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Abstract
Recently, the specific problems arising to mobile robots are the following:
determining the position and orientation of the robot on the field, planning an
optimal path of motion and stationary or moving objects avoidance.
This paper realizes a computational analysis of the Cauchy problem associated to a

mobile robot kinematics. The ‘phase portrait’ graphical tool of the mathematical soft
MAPLE11 points out the influence of the initial conditions: the initial velocities of the
driving (left and right) wheels of the robot on the robot trajectory. Considering a pair
of two simulation cases for the initial conditions brings a good reliability of the
analysis.
MSC: 68T40; 70B15; 70B10; 37M05
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1 Introduction
The basic goal of this work is to get a consistent computational analysis of the trajectory of
a two-wheeled differential robot. This implies a few levels: analytical, computational and
experimental. For the moment, we shall focus on the computational level.
The mobile robot placing in a workspace represents the definition of the position

and orientation possibilities that can be achieved in that space. Controllability of a mo-
bile robot defines the possible trajectories from its workspace. In order to move in the
workspace, themobile robots need certainmechanical components to allowprecisemove-
ment (or movement would be chaotic). Currently, there are several components, includ-
ing wheel, track and legs. The most popular designs are the wheeled mobile robots. The
wheeledmobile robots are also better controlled than other types of robots. Disadvantages
of wheeled robots are that they cannot navigate well over obstacles such as rocky terrain,
sharp slopes, or areas with low friction. Usually, robots of this type are used during com-
petitions (e.g., a soccer game, a sumo fight etc.) and are most popular in the consumer
market. Robots can have any number of wheels, but three wheels are sufficient for static
and dynamic balance. Additional wheels can add to balance; however, additional mecha-
nisms will be required to keep all the wheels on the ground when the terrain is not flat.
Mobile robot kinematics is defined by the number, type and arrangement of the wheel

mobile platform. Combination and arrangement of these different types of wheels deter-
mine the type of mobile robot kinematic model. The most popular design among the mo-
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Figure 1 Kinematical scheme of the
two-wheeled mobile robot.

bile robots is a two-wheeled robot with differential drive. This differential motion mech-
anism has the following advantages:
- ensures smooth motion;
- achieved by propelling and directing by the angular speed difference between the
wheels.

Besides the advantages mentioned above, the mechanism of differential motion has
some disadvantages:
- the transverse displacements impossibility;
- the risk of slipping.
A differential two-wheeled robot is a mobile robot whose movement is based on two

separately driven wheels placed on either side of the robot body. It can thus change its
direction by varying the relative rate of rotation of its wheels and hence does not require an
additional steering motion. One or more free wheels (or ‘castor’ wheels) assure the robot
equilibrium. Each castor wheel is independently mounted on a vertical non-drive axis of
the body and it is automatically and freely aligned on the route as a result of the forces
developed by the two ‘drive wheels’. If both wheels are driven in the same direction and
at the same speed, the robot will go in a straight line. Otherwise, depending on the speed
of rotation and its direction, the centre of rotation may fall anywhere in the line that joins
the two wheels. Since the direction of the robot is dependent on the rate and direction
of rotation of the two driven wheels, these quantities should be sensed and controlled
precisely. This usually creates some problem. If both wheels are turned with equal speed
in opposite directions, the robot will rotate about the central point of the axis.
In what follows, a few mechanisms found in the structure of the mobile robots are pre-

sented.
(a) A wide-spread mobile robot is the two-wheeled mobile robot. Its kinematic scheme

is presented in Figure .
An important component present in this structure type is ICR-instantaneous center of

rotation, with R-radius from ICR.
The velocity of each wheel can be varied. The robot must rotate about a point that lies

along the common axis of left and right wheels in order to perform rolling motion. This
point that the robot rotates around is known as the ICR (Instantaneous Center of Rota-
tion).
There are the following three interesting cases concerning the left and right velocities

VL and VR:
. If VL = VR, then R → ∞ and the robot moves in a straight line.
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Figure 2 Synchronous drive robot.

