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Abstract
A numerical method for one-dimensional Bratu’s problem is presented in this work.
The method is based on Chebyshev wavelets approximates. The operational matrix of
derivative of Chebyshev wavelets is introduced. The matrix together with the
collocation method are then utilized to transform the differential equation into a
system of algebraic equations. Numerical examples are presented to verify the
efficiency and accuracy of the proposed algorithm. The results reveal that the
method is accurate and easy to implement.

1 Introduction
In this paper, we consider the boundary-value problem and initial value problem of Bratu’s
problem. It is well known that Bratu’s boundary value problem in one-dimensional planar
coordinates is of the form

u′′ + λeu = ,  < x < , ()

with the boundary conditions u() = u() = . For λ >  is a constant, the exact solution of
equation () is given by []

u(x) = – ln
[
cosh(.θ (x – .))

cosh(.θ )

]
, ()

where θ satisfies

θ =
√
λ sinh(.θ ). ()

The problem has zero, one or two solutions when λ > λc, λ = λc and λ < λc, respectively,
where the critical value λc satisfies the equation

 =



√
λc cosh

(



θ

)
.

It was evaluated in [–] that the critical value λc is given by λc = ..
In addition, an initial value problem of Bratu’s problem

u′′ + λeu = ,  < x < , ()

with the initial conditions u() = u′() =  will be investigated.
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Bratu’s problem is also used in a large variety of applications such as the fuel ignition
model of the thermal combustion theory, the model of thermal reaction process, the
Chandrasekhar model of the expansion of the universe, questions in geometry and rel-
ativity about the Chandrasekhar model, chemical reaction theory, radiative heat transfer
and nanotechnology [–].
A substantial amount of research work has been done for the study of Bratu’s problem.

Boyd [, ] employed Chebyshev polynomial expansions and the Gegenbauer as base
functions. SyamandHamdan [] presented the Laplace decompositionmethod for solving
Bratu’s problem. Also, Aksoy and Pakdemirli [] developed a perturbation solution to
Bratu-type equations. Wazwaz [] presented the Adomian decomposition method for
solving Bratu’s problem. In addition, the applications of spline method, wavelet method
and Sinc-Galerkin method for solution of Bratu’s problem have been used by [–].
In recent years, the wavelet applications in dealing with dynamic system problems, es-

pecially in solving differential equations with two-point boundary value constraints have
been discussed inmany papers [, , ]. By transforming differential equations into alge-
braic equations, the solution may be found by determining the corresponding coefficients
that satisfy the algebraic equations. Some efforts have been made to solve Bratu’s problem
by using the wavelet collocation method [].
In the present article, we apply the Chebyshev wavelets method to find the approximate

solution of Bratu’s problem. Themethod is based on expanding the solution by Chebyshev
wavelets with unknown coefficients. The properties of Chebyshev wavelets together with
the collocation method are utilized to evaluate the unknown coefficients and then an ap-
proximate solution to () is identified.

2 Chebyshev wavelets and their properties
2.1 Wavelets and Chebyshev wavelets
In recent years, wavelets have been very successful inmany science and engineering fields.
They constitute a family of functions constructed from dilation and translation of a single
function called the mother wavelet ψ(x). When the dilation parameter a and the transla-
tion parameter b vary continuously, we have the following family of continuous wavelets
[]:

ψa,b(x) = |a|–/ψ
(
x – b
a

)
, a,b ∈R,a �= .

Chebyshev wavelets ψn,m = ψ(k,n,m,x) have four arguments, n = , , . . . , k–, k can as-
sume any positive integer, m is the degree of Chebyshev polynomials of first kind and x
denotes the time.

ψn,m(x) =

⎧⎨
⎩

αm(k–)/√
π

Tm(kx – n + ), n–
k– ≤ x < n

k– ;

, otherwise,
()

where

αm =

⎧⎨
⎩

√
, m = ;

, m = , , . . .
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andm = , , , . . . ,M–, n = , , . . . , k–. HereTm(x) are the well-knownChebyshev poly-
nomials of order m, which are orthogonal with respect to the weight function ω(x) =
/

√
 – x and satisfy the following recursive formula:

T(x) = ,

T(x) = x,

Tm+(x) = xTm(x) – Tm–(x).

We should note that the set of Chebyshevwavelets is orthogonal with respect to theweight
function ωn(x) = ω(kx – n + ).
The derivative of Chebyshev polynomials is a linear combination of lower-order

Chebyshev polynomials, in fact [],

⎧⎨
⎩
T ′
m(x) = m

∑m–
k= Tk(x), m even;

T ′
m(x) = m

∑m–
k= Tk(x) +mT(x), m odd.

