) are chosen to satisfy
the boundary conditions

Fo()=0,  Fym=1, O =1  Sen)=1,  do(n)=1 atn=0,
Fy(n) = 0, Oo(n) — 0, So(n) = 0, ®o(n) >0 asn— oo

(19)
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and are chosen as
Fo(p)=1-€", Oy =e", Sp=e, D) =e. (20)

Starting from the initial guesses and iterating M, times, the functions f(n), 8(n) and ¢(n)

are written as

M M
)~ Eap), 6~ Oul),
m=0 m=0 (21)
My My
S~ Sum), P Y Dyu(n),
m=0 m=0

where M; is the order of the SLM approximation. Equations (14)-(17) are solved using the
Chebyshev spectral collocation method. The method is based on the Chebyshev polyno-
mials defined on the interval [-1,1]. We first transform the domain of solution [0, 00) into
the domain [-1,1] using the domain truncation technique where the problem is solved in
the interval [0, L] where L is a scaling parameter used to invoke the boundary condition

at infinity. This is achieved by using the mapping

1
%z—g; , -1<&<l (22)

We discretise the domain [-1,1] using the Gauss-Lobatto collocation points given by
oo
=cos —, =0,1,2,...,N, 23
§ N/ (23)

where N is the number of collocation points used. The functions F;, ©;, S;and ®; fori>1

are approximated at the collocation points as follows:

F(E) ~ Yo FEDTE),  0uE) ~ YN, 0uE) Tr(E),

g ko j=0,1,...,.N, (24)
Si(6) ~ Do SiE) Tk (§)), i) ~ Yo Pilen) Tr(E),

where T} is the kth Chebyshev polynomial given by
Ti(&) = cos [k cos! (5)]. (25)

The derivatives of the variables evaluated at the collocation points & = &; are represented

as

G =S DLFE), Gt = Y3 DO,

d’() j=0,1,...,N, (26)
ar - Zk:o jka(gk), d_n' = Zkzo /kCDi(ék):
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where r is the order of differentiation and D = %D with D being the Chebyshev spectral
differentiation matrix (see, for example, [31-33]), whose entries are defined as

2N%+41
Dy = 6+‘,/
¢ (—1)+tk . .
Djk:i(gj_ygk, j#kj,k=0,1,...,N, o
_ & — _
Du=-g, k=12...N-1,
2N%+1
Dnn = -=¢.

Substituting equations (22)-(26) into equations (14)-(17) leads to the matrix equation
A X; =Ry, (28)

where A; ; isa (4N +4) x (4N +4) square matrix and X; and R;_; are (4N +4) x 1 column

vectors defined by
An Ap A Au F; ryi-1
A= Ay Ay Axz An , X; = sz ) R = ryi1 (29)
Az Az Az Az S r3;1
Ay Agp A A D; Igi1

The functions and parameters in equation (29) are

= [0 i€ filen-n) fien)]

®; = [6:(&0), 6:(51), ..., 0:(En1), 0; (SN)]T,

8 = [Si€0), 618 Silen-), Sien)]

®; = [¢i(&0), di(&1), -, ilEn-1), Di(En) ] .

ryi = [ (Eo)s s (61, o i1 (Enca), rl,i—l(SN)]T:

121 = [r2,i-1(80), r2ic1(E1)s - o 71 (Enca), Vz,i—1(3§N)]T,

r3;1= [i”sl 160),73,i-1(51), - -’rB,i—l(EN—l):rS,i—l(EN)]T¢

14,1 = [r3i1(50), r3,i-1(81), - -;"3,171(51\[71),1”3,1'71(5N)]T,

Ay =D°+a;; D*+ay; 1D+ag; ], Ay =[0], Az =1[0], A =1[0],

Ay =byial,  Ap=D?+b;; 4D, Ay =b3; D’ Ay =bsiD,

Az = ¢,], Asy = ¢34 D?, Asz =D?+¢.D, Azq = [0],

Ay =doiql, Ay = d3;4D?, Aga =[0], Ay =D+ dy,iD.
In the definitions above, T stands for transpose, ay;—1 (k =1,...,3), b1 (k=1,...,4),
Cric1 (k=1,...,3), d;1 (k=1,...,3) and rx; 3 (k =1,...,4) are diagonal matrices of order