Figure 3 Tricycle drive robot.

. If VL = –VR, then R =  and the robot rotates about the midpoint of the wheel axis.
. If VL = , then the robot rotates about the left wheel and if VR = , then the robot

rotates about the right wheel. In this case R = L
 .

The synchro drive configuration is a popular arrangement of wheels in indoor mobile
robot applications. In a synchronous drive robot, eachwheel is capable of being driven and
steered, as depicted in Figure . Typical configurations have three steered wheels arranged
as vertices of an equilateral triangle oftenmounted by a cylindrical platform.All thewheels
turn and drive in unison [].
A typical tricycle drive robot has three wheels with odometers on the two rear wheels

with steering and power provided through the front wheel (as depicted in Figure ).
The omnidirectional robots are able to move in any direction at any time and they are

also holonomic. They can be realized by either using spherical, castor, or Swedish wheels.
The omnidirectional robot depicted in Figure  is based on three spherical wheels, each
activated by onemotor. In this design, the spherical wheels are suspended by three contact
points, two given by spherical bearings and one by a wheel connected to the motor axle.
This concept provides excellent maneuverability and is simple in design. However, it is
limited to flat surfaces and small loads, and it is quite difficult to find round wheels with
high friction coefficients.
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Figure 4 Omnidirectional drive robot.

2 The kinematic-mathematical model of the two-wheeled differential drive
mobile

In what follows some considerations regarding the mathematical models for a class of
mobile robots, namely two-wheeled differential drive mobile robots, some of the most
utilized mechanical structures in mobile robotics practice, are presented.
In this section the basic mathematical model of the non-slipping and pure-rolling two-

wheeled mobile robot is concisely exposed.
The position and direction of a mobile robot is given by [x, y, θ ]T which consists of the

coordinates x, y of the robot and the angle θ between the orientation of the robot and
the X-axis. According to the motion principle of rigid body kinematics, the motion of a
mobile robot can be described using the formulas () and () below [, ]:

vl = rωl, vr = rωr , ()

ω =
vr – vl
L

, v =
vl + vr


, ()

where ωl is the angular velocity of the left wheel, ωr is the angular velocity of the right
wheel, ω is the angular velocity of the robot center, vl is the velocity of the left wheel, vr is
the velocity of the right wheel, v is the velocity of the robot, r is the radius of the wheel, L
is the distance between the two wheels.
From equations () and (), we obtain

ω =
r
L
(ωr –ωl), ()

v =
r

(ωr +ωl). ()

The dynamic function of the robot is defined as [, ]

⎡
⎢⎣
ẋ
ẏ
θ̇

⎤
⎥⎦ =

⎡
⎢⎣
cos θ 
sin θ 
 

⎤
⎥⎦

[
v
ω

]
. ()

The velocity vector U is defined as [v,ω]T . The posture vector P is defined as [x, y, θ ]T ,
which consists of the coordinate of the robot and the angle between the orientation of the
robot and the X-axis.
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By combining (), () and (), we obtain the relation of the velocity vector U and the
posture vector P associated with the robot kinematics:

ωr =

r
v +

L
r

ω, ωl =

r
v –

L
r

ω. ()

Equations () and () describe the kinematical model of the two-wheeled mobile robot.

3 Methods
In the computational analysis of themobile robot trajectory, some specific and fast tools of
MAPLE soft are used. These tools are generally based on a wide spread numericmethod
- the Fehlberg fourth-fifth order Runge-Kuttamethod - the so-called ‘rkf’ method - with
degree four interpolant [].
A widespread and fast graphical tool is the ‘phase-portrait’ tool. The ‘phase-portrait’ is

a plot builder which realizes the phase-portrait for a system of differential equations. It
is a fast procedure based on specific numeric methods for approximating the solution of
the studied differential system. For the present computational aim, the classical method
of Euler has been chosen, in fact, the ‘forward Euler’ method.
The calling sequence has the following form:

phaseportrait(deqns, vars, trange, inits, options)

The parameters are the following:
deqns - a list or a set of first-order ordinary differential equations, or a single
differential equation of any order;
vars - dependent variable, or a list or a set of dependent variables;
trange - range of the independent variable;
inits - a set or a list of lists; initial conditions for solution curves;
options - (optional) equations of the form keyword = value.