()

2.2 Function approximation
A function u(x) defined over [, ) may be expanded as

u(x) =
∞∑
n=

∞∑
m=

cnmψnm(x), ()

where cnm = (u(x),ψnm(x)), in which (·, ·) denotes the inner product with the weight func-
tion ωn(x). If u(x) in () is truncated, then () can be written as

u(x)≈
k–∑
n=

M–∑
m=

cnmψnm(x) = CTΨ (x), ()

where C and Ψ (x) are k–M ×  matrices given by

C = [c, c, . . . , ck– ]T ,

Ψ (x) = [ψ,ψ, . . . ,ψk– ]T

and

ci = [ci, ci, . . . , ci,M–],

ψi(x) =
[
ψi(x),ψi(x), . . . ,ψi,M–(x)

]
, i = , , , . . . , k–.

3 Chebyshev wavelets operational matrix of derivative
In this section we first derive the operational matrix D of derivative which plays a great
role in dealing with Bratu’s problem.
In the interval [(n – )/k–,n/k–),

ψn,m(x) =
αm(k–)/√

π
Tm

(
kx – n + 

)
.
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Applying () the derivative of ψn,m(x) is

ψ ′
n,m(x)

=

⎧⎨
⎩

αm(k–)/√
π

· k · m∑m–
k= Tk(kx – n + ), m even;

αm(k–)/√
π

· k · [m∑m–
k= Tk(kx – n + ) +mT(kx – n + )], m odd.

The function ψi(x) is zero outside the interval [(i – )/k–, i/k–), so

ψ ′
i (x) = ψi(x)M, i = , , . . . , k–, ()

where

M = k ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


√
  

√
  

√
 · · · (M – )

√


      · · · 
      · · · (M – )
...

...
...

...
...

...
. . .

...
      · · · (M – )
       

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M×M

for evenM,

M = k ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


√
  

√
  

√
 · · · 

      · · · 
      · · · (M – )
...

...
...

...
...

...
. . .

...
      · · · (M – )
       

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M×M

for oddM.

In fact we have shown that

Ψ ′(x) =DΨ (x), ()

where

D = diag
(
MT ,MT , . . . ,MT)

.

From (), it can be generalized for any n ∈N as

dnΨ (x)
dxn

=DnΨ (x), n = , , , . . . . ()

4 Solution of Bratu’s problem
Consider Bratu’s problem given in (). In order to use Chebyshev wavelets, we first ap-
proximate u(x) as

u(x) = CTΨ (x).
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Applying () we can get

u′′(x) = CTDΨ (x).

Thus we have

CTDΨ (x) + λeC
TΨ (x) = . ()

We now collocate () at k–M –  points at xi as

CTDΨ (xi) + λeC
TΨ (xi) = . ()

Suitable collocation points are

xi =



[
 + cos

(
(i – )π
k–M – 

)]
, i = , , . . . , k–M – .

Thus with the boundary conditions u() = u() = , we have

CTΨ () = , ()

CTΨ () = . ()

Equations (), () and () generate k–M set of nonlinear equations. The approximate
solution of the vector C is obtained by solving the nonlinear system using the Gauss-
Newton method.

5 Error analysis
Theorem . A function u(x) ∈ Lω([, ]), with bounded second derivative, say |u′′(x)| ≤
N , can be expanded as an infinite sum of Chebyshev wavelets, and the series converges
uniformly to u(x), that is [],

u(x) =
∞∑
n=

∞∑
m=

cnmψnm.

Since the truncated Chebyshev wavelets series is an approximate solution of Bratu’s
problem, so one has an error function E(x) for u(x) as follows:

E(x) =
∣∣u(x) –CTΨ (x)

∣∣.
The error bound of the approximate solution by using Chebyshev wavelets series is given
by the following theorem.

Theorem . Suppose that u(x) ∈ Cm[, ] and CTΨ (x) is the approximate solution using
the Chebyshev wavelets method. Then the error bound would be obtained as follows:

E(x)≤
∥∥∥∥ 
m!mm(k–) max

x∈[,]
∣∣um(x)∣∣

∥∥∥∥


.
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Proof Applying the definition of norm in the inner product space, we have

∥∥E(x)∥∥ =
∫ 



[
u(x) –CTΨ (x)

] dx.

