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Abstract

This paper is concerned with the Cauchy problem for a class of fourth-order wave
equations in an n-dimensional space. Based on the decay estimate of solutions to the
corresponding linear equation, a solution space is defined. We prove the global
existence and optimal decay estimate of the solution in the corresponding Sobolev
spaces by the contraction mapping principle provided that the initial value is suitably
small.
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1 Introduction
We investigate the Cauchy problem for a class of fourth-order wave equations

auy + N*u + u; = Af(u) (1.1)
with the initial value
t=0:u=ux), Uy = up(x). (1.2)

Here u = u(x, t) is the unknown function of x = (xy,...,x,) € R” and t >0, and a > 0 is a
constant. The nonlinear term f(x) is a smooth function with f(«) = O(?) for u — 0.

Equation (1.1) is reduced to the classical Cahn-Hilliard equation if a = 0 (see [1]), which
has been widely studied by many authors. Galenko et al. [2-5] proposed to add inertial
term auy to the classical Cahn-Hilliard equation in order to model non-equilibrium de-
compositions caused by deep supercooling in certain glasses. For more background, we
refer to [4—6] and references therein. It is obvious that (1.1) is a fourth-order wave equa-
tion. For global existence and asymptotic behavior of solutions to more higher order wave
equations, we refer to [7-14] and references therein.

Very recently, global existence and asymptotic behavior of solutions to the problem (1.1),
(1.2) were established by Wang and Wei [7] under smallness condition on the initial data.
When uy € H**2 N L}, u; € H* N LY, they obtained the following decay estimate:

n_k
|052(0) | ook < Clutoll ez + Notall s ) (L + 87878 (1.3)
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for 0 <k <s+2ands > [n/2] + 5. The main purpose of this paper is to refine the result in
[7] and prove the following decay estimate for the solution to the problem (1.1), (1.2) for
n > 1 with L! data,

aku(t) s+2-k S CEO(l + t)_g_g_%x (14)
x H:

for 0 < k < s+ 2 and s > max{0, [1#/2] — 1}. Here Ey := ||uo|lyy-21nys+2 + l#t1]l w2105 1S
assumed to be small. We also establish the decay estimate for the solution to the problem
(1.1), (1.2) for n > 1 with L? data,

|052(8)), ros < CEL(14+£)7573, (1.5)

HS+2—

for 0 < k <s+2ands > max{0, [n/2] —1}. Here E := ||uo || -2ps+2 + |t41]| jj-2pps 1S assumed
to be small. Compared to the result in [7], we obtain a better decay estimate of solutions
for small initial data.

The paper is organized as follows. In Section 2, we study the decay property of the solu-
tion operators appearing in the solution formula. We prove global existence and asymp-
totic behavior of solutions for the Cauchy problem (1.1), (1.2) in Sections 3 and 4, respec-
tively.

Notations We introduce some notations which are used in this paper. Let F[u] denote
the Fourier transform of u# defined by

u(&) :f[u](é)::/ e~ % u(x) da.
RY
We denote its inverse transform by F1. For 1 < p < oo, I# = I/(R") denotes the usual
Lebesgue space with the norm | - ||z». The usual Sobolev space of order s is defined by
WP = (I — A)"2LP with the norm W llwse = I - A)%fHLp. The corresponding homoge-
neous Sobolev space of order s is defined by WP = (~A)"3L” with the norm W lvise =
[(=A)2f|l10; when p = 2, we write H* = W52 and H® = W*2. We note that W = ¥ N W
fors> 0.

For a nonnegative integer k, 3% denotes the totality of all the kth order derivatives with
respect to x € R”. Also, for an interval I and a Banach space X, C*(I; X) denotes the space
of k-times continuously differential functions on I with values in X.

Throughout the paper, we denote every positive constant by the same symbol C or ¢
without confusion. [ -] is the Gauss symbol.