(N +1) x (N +1), Lis an identity matrix of order (N + 1) x (N +1) and [0] is a zero matrix
of order (N +1) x (N + 1). The solution is obtained as

X;=A R, . (30)

Page 6 of 13


http://www.boundaryvalueproblems.com/content/2013/1/136

Awad et al. Boundary Value Problems 2013, 2013:136

http://www.boundaryvalueproblems.com/content/2013/1/136

Table 1 Comparison of results for the reduced Nusselt number -6(0) with M=0, Pr=10,

Le=10
Nb Nt -6(0)
Khan and Pop [15]  Present results
Ord 2 Ord 4 Ord 5 Ord 6

0.1 0.1 0.9524 0.954110803008  0.952376830835  0.952376830835  0.952376830835
02 06932 0.696282777163  0.693174335745  0.693174335745  0.693174335745
03 05201 0.523772737719 0520079246363  0.520079246361 0.520079246361
04 04026 0406474865249 0402579651548  0.402579651503  0.402579651503
05 03211 0.325192006813  0.321057339674  0.321057339175  0.321057339175

0.2 0.1 0.5056 0.507610155261 0.505578818179  0.505578818179  0.505578818179
0.2 03654 0.367853633248  0.365368345283  0.365368345283  0.365368345283
03 02731 0.275387707176  0.273079280934  0.273079280931 0.273079280931
04 02110 0.213054455507  0.210961536564  0.210961536512  0.210961536512
05 0.1681 0.170080726148  0.168004798568  0.168004798105  0.168004798105

03 0.1 0.2522 0.253142109948  0.252145911886  0.252145911886  0.252145911886
02 01816 0.182448890243  0.181611610633  0.181611610633  0.181611610633
03 01355 0.136247585715  0.135548634738  0.135548634736  0.135548634736
04 0.1046 0.105143130395  0.104494777320  0.104494777289  0.104494777289
0.5 00833 0.083748729977  0.083300228592  0.083300228332  0.083300228332

04 01 0.1194 0.119563178994  0.119374160613  0.119374160613  0.119374160613
0.2 00859 0.086351287057  0.085925168149  0.085925168149  0.085925168149
03 0.0641 0.064969735925  0.064079763378  0.064079763377  0.064079763377
04  0.0495 0.050308680850  0.049312783009  0.049312782995  0.049312782995
05 0.03% 0.040068826105  0.039480432439  0.039480432335  0.039480432335

0.5 0.1 0.0543 0.055006822209  0.054252883744  0.054252883744  0.054252883744
0.2 0.0390 0.041220738923  0.039039843265  0.039039843265  0.039039843265
03  0.0291 0.032448207734  0.029136702982  0.029136702982  0.029136702982
04 00225 0.025991804960  0.022499022345  0.022499022340  0.022499022340
05 00179 0.020636326976  0.017899977204  0.017899977138  0.017899977138

4 Results and discussion
In this section we present solutions of equations (8)-(11) along with the boundary condi-
tions (12) using the SLM iteration scheme. Tables 1 and 2 give a comparison between the
present results and Khan and Pop [15] for the reduced Nusselt and Sherwood numbers
respectively. There is a good agreement between the two sets of results with the SLM hav-
ing converged at the fourth order up to eleven decimal places. The velocity components
f(n) and f'(n) are plotted in Figures 1(a) and 1(b) for different values of the magnetic field
parameter M. As is now well known, the velocity decreases with increases in the magnetic
field parameter due to an increase in the Lorentz drag force that opposes the fluid motion.
Figures 2(a) and 2(b) show the effect of the thermophoresis parameter on the tempera-
ture and mass volume fraction profiles. The thermophoretic force generated by the tem-
perature gradient creates a fast flow away from the stretching surface. In this way more
fluid is heated away from the surface, and consequently, as Nt increases, the temperature
within the boundary layer increases. The fast flow from the stretching sheet carries with it
nanoparticles leading to an increase in the mass volume fraction boundary layer thickness.
Figures 3(a) and 3(b) show the effect of the Lewis number Le, and the Dufour-solutal
Lewis number Ld on the species concentration in the boundary layer. The concentration
profiles significantly contract as the Lewis number increases. The effect of the random
motion of the nanoparticles suspended in the fluid on the temperature and nanoparticle
volume fraction is shown in Figures 4(a) and 4(b). As expected, the increased Brownian

motion of the nanoparticles carries with it heat and the thickness of the thermal bound-
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Table 2 Comparison of results for the reduced Sherwood number -¢(0) with M= 0, Pr=10,

