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Abstract

This paper investigates the existence of concave symmetric positive solutions and
establishes corresponding iterative schemes for a second-order boundary value

problem with integral boundary conditions. The main tool is a monotone iterative
technique. Meanwhile, an example is worked out to demonstrate the main results.
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1 Introduction

The theory of boundary value problems with integral boundary conditions for ordinary
differential equations arises in different areas of applied mathematics and physics. For ex-
ample, heat conduction, chemical engineering, underground water flow, thermo-elasticity,
and plasma physics can be reduced to the nonlinear problems with integral boundary con-
ditions; we refer readers to [1-3] for examples and references.

At the same time, boundary value problems with integral boundary conditions consti-
tute a very interesting and important class of problems. They include two, three, multi-
point and nonlocal boundary value problems as special cases.

Hence, increasing attention is paid to boundary value problems with integral bound-
ary conditions [4—8]. Generally, the Guo-Krasnosel skii fixed point theorem in a cone,
the Leggett-Williams fixed point theorem, the method of upper and lower solutions and
the monotone iterative technique play extremely important roles in proving the existence
of solutions to boundary value problems. In particular, we would like to mention some
excellent results.

In [4], Ma studied the following problem:

u® (&) = h(t)f(t,u), O0<t<l,
u(0) = u() = [ p(s)uls)ds,
u"(0) = u"(1) = [y q(s)us)ds,

where p,q € L}[0,1], & and f are continuous. The existence of at least one symmetric pos-
itive solution is obtained by the application of the fixed point index in cones.
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In 2010, Wang et al. [7] considered the second-order boundary value problem with the
integral boundary conditions

@@ @) +f(&u(®),w'()=0, 0<t<l,
w(0) — k' (0) = [y I (u(s)) s,
u() + kot (1) = i o (u(s)) dis,

where ¢, f, iy and &, are continuous, k; and k, are nonnegative constants. The existence
result was obtained by applying the method of upper and lower solutions and Leray-
Schauder degree theory. Theorem 1 (see [7]) supposed that the upper and lower solutions
exist, and then, the theory of differential inequalities was used to prove that there is a
solution to the boundary value problem between the upper and lower solutions.

Different from [7], [9] is not based on the assumption that the upper and lower solutions
to the boundary value problem should exist, but constructs the specific form of the sym-
metric upper and lower solutions. The author in [9] investigated a second-order Sturm-
Liouville boundary value problem

w'(t) + h(@t)f(w(t) =0, O0<t<l,
aw(0) - Bw/'(0) =0, aw(l) + Bw'(1) = 0.

And by applying monotone iterative techniques, author proved the existence of n sym-
metric positive solutions.

To the best of our knowledge, no contribution exists concerning the existence of solu-
tions for a boundary value problem with integral boundary conditions by applying mono-
tone iterative techniques. Inspired by the work mentioned above, we concentrate on the

following problem:
u” (x) +f(x, u(x), u'(x)) =0, O<x<l, 1.1)

1
u(0) =u(1) = /0 p(s)u(s)ds, (1.2)

where p € L'[0,1]. We construct a specific form of the symmetric upper and lower solu-
tions, and by applying monotone iterative techniques, we construct successive iterative
schemes for approximating solutions.

The difficulty of this paper is that the nonlinear term f depends on #’, which leads to
complexities to prove the properties of the operator T, especially the monotonicity of the
operator T. In Lemma 2.2, we skillfully use the cone’s character to overcome the men-
tioned obstacle. In addition, it is worth stating that the first term of our iterative scheme is
a simple function or a constant function. Therefore, the iterative scheme is feasible. Un-
der the appropriate assumptions on nonlinear term, this paper aims to establish a new and
general result on the existence of a symmetric positive solution to BVP (1.1) and (1.2).

2 Preliminaries
Definition 2.1 Let E be a Banach space, a nonempty convex closed set P C E is said to be
a cone provided the following hypotheses are satisfied:
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(i) ifu e P, x>0, then Au € P;
(ii) if u € Pand —u € P, then u = 0.

Every cone P C E induces a partial ordering ‘<’ on E defined by
u<v ifandonlyif v-uelP.