2 Decay property

The aim of this section is to derive the solution formula to the Cauchy problem (1.1), (1.2).

Without loss of generality, we take a = 1. We first study the linearized equation of (1.1),
Uy + A2+ u, =0, (2.1)

with the initial data in (1.2). Taking the Fourier transform, we have

Dy + 11 + |E* L= 0. (2.2)


http://www.boundaryvalueproblems.com/content/2013/1/168

Zhuang and Zhang Boundary Value Problems 2013, 2013:168 Page 3 of 15
http://www.boundaryvalueproblems.com/content/2013/1/168

The corresponding initial value are given as

t=0:1=1uy&), iy = (§). (2.3)
The characteristic equation of (2.2) is

Mir+lg*=0.

Let A = A+ (&) be the corresponding eigenvalues, we obtain

“lEv1-4Ef* V1_4|§|4. (2.4)

() = - 5

The solution to the problem (2.2), (2.3) is given in the form

(&, t) = G(&, t)in (&) + H(E, Dito (), (2.5)
where

Be b = 1 ) _ (e

o Tmoe ) 20
and

Pr(E 1) o 1 ©) _ r(E)t

H(E,t) I ®) (As()e A_(&)eE). (2.7)

We define G(x,¢) and H(x,t) by G(x,£) = F'[G(&, £)](x) and H(x,¢) = F'[H(E, £)](x), re-
spectively, where F~! denotes the inverse Fourier transform. Then, applying 7! to (2.5),
we obtain

u(t) = G(£) * uy + H(Z) * uo. (2.8)

By the Duhamel principle, we obtain the solution formula to (1.1), (1.2)
t
u(t) = G(t) % ug + H(t) x ug + / G(t— 1) * Af (u)(r)dr. (2.9)
0

The aim of this section is to establish decay estimates of the solution operators G(¢) and

H(t) appearing in the solution formula (2.8).

Lemma 2.1 The solution of the problem (2.2), (2.3) verifies the estimate

1 +1EP) e, O + | (&, 1) < Ce @ (1 + 1£12) |iwo )| + | (©)]), (2.10)

for & e R" and t > 0, where w(§) = (1+|\$§T -
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Proof We apply the energy method in the Fourier space to prove (2.10). Such an energy
method was first developed in [15]. We multiply (2.2) by #; and take the real part. This
yields

| &

{l? + 161"} + i |* = 0. (2.11)

N =
QU

t

Multiplying (2.2) by it and taking the real part, we obtain

1 R oz . .
5 g 1B + 2Re(iin)} + 1€ 117 — || = 0. (2.12)

Combining (2.11) and (2.12) yields

d E+F=0 (2.13)
—E+F=0, .
dt

where
E =iy + B + |g|4] |i)? + Re(it, i)
and
F = 161"l + it .
A simple computation implies that
CEy < E < CE,, (2.14)
where
Eo = (1+ 161%)*1? + ||,
Note that

[
S TPEEaEl

It follows from (2.14) that

F > cw(&)E, (2.15)
where
1§ *
“O= T ep

Using (2.13) and (2.15), we get

iE (5)E<O0
PP +cw(§)E <O0.
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Thus
E(&,t) < e™E(E,0),

which together with (2.14) proves the desired estimates (2.10). Then we have completed
the proof of the lemma. d

Lemma 2.2 Let G(“;‘,t) and I:I(S,t) be the fundamental solutions to (2.1) in the Fourier
space, which are given in (2.6) and (2.7), respectively. Then we have the estimates

(1+1E2)*|GE 0| + |Gul&, )| < Cee®" (2.16)
and
1+ 1P HE D + |HE 0 < C(1+ |5 P2) e (2.17)

for & e R" and t > 0, where w(§) = (IJ\S‘E‘T 7

Proof If iz9(&) = 0, from (2.5), we obtain

wE,t) = GEDIME), D)= GiE in(E).