Le=10
Nb Nt -¢(0)
Khan and Pop [15]  Present results
Ord 2 Ord 4 Ord 5 Ord 6
0.1 0.1 21294 2127980595220  2.129393826738  2.129393826738  2.129393826738
02 22740 2269600795082  2.274021155237  2.274021155237  2.274021155237
03 25286 2522442790300  2.528634341968  2.528634341973  2.528634341973
04 27952 2789547614977 2795197381386  2.795197381518  2.795197381518
05  3.0351 3.031692110921 3.035086541257  3.035086542806  3.035086542806
02 01 2.3819 2381135534775  2.381870765082  2.381870765082  2.381870765082
02 25152 2513872542870 2515221791508  2.515221791508  2.515221791508
03 26555 2654621334344 2655461783297  2.655461783300  2.655461783300
04 27818 2782448136707  2.781787213285  2.781787213347  2.781787213347
05 28883 2.891077315907  2.888289878800  2.888289879328  2.888289879328
03 01 24100 2409868561539 2410018897249 2410018897249 2410018897249
02 25150 2515064990923 2514994504216 2514994504216  2.514994504216
03 26088 2609550527921 2608824244439 2608824244440 2608824244440
04 26876 2689475214512 2687604301826  2.687604301841 2.687604301841
05 27519 2755453212842  2.751842541500  2.751842541544  2.751842541544
04 01 2.3997 2399691610597  2.399650250624  2.399650250624  2.399650250624
02 24807 2480840530130 2480738445269 2480738445269 2480738445269
03 25486 2548758207066  2.548611975329  2.548611975329  2.548611975329
04 26038 2604477947716 2603832566300  2.603832566297  2.603832566297
05 26483 2650218941812 2648243871234  2.648243871122  2.648243871122
05 01 2.3836 2383468564586  2.383571426509  2.383571426509  2.383571426509
02 24468 2446168708773 2446806984545 2446800984545 2446806984545
03 24984 2497045285759 2498378497565 2498378497565  2.498378497565
04 25399 2538409035362 2539849811783  2.539849811777  2.539849811777
05 25731 2572599764241 2573109330795 2573109330658  2.573109330658
1.2 1 T
0.94) —M=0 ||
1t A ---M=2
—mM=0 0'8’?:. -~ M=5
o8l ---M=2 07y -~ M=10
o M=35 0.6f M
§ o6 [ o ________C _ l\il f1_0_ g 0.5 ill“
= o7 oAy
’ 0.4F vy
L U U QU U D QU U g |
0.4} i, 03 v\‘\‘
R W
02ff 020 =i
0.1 SO
00 2 4 é 8 1b 12 1‘4 16 00 1‘ uafas é- 4 6 7
n n
(a) (b)
Figure 1 Effect of the magnetic field M on the velocity components (a) f() and (b) f'(n).

ary layer increases. The Brownian motion of the nanoparticles increases thermal trans-

port which is an important mechanism for the enhancement of thermal conductivity of

nanofluids. However, we note that increasing the Brownian motion parameter leads to

a clustering of the nanoparticles near the stretching sheet. An increase in the Brownian

motion of the nanoparticles leads to a decrease in the mass volume fraction profiles.

Figures 5(a) and 5(b) show the temperature profiles for several values of the Prandtl

number Pr and mass volume fraction profile for several values of the modified Dufour
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(a) (b)
Figure 2 Effect of the thermophoresis parameter Nt on the temperature § and nanoparticle ¢
profiles.
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Figure 3 Effect of the Lewis number Le and the Dufour-solutal Lewis number Ld on concentration
profiles.
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Figure 4 Effect of the Brownian motion parameter Nb on the temperature and nanoparticle volume
fraction profiles.
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Figure 5 Effect of Pr and Nd on the temperature 0, profiles respectively.
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Figure 6 Effect of Nt, Le, Pr, Nd and M on the heat transfer coefficient Nur.

number Nd. The temperature profiles decrease as the Prandtl number increases since, for
high Prandtl numbers, the flow is governed by momentum and viscous diffusion rather
than thermal diffusion. On the other hand, the thickness of the mass volume fraction
boundary layer increases with an increase in Nd.