The default method of integration is method = classical[rk]. Other methods can be
specified in the optional equations. Note that because numerical methods are used to
generate plots, the output is subject to the characteristics of the numerical method in use.
In particular, unusual output may occur when dealing with asymptotes of solution curves.
This alsomeans that the initial conditions of the problemmust be given in a standard form,
that is, the function values and all derivatives up to the differential order of the differential
equation at the same point minus one.
By default, plots are produced with boxed axes. In contrast with DEplot tool, this tool

does not produce a direction field constituted by field arrows. This is not possible in D
case, but its role is taken by the ‘scene’ parameter. Below some of the basic parameters of
the procedure are detailed.
The inits parameter must take the form of

[[
x(t) = x, y(t) = y, z(t) = z, . . .

]
,
[
x(t) = x, y(t) = y, z(t) = z, . . .

]
, . . .

]

inits is a list (or a set) of lists, each sublist specifying one group of initial conditions (for
one solution curve).

http://www.boundaryvalueproblems.com/content/2013/1/138
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The ‘scene’ parameter has the following form:

scene = name, name, name

scene specifies the plot to be viewed. For example, scene = [x, y, z] indicates that the plot
of x versus y versus z is to be plotted, with t implicit, while scene = [t, y, z] plots t versus
y versus z (t explicit). This option can also be used to change the order in which to plot
the variables. If vars is entered as a set, there is no default ordering; if entered as a list, the
given ordering is used.
The parameter ‘stepsize’ has the following form:

stepsize = real

and specifies the distance between mesh points to be used in generating the graph. For
trange = a. . .b, the default stepsize value is abs((b – a))/. If the stepsize specified is too
large, the default is used.
In this paper the ‘phase-portrait’ graphical tool is tested in order to get comparative

graphical analysis with other MAPLE tools. This plot tool is appropriate for the proposed
model as it produces an appropriate representation of the trajectory of the studiedmobile.

4 Computational simulations of the kinematic model
4.1 The Cauchy problem associated to the model
From mathematical standpoint, equations () and () represent a system of first-order
differential equations together with its basic parameters.
The Cauchy problem associated to equation () is considered:

⎧⎪⎪⎨
⎪⎪⎩
ẋ = cos θ · v,
ẏ = sin θ · v,
θ̇ = ω

(
x(t), y(t), θ (t)

)
, ()

where the associated initial condition is deduced from the initial velocity of the robot, that
means, from the left and right velocity pairs (vl, vr) given by the relation () above.
For the simplicity of the calculus, we take in the following analysis the notation

θ = z ()

and thus the Cauchy problem becomes

⎧⎪⎪⎨
⎪⎪⎩
ẋ = cos z · v,
ẏ = sin z · v,
ż = ω

(
x(t), y(t), z(t)

)
, ()

where

v =



· vl + 


· vr , ω = –

L

· vl + 
L

· vr . ()
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4.2 Computational modeling in case studies
In this section the results of computational simulations of the mobile robot trajectory
in some specific conditions are presented. These conditions are in agreement with the
experimental simulations recently realized in the University of Craiova in order to analyze
the trajectory of this robot type.
In our experiment, we use a YSR-A mobile robot which is small in size (. cm ×

. cm × . cm) and a black wooden rectangular playground. A host computer controls
the robot by commanding the robot velocities like a radio-controlled car. There are three
different programs included in the YSR-A robot; a program receives commands of the
host computer, the other program counts the numbers of Encoder, and another program
controls the motor’s movement by speed commands from the host computer.
The robot system consists of four parts: micro-controller,motor driver, communication,

and power unit. The functions of the components are the following:
. the communication part: receives communication commands from the host

computer;
. the power part: makes power to operate the motor and micro-controller;
. the micro-controller part: translates the communication commands from the host

computer and makes the control commands of the motor. The micro-controller is
Intel CSA;

. motor part: impresses electricity to the motor as much as wanted by commands of
the motor.