Substituting the equalities into (2.10) with #(§) = 0, we get (2.16).
In what follows, we consider #;(£) = 0, it follows from (2.5) that

W, t) = HE D(E), (g, t) = HiE, Dit(E).

Substituting the equalities into (2.10) with #; (€) = 0, we get (2.17). The lemma is proved.
d

Lemma 2.3 Let G(é ,t) and H (&,t) be the fundamental solutions to (2.1) in the Fourier
space, which are given in (2.6) and (2.7), respectively. Then there exists a small positive
number Ry such that if |§| < Ry and t > 0, we have the following estimate:

|G.(5,0)] < Clg|*e 1" 1 et (2.18)
and
|H,(8,1)] < Clg|*eé1" 4 ceet, (2.19)

Proof For sufficiently small £, using the Taylor formula, we get
r(€) =—l€1* + O(IEI°),  A-(§) = -1+ 5"+ O(I5°) (2.20)
and

1 ~ 4 .
e @ ~ Lt 2+ O(IET). (2.21)
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It follows from (2.6) and (2.7) that

~ B (EYer o (£)er—t
Gu(§,t) = +w() o

(2.22)
Hi(E,t) = oo A A (£)e - _ x_(£)r, (£)eM ),

Equations (2.18) and (2.19) follow from (2.20)-(2.22). The proof of Lemma 2.3 is com-
pleted. O

Lemma 2.4 Let1 <p <2andk > 0. Then we have

105G # ¢ |,2 = CA+ B EE D" F g + Cet 95219, (2.23)

|okH (@) « ), < L+ t)*% P g sy + Ce | 0502 (2.24)

|05Gi0) x 9], < CA+1) 1 *‘1||¢||W_ZP+Ce o E (2.25)
and

|0 H:(0) % @] ;o = €A+ 85D g yosy + Ce 052 o (2.26)

|05G()  Ag|» < €A+ &y 8 D52 g1 + Ce | okg] o, (2.27)

|05Gu(e) % Ag|l 2 < CA+ &) H D83 g + et |02, (2.28)

where (k — 2), = max{0,k — 2} in (2.23).

Proof By the property of the Fourier transform and (2.16), we obtain
[94G(0) = 8|, = fR P GE 0P Ibe e
< f EPK (L JE ) e e [ e
|£]<Ro
iC / E P (L4 (82) 2 b(e) [ die
&1>Ro
<C / £ el |3(&)|*de + C / B ERAGIRS
|&1<Ro [E1=Ro
< |l el g3 @) | + Cet| oD g, (2:29)

where Ry is a positive constant in Lemma 2.3, and +5 p =1 and sty =1
By a straight computation, we get

2k42l —clE|*t -k
16175 gy = CA+ )3

72(271)7k+l
<CA+t)ysr 777, (2.30)

It follows from the Hausdorff-Young inequality that

l1EI)], < C(=A)7 8], < Clidllto- (2.31)
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Combining (2.29)-(2.31) yields (2.23). Similarly, we can prove (2.24)-(2.28). Thus we have
completed the proof of the lemma. O

3 Global existence and decay estimate (1)
The purpose of this section is to prove global existence and asymptotic behavior of solu-
tions to the Cauchy problem (1.1), (1.2) with L! data. We need the following lemma, which

comes from [16] (see also [17]).

Lemma 3.1 Assume that f = f(v) is smooth, where v = (vy,...,v,) is a vector function. Sup-
pose that f(v) = O(|[v|"*?) (0 > 1 is an integer) when |v| < vy. Then, for the integer m > 0,
if v,w € WI(R") 0 LP(R") O L2(R") and |Vl < vo, [wiliee < vo, then f(v) - f(w) €
W (R"). Furthermore, the following inequalities hold:

|87 W), < Clvllee |87 v Lo lIvIF 3.1
and
lor (Fw) =f ) < {07 o + 87wl ) v = wllzo +
+ (Il + Iwllee |32 = w) | o) IVl + Iwllz)"™,  (3.2)
where . = 5 + 2,1 <p,q,r < +00.