Definition 2.2 Let (E, <) be an ordered Banach space. An operator ¢ : E — E is said to be
nondecreasing (nonincreasing) provided that ¢(x) < ¢(v) (¢(u) > ¢(v)) for all 4, v € E with
u < v.If the inequality is strict, then ¢ is said to be strictly nondecreasing (nonincreasing).

Definition 2.3 Let E = C1[0,1], u € E is said to be concave on [0, 1] if
u(kxl +(1- k)xz) > Au(xg) + (1= A)u(x)
for any x;,%, € [0,1] and A € [0,1].

We consider the Banach space E = C[0,1] equipped with the norm |ju| = max{| ||,
I |0}, where ||u o = maxyejo1) |#(x)]. In this paper, a symmetric positive solution u* of
(1.1) means a function which is symmetric and positive on (0, 1) and satisfies equation (1.1)
as well as the boundary conditions (1.2).

In this paper, we always suppose that the following assumptions hold:

(H1) f € C([0,1] x [0,+00) X R,[0,+00)), f(x,u,v) = f(1 — x,u,—v) for x € [%,1], and
fx,u,v) >0 forall (x,u,v) € [0,1] x [0,+00) X R;

(H2) f(x,-,v) is nondecreasing for each (x,v) € [0, %] X R, f(x,u,-) is nondecreasing for
(x,u) € [0, %] x [0, +00);

(H3) p € L[0,1] is nonnegative and 0 < y < 1, where u = folp(s) ds.

Denote

C*[0,1] = {u € E: u(x) = 0,x € [0,1]},

P= {u € E: u(x) > 0 is concave and u(x) = u(1 —x),x € [0,1]}.

It is easy to see that P is a cone in E.
For any y € C*[0,1], suppose that « is a solution of the following BVP:

u’(x) + flx, y(x),y'(x) =0, O0<x<],
u(0) = u(1) = [ p(s)u(s) ds.

Then we can easily get the solution:
1
u(x) = / Hx,0)f (6,5(0),5/(0) db, @.1)
0

where

t(1-s),
s(1-1¢),

IA
=~
IA
%)
IA

H(x,t) = G(x,t) + 1 1

1
/ Glope)ds,  Gltys) -
0

o ©
IA
1)
IA
A
IA
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and

1
n= /0 ps)ds.

During the process of getting the above solution, we can also know

1 x
U (x) = / (L-0)f (6x(), 5 (t)) dt - / F(ty(0),y (0)) dt (2.2)
0 0
for x € [0,1].
Lemma 2.1 If (H3) is satisfied, the following results are true:
1. H(x,t)>0,forxte[0,1]; H(x,t) > 0 for x,t € (0,1).

2. GA-x1-1t)=G(x1), Gxt) < Gx,x) for x,t € [0,1].

Foranyy e C*[0,1], T: P — E is defined

1
(Ty)(x) = /0 Hix, t)f(t,y(t),y/(t)) dt forxe[0,1]. (2.3)

Lemma 2.2 If (Hs) is satisfied, T : P — P is completely continuous, i.e., T is continuous
and compact. Moreover, T is nondecreasing provided that (H,) holds.

Proof For any y € P, from the definition of Ty, we know

(Ty)"(x) + f(x,9(x),y(x)) =0, O0<x<1,
(T9)(0) = (Ty)(1) = [ p(s)(T)(s) ds.

Obviously, Ty is concave. From the expression of Ty, combining with Lemma 2.1, we
know that Ty is nonnegative on [0,1]. We now prove that Ty is symmetric about %
For x € [0, %], then(l-x) € [%,1], and

1 1
(Ty)(1-x) = /0 (G(l—x,t)+ - 1 /0 G(t,s)p(s)d5>/(t’y(t), ¥(0) dt
1
= fo GO -x,0)f (60,5 (8)) dt
1t ,
124 /0 /0 Gt 9)p(s)f (t,y(2),y (1)) dsdt

0
= f Gl-x1-t)f(1-ty(1-1),yA-1)d1-1)
1

+

1 1 rl /
[ eonertnyowa
1
:‘/0' G(x’t)f(l_t’y(t),—y,(t)) dt

1 1 1 /
14 /0 /0 G(t,9)p(s)f (,y(2),y (¢)) dsdt
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1
1-n

1 1 1
= / G, t)f (£:5(2), ¥ (8)) dt + f / G, s)p(s)f (£,(2), ¥ (t)) ds dt
0 0 Jo

= (Ty) ().
Similarly, we have
(TY)QA-x) = (Ty)(x) forxe [%,l].