Because the interval [, ] is divided into k– subintervals In = [(n – )/k–,n/k–], n =
, , . . . , k–, then we can obtain

∥∥E(x)∥∥ =
∫ 



[
u(x) –CTΨ (x)

] dx

=
k–∑
k=

∫ n
k–

n–
k–

[
u(x) –CTΨ (x)

] dt

≤
k–∑
k=

∫ n
k–

n–
k–

[
u(x) – Pm(x)

] dt,

where Pm(x) is the interpolating polynomial of degree m which agrees with u(x) at the
Chebyshev nodes on In with the following error bound for interpolating [, ]:

∣∣u(x) – Pm(x)
∣∣ ≤ 

m!mm(k–) max
x∈In

∣∣um(x)∣∣.
Therefore, using the above equation, we would get

∥∥E(x)∥∥ ≤
k–∑
k=

∫ n
k–

n–
k–

[
u(x) – Pm(x)

] dt

≤
k–∑
k=

∫ n
k–

n–
k–

[


m!mm(k–) max
x∈In

∣∣um(x)∣∣
]

dt

≤
k–∑
k=

∫ n
k–

n–
k–

[


m!mm(k–) max
x∈[,]

∣∣um(x)∣∣
]

dt

=
∫ 



[


m!mm(k–) max
x∈[,]

∣∣um(x)∣∣
]

dt

=
∥∥∥∥ 
m!mm(k–) max

x∈[,]
∣∣um(x)∣∣

∥∥∥∥


. �

6 Numerical examples
To illustrate the ability and reliability of the method for Bratu’s problem, some examples
are provided. The results reveal that the method is very effective and simple.

Example . Consider the first case for Bratu’s equation as follows, when λ =  [, ]:

u′′ + eu = ,  < x < ,

u() = u() = .
()

We solve the equation by using the Chebyshev wavelets method with k = , M = ,, .
The numerical results obtained are presented in Table . Table  shows the comparison

http://www.boundaryvalueproblems.com/content/2013/1/142
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Table 1 Computed absolute errors for Example 6.1

x k = ,M =  k = ,M =  k = ,M = 

0.1 1.33462× 10–3 1.18825× 10–5 5.01033× 10–7

0.2 2.57841× 10–3 2.62388× 10–5 1.16521× 10–6

0.3 5.88781× 10–3 2.26840× 10–5 2.33696× 10–6

0.4 3.36183× 10–3 5.20260× 10–5 5.48713× 10–6

0.5 5.98507× 10–3 4.44306× 10–5 1.33512× 10–6

0.6 3.59903× 10–3 2.53383× 10–5 2.40800× 10–6

0.7 5.14675× 10–3 4.17100× 10–5 3.73327× 10–6

0.8 1.43561× 10–3 3.25335× 10–5 7.18825× 10–6

0.9 1.25962× 10–3 1.71598× 10–5 1.46832× 10–6

between the absolute error of exact and approximate solutions for various values of M
(with k = ). Moreover, higher accuracy can be achieved by taking higher order approxi-
mations.

Example . Consider the initial value problem [, –, ]

u′′ – eu = ,  < x < ,

u() = , u′() = .
()

The exact solution is u(x) = – ln(cos(x)). Here we solve it using Chebyshev wavelets, with
k = ,M = . First we assume that the unknown function u(x) is given by

u(x) = CTΨ (x).

Applying () we get

CTDΨ (xi) – eC
TΨ (xi) = . ()

Using the initial condition, we obtain

CTΨ () = ,

CTDΨ () = .
()

Equations () and () generate a system of nonlinear equations. These equations can be
solved for unknown coefficients of the vector C. A comparison between the exact and the
approximate solutions is demonstrated in Figure . From Figure , it can be found that the
obtained approximate solutions are very close to the exact solution. In addition, Table 
shows the exact and approximate solutions using the method presented in Section  and
compares the results with the method presented in []. Also, by comparing the results of
the table, we see that the results of the proposed method are more accurate.

7 Conclusions
The aim of present work is to develop an efficient and accurate method for solving Bratu’s
problems. The Chebyshev wavelet operational matrix of derivative together with the col-
location method are used to reduce the problem to the solution of nonlinear algebraic

http://www.boundaryvalueproblems.com/content/2013/1/142
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Figure 1 Comparison of solutions for Example 6.2.

Table 2 Comparison of the results of the Chebyshev and Legendre wavelets method for
Example 6.2

x Chebyshev wavelets Legendre wavelets Exact solutions

0.1 1.0016711× 10–2 1.0016801× 10–2 1.0016711× 10–2

0.2 4.0269541× 10–2 4.0269696× 10–2 4.0269546× 10–2

0.3 9.1383326× 10–2 9.1382697× 10–2 9.1383311× 10–2

0.4 1.6445871× 10–1 1.6444915× 10–1 1.6445803× 10–1

0.5 2.6116111× 10–1 2.6111176× 10–1 2.6116848× 10–1

0.6 3.8339360× 10–1 3.8367456× 10–1 3.8393033× 10–1

0.7 5.3617551× 10–1 5.3524690× 10–1 5.3617151× 10–1

0.8 7.2271751× 10–1 7.1991951× 10–1 7.2278149× 10–1

0.9 9.5086960× 10–1 9.4297240× 10–1 9.5088488× 10–1

equations. Illustrative examples are included to demonstrate the validity and applicability
of the technique.
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