Based on the decay estimates of solutions to the linear problem (2.1), (1.2), we define the
following solution space:

X ={u € C([0,00); H**(R")) N C'([0, 00); H*(R")) : [|u]|x < 00},
where

leelx = sup{ > e nd [ofu) , + Y+ piried IIGfuz(t)HLz}-

£20 k<s+2 h<s

For R > 0, we define
Xp={ueX:|ulx <R}
The Gagliardo-Nirenberg inequality gives
[(®)] 1 < @127 |ou@] 3 < C+ 2y EDuly, (33)

where so = [5] + 1,80 <s+2 (i.e, s> [5]-1).

Theorem 3.1 Assume that ug € W=>'(R") N H**2(R"), u; € W2LR") N H¥(R") (s >
max{0, [n/2] — 1}). Put

Eo = lluollyy-21nps+2 + |11l y—214s-
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If Ey is suitably small, the Cauchy problem (1.1), (1.2) has a unique global solution u(x,t)
satisfying

u € C([0,00); H***(R")) N C*([0, 00); H*(R")).
Moreover, the solution satisfies the decay estimate
|0ku®)|,» < CEo(1 + )84 (3.4)
and
|0ku:(0)] 2 < CEo1 +5)787472 (3.5)
forO0<k<s+2and0<h<s.
Proof Let us define the mapping
DO(u) = G(t) % ug + H(E) * ug + /Ot G(t— 1) * Af (u(r)) dr. (3.6)
Using (2.23), (2.24), (2.27), (3.1) and (3.3), for 0 < k < s + 2, we obtain
[of @), = |86 1] 12 + CakH (@) x o]
+C /o t|| UGt 1) x Af (u())] 2 dT
< CO+ 078 (o lhip-2anpsern + ot -21s)
+c/0%(1+t_r)—é—i—z|y ), de

+C/(1+t— %Haif(u)Hdet

+ C/ e | ok (w)]| o dr
C(l + t)_g_g_%(”l/iollw 21nys+2 t ””1”\)(/ 21ﬂHS)

+C/ 1+t-1) 3’1’7||u|| 2 dr

+cf (12— o) |0ful o lulloe de

2

t
+C/ e~t0) ”Bfu”ﬂnu”po dt
0
_n_k_1
< CA+8) 57472 (Jlugllyp-21mpgse2 + 11 2155

t
2 n n
+ CRZ/ 1+zt- r)‘§‘§‘%(1 +7)7 1 dr
0

t

+ CRZ/ Q+zt- r)’%(l + r)’%’%’1 dr
t
3
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3

+ CR* /te‘c(t‘f)(l ro) il
0
< CA+ 7883 { (Juolhip-2anpen + i lhig-2anpse) + B2},
Thus
(1+0)874%% |95 D(w)| ,, < CEo + CR2.
It follows from (3.6) that
t
(), = G,(t) * uy + Hy(t) x ug + /(; Gi(t - 7) * Af (u(r)) dr.
By exploiting (3.8), (2.25), (2.26), (2.28), (3.1) and (3.3), for & < s, we have
[0 = OGO ], + CLOEHO 5 o]

+ C./o || B:‘Gt(t —T) % Af(u(r)) ||L2 dt

n_h_3
< CA+) 37472 (Jlullyp-21mpgse2 + 11 lyp-21 55

t
+ c/t (L+t-7)2 |0l f )| . de
3
t
i f <0 88 (1), dr
0
<C1+ t)_g_%_% {(Iluo lyir-21ps+2 + ||”1||W-2'1HHS) + RZ}.
The above inequality implies

h
4

1+ 0)8+ 443 |0l d(w), |, < CEo + CR.