So, TP C P. The continuity of T is obvious. We now prove that T is compact. Let 2 C P
be a bounded set. Then there exists R such that

Q={yeP|lyl <R}.
For any y € 2, we have

0 <f(s,5(5),5 (s)) <max{f(s,9,5) | s€[0,1],y € [0,R],y € [-R,R]} =: M.
Therefore, from (2.3), we have

M
EMe @) =M

], <o om= 2 =

So, ||(Ty)|| is uniformly bounded. Now we prove T is equi-continuous. For 0 < x; <

Xy < %, we have

|(Ty)(x2) - (Ty)(x1)|

1
fo (Glwa, 1) — Glan, D) (£,5(0), 7/ (1)) e

Jo 162 =)@ = )If (&, 5(8), y () dit, O<m<xm<t<l,
< Jo 1t —x2)[f (6, 3(2), 5/ (8)) dt, O<t<x <x<l,
Jo 160 =x3) =21 (1= OIf (£, 9(0), Y (£)dt, 0<m <t<x <1,

< Mlxy —x1].

Moreover,

(1) (x2) — (T9)' (1) =

/ 2f('f,y(t),y/(t)) dt| < Mlxy — x1].

*1

And the similar results can be obtained for % <x <x<land0<x < % <xy <1.

The Arzela-Ascoli theorem guarantees that 72 is relatively compact, which means T is
compact.

Finally, we show that Ty is nondecreasing about y.

For any y;(x) € P (i = 1,2) with y,(x) < y,(x). By the properties of a cone, we have y,(x) —
y1(x) € Pforx € [0,1]. Then y,(x) —y1(x) > 0 is concave and symmetric about % Therefore,

¥5(x) > 94 (x) forx e [0, %],
¥5(x) <yi(x) forxe[3,1].
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Hence, for x € [0, %], by (H;) and the definition of Ty, we have

1
(T ) - (T2)(x) = /0 HGs, 0 (6.01(0),9,(0)) e
1
—/O H(x, 0)f (£,2(8), 75(2)) dt < 0.

Furthermore, we have

1 1
(Ty) (6) — (Tyn) () = /0 (L= ) (5,72(6),75(6)) s — /0 (L= ) (5, 31(5),9,(5)) s
+/f(s,yl(s),y/l(s))ds—/f(s,yz(s),y/z(s))ds.
0 0

In order to prove (Ty,)(x) — (Ty1)(x) is concave, we need to prove (Ty,) (x) — (Ty1)' (x) is

nonincreasing. Let 0 <x; <xy < %, then

(Tyy) (x2) = (Tyn) (x2) = (Ty2) (1) + (Tyn)' (%1)

= / 2f(s,yl(s),y/l(s)) ds — / S (5,22(5),55()) ds < 0.

*1 *1

A similar result can be obtained for x € [%, 1]. And it is easy to see that (Ty,)(x) — (Ty1)(x)
is symmetric about % So, (Ty, — Ty;) € P and thus T is nondecreasing. O

3 Existence and iterative of solutions for BVP (1.1) and (1.2)
Theorem 3.1 Assume that (H;)-(Hs) hold. If there exist two positive numbers a; < a such
that

sup f(x,a,a) <a, (3.1)

x€[0,3]
where a and a; satisfy

21
91 - )

1 1
a> max{ '3 + H - }zzl, (3.2)

6(1-p) 2

then problem (1.1) and (1.2) has a concave symmetric positive solution w*,v* € P with

3
”w* ”oo <a and lim T"wy=w", wherewy(x)=ax(1-x)+ —a,
n—0o0 4
||V* ”oo <a and lim T"vg=v*, wherevy(x)=0.
n—00
Proof We denote P, = {w € P: ||w| <a}. In what follows, we first prove TP, C P,,.