The experimental results obtained with the YSR-A robot are presented in snap-shots
in Figures -. This experiment is filmed by a SAMSUNG Digital Color CCD camera
(SDC-ND) and Figures - are captured from a clip. Following the pictures in their
successive order, it comes easy that the robot trajectory is indeed circular.
The mobile robot trajectory is simulated in an interval of  . . .  time units, divided into

five parts, representing the stages of observation and simulation cases too.
The initial parameters are as follows: the distance between the two wheels L = . cm,

the initial position and orientation for the first stage being (x, y) = (, ), θ = . The
‘phase-portrait’ procedure is used, where the initial conditions at the next stage depend on
the velocities calculated at the precedent stage. For the velocities pair, a few trigonometric
variation functions were tested []. For the present aim, the left and right velocities were
varied in two separate situations:
(a) Case . vr = | · cos( π

·t )|, vl = | · cos( ·π·t )|;
(b) Case . vr = |. · cos( ·π

.·t )|, vl = |. · cos( .·π.·t )|.
We have chosen these combinations, taking into account that the basic trigonometric

functions sin and cos are periodic and their variation is formed by loops. Figures  and 
show the functions for the two cases.
For each of the above cases, the ‘phase-portrait’ procedure was applied step by step for

the Cauchy problem () on the intervals: [, ], [, ], [, ], [, ], [, ]. At each step,
the initial conditions, the values of the velocities pair (vl, vr), were calculated based on the
solution of the differential system () at the preceding step. The ‘scene’ parameter was
chosen [x(t), y(t)] in order to give for the mobile trajectory a ‘seen from above’ image.
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Figure 5 Case 1 for the variation functions of the left and right velocities of the mobile.

Figure 6 Case 2 for the variation functions of the left and right velocities of the mobile.

First there are presented the plots for the first simulation case, in Figures -. Each case
and specific observations are labeled on the figure.
For the second simulation case, the results are presented in Figures -.
In Figures -, the trajectory evolution for the YSR-A robot is presented in snap-shots.

As specified above, the figures exhibit, in their successive order, a circular trajectory.

http://www.boundaryvalueproblems.com/content/2013/1/138
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Figure 7 (vl ,vr) = (8, 4), t = 0. . .4.

Figure 8 (vl ,vr) = (8.2042,13.9871), t = 4. . .8. The trajectory records negative values and seems to be
routed several times.

http://www.boundaryvalueproblems.com/content/2013/1/138
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Figure 9 (vl ,vr) = (6.0254,11.0851), t = 8. . .10. Important modifications of the trajectory.

Figure 10 (vr ,vl) = (11.8371,9.0395), t = 10. . .14.

http://www.boundaryvalueproblems.com/content/2013/1/138
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Figure 11 (vl ,vr) = (14.1873,4.1049), t = 14. . .18. The trajectory seems to be formed by arcs.

Figure 12 (vl ,vr) = (6.7595,2.9357), t = 4. . .8.
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Figure 13 (vl ,vr) = (3.5537,7.6857), t = 8. . .10. Important modification of the trajectory.

Figure 14 (vl ,vr) = (8.1317,9.5000), t = 10. . .14. Special modification in the allure and values of the
trajectory.
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Figure 15 (vl ,vr) = (1.7990,2.9357), t = 14. . .18. Significant modification comparing to the preceding
cases.

Figure 16 Frame 1 captured from clip using the
variation functions of the left and right wheel
velocities proposed in Case 1.

Figure 17 Frame 2 captured from clip using the
variation functions of the left and right wheel
velocities proposed in Case 1.
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Figure 18 Frame 3 captured from clip using the
variation functions of the left and right wheel
velocities proposed in Case 1.