Combining (3.7) and (3.9) and taking E, and R suitably small, we get

oG], <R
For u, u € Xg, (3.6) gives

t
(i) - () = / G(t-7)* Alf(@) - f(@)] dr.
0
By (2.27), (3.2) and (3.3), for 0 < k < s + 2, we infer that
t
o (@G0 - 2@) ||, < / [0:G(t =)+ A(f (@) - f(@)] » d=
0

< C/of(m_f)—%—%—%ltf(m S @]y de

(3.7)

(3.8)

(3.10)

(3.11)

Page 9 of 15
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i C / U+t —) 3k (F(@) —f @) | d

+C / e g (f @) ~f@) | 2 dz

1

scf (Lt £ =083 (Jiall e + Nall2) I — il de

o€ [ em o (ol + |26 )1 Bl

2

+ (Nl 2 + izl 2) |05 G — )| o } dT

t
v [ e (ol o+ [0k o)

+ (Nallzoe + izl o) || 05 @ — )| > } d

t

2 n n
< CR||£¢—L7||X/ (+t-7) 8131+ i3 dr
0

t
n n_k
+CRla-ally [ (+t-1) 831+ ¥ 1 dr

~ NI~

+CR|12—Z¢||X/ =) (1 4 ) ¥ i gr
0
n_k_ 1 _
<CRQA+8) 57172 lu—ulyx,
which implies
k

1+ 0)§4802 |0 (D(@) - D@) | ,» < CRIlG - . (3.12)

Similarly, for 0 < & <, from (3.11), (2.28) and (3.2), (3.3), we deduce that
Jot (@) - 0@), |, = [ [ol6ite - o)« M@ @]
< cfju Ft—T)y 8T (F@) - @) |, dr
+C/ Q+t-1 2H8h(f(u l?t))”der
b
e [Nt @)

< CRAL+ 0 ¥4 3 it -,
which gives

(1+0875°3 |9 (0(@) - D@),| ., < CRIlit - tllx. (3.13)

Combining (3.12) and (3.13) and taking R suitably small yields

|®@@) - o@)|, < = ll# - ilx. (3.14)
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From (3.10) and (3.14), we know that ® is a strictly contracting mapping. Consequently,
we conclude that there exists a fixed point # € Xy of the mapping ®, which is a solution
to (1.1), (1.2). We have completed the proof of the theorem. O

4 Global existence and decay estimate ()

In the previous section, we have proved global existence and asymptotic behavior of so-
lutions to the Cauchy problem (1.1), (1.2) with L! data. The purpose of this section is to
establish global existence and asymptotic behavior of solutions to the Cauchy problem
(1.1), (1.2) with L? data. Based on the decay estimates of solutions to the linear problem
(2.1), (1.2), we define the following solution space:

X = {u e C([0,00); H***(R")) N C*([0, 00); H*(R")) : ||l x < 00},

where

||u||X=sup{ Z 1+t §+%”a u(t ||L2 +Z 1+ %"%Hahut t)”ﬂ}

£20 k<s+2 h<s

For R > 0, we define
Xp={ueX:|ulx <R}
Thanks to the Gagliardo-Nirenberg inequality, we get
(@) o = CO+HTED . (4.1)

Theorem 4.1 Suppose that uy € H2R") N H*2(R"), u; € H2R") N HR") (s >
max{0, [n/2] — 1}). Put

Ey = lluoll g2npse2 + llwall r2nps-

If Ey is suitably small, the Cauchy problem (1.1), (1.2) has a unique global solution u(x,t)
satisfying

u € C([0,00); H***(R")) N C*([0, 00); H*(R")).
Moreover, the solution satisfies the decay estimate

|oku(®)] 2 < CEx(1+ £y 53 (4.2)
and

|0ku(®)|| » < CE1(A + 13 ws)

forO<k<s+2and0<h<s.
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Proof Let the mapping ® be defined in (3.6).
For k <s+2,(2.23), (2.24), (2.27), (3.1) and (4.1) give

|0k )| 2 < |95 G(E) * w1 o + C||OSH(E) * uo ] 2
t
+C / 05G(t - 1) * Af (u(r)) | > dr
0
<C+eyis (ollgr-2nps2 + lloallpr-20p0s)

n_k
4

+ C/:(l +t— t)_ﬁ"_% Hf(u) ||L1 dt

" c/ju rt—1) ok )| . de

t
.C / 0 35 ()|, de
0
< CO+ )57 (Lol g2pgeer + 101 | ig-2mpss)