Let w € P, then 0 < w(x) < maxye(o1) W(%) = [[Wlloo < @, Maxye[o,) [W(x)| = W' (0) < a.
By assumption (H;) and (3.1), for x € [0, %], we have

0 < f (% W), W) <faa) < sup f(xaa) <a. (33)

x€[0,1]
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For any w(x) € P,, by Lemma 2.2, we know Tw € P and, as a result,

| Tlloo = (Tw)(%)
L
:/ G(—,t)j(t,w(t) (1)) dt +
0 2

t(l tp(s)dsdt

// (&, )p(s)f (£, w(e), W' (0)) dsdt

and
(Tw) (Tw)'(0) = (l—s)fsws)w(s) ds<1a1<a

Hence, || Tw|| < a. Thus, we get TP, C P,. Let wy(x) = ax(1 — x) + %a for x € [0,1], then
[lwoll = @ and wy(x) € P,. Let wi(x) = Twy, then wy € P,. We denote

Wyl = Twn = Tn+1Wo (}7 = 0, 1, 2, .o ) (34)

Since TP, C P,, we have w, € P, (n=0,1,2,...). From Lemma 2.2, T is compact, we
assert that {w,};2; has a convergent subsequence {w,, }?°, and there exists w* € P, such
that w,, — w*. From the definition of T, (3.1) and (3.2), we have

wi(x) = (Two) (x)

! 1
:/0 (G(x,t)+ -

1
:/0 G, 1) (£, wo(2), wy(2)) dt+

1
p / G(t,s)p(s) ds)j(t, wo(t), wy(t)) dt

//G(ts S)f (t, wo(£), wy(t)) ds dt

1-p
< la(w-n) s 1O
=™ 6(1- )

3
<ax(1-x)+ Za =Wwp.
On the other hand, we notice that
wy(x) —w/(x) <a; —2a <0.

wi(x) € P,. By Lemma 2.2, we know Tw; < Tw,, which means wy, <wy, 0 <

SO; WO(x) -
x < 1. By induction, w,,; <w,,0<x<1(n=0,1,2,...). Hence, we assert that w,, — w*. Let

n — oo in (3.4) to obtain Tw* = w* since T is continuous. It is well known that the fixed
point of the operator T is the solution of BVP (1.1) and (1.2). Therefore, w* is a concave

symmetric positive solution of BVP (1.1) and (1.2).
Letvg =0, x € [0,1], then vy € P,. Let v; = Tvy, then v; € P,, we denote

Vpo1=Tv, = T, n=0,1,2,....

(3.5)

Page 7 of 9
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Similarly to {v,}52,, we assert that {v,};°, has a convergent subsequence {v,,}z2, and
there exists v* € P, such that v,, — v*. Now, since v; > vy, by Lemma 2.2, we know
Tv, > Tvy, which means v, > vy, 0 <x < 1. By induction, v, > v, 0<x<1(n=0,1,2,...).
Hence, we assert that v, — v*, Tv* = v*, and v*(x) > 0, x € (0,1). Therefore, v* is a concave
symmetric positive solution of BVP (1.1) and (1.2). O

Remark The existence of a solution under the assumptions of Theorem 3.1 is just a con-
sequence of Schauder’s fixed point theorem. The monotone iterative technique adds the

information about the approximation sequences.

Example Consider the following second-order boundary value problem with integral
boundary conditions:

1 1
” 1 2 (1-x)2 ’ _
u'(x) + [g5 + 55— (u 2 +In(ux)+1)+1]=0, O<x<l, (3.6)

u(0) = u() = [ su(s)ds.
And we have

F ) = [% + ’%][W +Inu+1)+1]

It is easy to check that the assumptions (H;)-(Hs) hold and u =1/2. Set a = 10, a4y = 15.
Then we can verify that condition (3.1) is satisfied. Then applying Theorem 3.1, BVP (3.6)
has a concave symmetric positive solution w*,v* € P with

15
||w* || <10 and lim T"wo=w*, wherewy(x)=10x(1-x)+ —,
o0 n—00 2

||v* ||OO <10 and lim T"vy=v*, wherevy(x)=0.
n—00
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