Figure 19 Frame 4 captured from clip using the
variation functions of the left and right wheel
velocities proposed in Case 1.

Figure 20 Frame 5 captured from clip using the
variation functions of the left and right wheel
velocities proposed in Case 1.
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Figure 21 Frame 6 captured from clip using the
variation functions of the left and right wheel
velocities proposed in Case 1.

Figure 22 Frame 7 captured from clip using the
variation functions of the left and right wheel
velocities proposed in Case 1.

Figure 23 Frame 8 captured from clip using the
variation functions of the left and right wheel
velocities proposed in Case 1.
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Figure 24 Frame 9 captured from clip using the
variation functions of the left and right wheel
velocities proposed in Case 1.

Figure 25 Frame 10 captured from clip using the
variation functions of the left and right wheel
velocities proposed in Case 1.

Figure 26 Frame 11 captured from clip using the
variation functions of the left and right wheel
velocities robot proposed in Case 1.
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Figure 27 Frame 12 captured from clip using the
variation functions of the left and right wheel
velocities of the YSR-A robot proposed in Case 1.

5 Discussions
At first sight, it must be observed that at the beginning of the analysis, when starting with
the initial velocities (, ), the mobile robot trajectory seems to be circular, and at the
further stages it changes, recording a periodic trend or a ‘loop’ trajectory. The trajectory
modification records itself significant modifications. Thus an important influence of the
initial conditions of the Cauchy problem on the mobile trajectory is noticed.
In the first simulation case, for t =  . . . , the trajectory becomes thick, recording a peri-

odicity trend. This is very interesting since there is no other case with this situation in
the analysis. After that, the mobile tends to have not a complete circle. Moreover, for
t =  . . . , a trajectory formed by line segments is recorded.
In Case  of simulation, it is very important to notice the special trajectory form for t =

 . . . : a half loopwith positive values, and a complete different allure for t =  . . .  with
negative values. Again the trajectory allure has a strong modification from a simulation
stage to the next one. And all these in no special conditions for the time unit simulation
parameter: in MAPLE, the time unit can have from the smallest values to bigger ones.
In fact, it is no rule for this important change of the trajectory, all these special events

issue in a random way. Thus we can say that the Cauchy problem associated to the mobile
kinematics is in fact a sensitive-case model.

6 Conclusion
The basic conclusion of the above analysis is that theCauchy problem analyzed here brings
a new approach of the studiedmobile robot kinematics. The ‘phase-portrait’ graphical tool
is extremely helpful because it is fast and has very flexible parameters.Note that here only a
situation for the ‘scene’ parameter of the procedure, namely ‘scene = [x(t), y(t)]’, was used.
Other possibilities for ‘scene’ would give another perspective for the mobile trajectory
analysis. We must take into account that we can assimilate the mobile in his move with
a material point lying in the middle of the axis that joins the centers of the left and right
driving wheels, and rotating around its ICR.
Thus, from qualitative reasoning, some basic ideas for next target have to be outlined:
• To increase the number of simulations, for more variation functions for the pair
(vl, vr).

http://www.boundaryvalueproblems.com/content/2013/1/138
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• To use another analytical or numerical MAPLE tools for getting more analysis data on
the Cauchy problem behavior. Testing step by step the Cauchy problem was possible
due to the flexible structure of the MAPLE graphical/computational tools []. At the
same time, this shows that these repetitive simulations are relatively easy to perform.

It is important to notice the issues of repetitive phenomena: in the above analysis, a
specific allure of the trajectory is repeated. The further changes are due to the initial con-
ditions variations. Repetitive phenomena can be collected in order to realize a global panel
of random distributed events in the kinematics of a two-wheeled differential drive mobile
robot and to use the statistical observations in the further analysis. Finally, the feasibility
and effectiveness of the proposed computational analysis for the mobile robot trajectory
is demonstrated by the experimental results.
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