Figures 6(a) and 6(b) show the effects of the thermophoresis parameter N¢, the Lewis
number Le, the magnetic field parameter M, the Prandtl number Pr and the modified
Dufour number Nd on the wall heat and mass fraction transfer rates. It can be seen that
the thermal boundary layer thickness increases when the thermophoresis parameter Nt
increases, thus decreasing the reduced Nusselt number. However, increasing the Lewis
number Le leads to a decrease in the reduced Nusselt number. On the other hand, the
results show that the reduced Nusselt number increases with increasing Prandtl numbers.
Increasing both the magnetic field parameter M and the modified Dufour parameter Nd
leads to an increase in the thermal boundary layer thickness, thus reducing the Nusselt
number.

Figures 7(a) and 7(b) show the effects of the Dufour-solutal Lewis number Ld and the
nanofluid Lewis number Lz on the reduced Nusselt number Nur as the Brownian motion
parameter Nb increases. We note a decrease in the reduced Nusselt number when Ln

increases, and an increase in the reduced Nusselt number when Ld increases.
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Figure 7 Effect of the Dufour-solutal Lewis number Ld and the nanofluid Lewis number Ln on the
reduced Nusselt number Nur.

3.5 T T T T 3

=) : S G
< 15} M=02 S ;Il;”lﬁ
[ —Nb=Nt=00 Le=I Pr=10 [ Ni= 05
+Nb=Nt=00 Le=10 Nd = 0.5 R :
1+ 4 Ln =2
—Nb=Nt=05 Le=1 Ln=2 4l
+Nb=Nt=05 Le=10
0.5} i ——Nb=Nt=0.0 Le=I
+Nb=Nt=0.0 Le=10
— 0000 -2r —Nb=Nt=0.5 Le=I
OF o 1 ~Nb=Nt=05 Le=10
-05 ‘ ; ‘ ‘ -3 ; s ‘ ‘
0 02 0.4 0.6 0.8 1 0 02 0.4 0.6 0.8 1
Ld Ld
(a) (b)

Figure 8 Effect of the Lewis number Le, the thermophoresis parameter Nt and the Brownian motion
parameter Nb on (a) the reduced Nusselt number -0'(0) and (b) the local Sherwood number -S'(0).

Figures 8(a) and 8(b) show the graphs of —6’(0) and §’(0) plotted against the Dufour-
solutal Lewis number Ld for different values of the parameters N¢, Nb and Le. We observe
that —6'(0) increases in the absence of the Brownian motion and the thermophoresis pa-
rameter while —6'(0) decreases in the presence of Brownian motion and thermophoresis
parameters. An increase in —S'(0) is observed in the presence of both the Brownian mo-
tion and the thermophoresis parameter. Figures 9(a) and 9(b) show the effect of increasing
Nt and Nb respectively on the reduced Sherwood number —¢(0).

5 Conclusions

A numerical study of the magneto-nanofluid boundary layer flow over a stretching sheet
was carried out. We determined the effects of various parameters on the fluid proper-
ties as well as on the heat, and the regular and nano mass transfer rates. We have shown
that increasing the magnetic field parameter M tends to retard the fluid flow within the
boundary layer. The effects of the Prandtl number, the Lewis number, the Brownian mo-
tion parameter, the thermophoresis parameter, the nanofluid Lewis number, the modified
Dufour parameter and the Dufour-solutal Lewis number on the heat, regular and nano
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(®)

Figure 9 Effect of the nanofluid Lewis number Ln, the thermophoresis parameter Nt and the
Brownian motion parameter Nb on the nanofluid Sherwood number -¢’(0).

mass transfer coefficients and fluid flow characteristics have been studied. We have shown
inter alia that:
— the thermal boundary layer thickness increases with the thermophoresis parameter;
— increasing the Lewis number reduces the heat transfer coefficient;
— the heat transfer coefficient increases in the absence of the Brownian motion and the
thermophoresis parameter and decreases in the presence of Brownian motion and

thermophoresis parameters.
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