L
2 k_1
+Cf (1+t—t)’%’1’7||u||i2dt
0

¢
+Cé (1+t_t)_%Haa]c(tu”u”Lwdt

t
+C/ e~t-0) ”8fu”L2||u||Loo dr
0
_k_1
< CA+t) 2 (lluoll g2mpse2 + N ll 25

n

t
+ CRZ/Z(I +t— t)’ﬁ’g’%(l +1)Vdr
0

t
+ CR2/ Q+t- r)’%(l + r)’g’%’ldr
t

2
t
+ CRO* f eI + r)—%—%—l dt
0
_k_1
< CA+ )3 2 {(luoll g2mpse + Nl ll opys) + R2}
Thus we get

(1+0)37% |95 D(w)| ,, < CE, + CR. (4.4)
Applying 9, to (3.6), we obtain
t
(), = G,(t) % uy + Hy(t) x ug + / Gi(t - 7) * Af (u(r)) dr. (4.5)
0
By using (2.25), (2.26), (2.28), (3.1), (4.1), for 0 < i <'s, we have
[0 2 = CIGi0) 1 + ClHH.(0 % o]

+ C/o [ 3G, (t-1) * Af (u(r)) ||L2 dt
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_h_3
< CA+ 07372 (luollg2nps + llonllgr-2p0s)

L
+ C/z 1+t- t)_g_%_% Hf(u) ||L1 dt
0
¢ 3
+ C/ I+t-1)2 ||¢’3,i’f(u)||L2 dt
t
2
t
+C [ e alptw)] dr
0
h 3
< COA+ ) 472 {(Iluo | frzpprs2 + Nt ll 2pps) + B2}
This yields
(1+0)377 0" ()| ,» < CEy + CR*. (4.6)
Combining (4.4) and (4.6) and taking E; and R suitably small, we obtain
|o@)|, <R (4.7)
For u, u € Xg, by using (3.6), we have
t
D(i1) — D) = f G(t—7)* Alf (@) —f(@)]dr. (4.8)
0

It follows from (2.27), (3.2) and (4.1) for 0 < k < s + 2 that

o4 (0@ - 0@)] = [ 25601 8(@) @) |

+ Cﬁ L+t 1) 2]k (F@) —f @) d

t
+C / e | af (F i) - f(@)) |2 d
0
k_1. . _
< CRA+1t) 472 ||u - ul|x,
which implies
ko1 . _ - -
1+ 0172 |0 (P(@) - ©(@)) | .2 < CRIli — | x. (4.9)
Similarly, for 0 < & <s, from (4.5), (2.28), (3.2) and (4.1), we infer that

[0 (0@ - &@), | . < /0 |Gl - )+ Alf@) - @], dx

< C/j(l -0 83 (F@) - f@) |, d
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+Cﬂ(h¢—ﬂ%H$U@%fW»Mﬂh

+cﬁeﬂmw¢v@—ﬂmwpﬁ

h_ 3 . _
< CRQA+6)" 72 |l —ullx,

which implies

1 +0)4 3]0 (®@@) - ©(@),| 2 < CRIE - itllx. (4.10)

Using (4.9) and (4.10) and taking R suitably small yields

|G - @@ < 5~ ilx. (a11)

It follows from (4.7) and (4.11) that & is a strictly contracting mapping. Consequently,

we infer that there exists a fixed point u# € X of the mapping ®, which is a solution to (1.1),
(1.2). We have completed the proof of the theorem. d
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