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Abstract

We consider the fourth-order two-point boundary value problem

X"+ kx" + Ix=£(t,x),0 <t < 1,x(0) =x(1) =x'(0) = X'(1) = 0, which is not necessarily
linearizable. We give conditions on the parameters k, / and f(t,x) that guarantee the
existence of positive solutions. The proof of our main result is based upon topological
degree theory and global bifurcation techniques.
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1 Introduction
The deformations of an elastic beam in an equilibrium state with fixed both endpoints can
be described by the fourth-order boundary value problem

&+ Ix = Ah(R)f(x), O0<t<l, )
1.1
x(0) =x(1) =4/(0) =x'(1) = 0,

where f : R — R is continuous, A € R is a parameter and / is a given constant. Since prob-
lem (1.1) cannot transform into a system of second-order equations, the treatment method
of the second-order system does not apply to it. Thus, the existing literature on problem
(1.1) is limited. When [ = 0, the existence of positive solutions of problem (1.1) has been
studied by several authors, see [1-5]. Especially, when [ # 0, Xu and Han [6] studied the
existence of nodal solutions of problem (1.1) by applying disconjugate operator theory and
bifurcation techniques.

Recently, motivated by [6], when k, [ satisfy (A1), Shen [7] studied the existence of nodal
solutions of a general fourth-order boundary value problem by applying disconjugate op-
erator theory [8, 9] and Rabinowitz’s global bifurcation theorem

"+ kx” +Ix=f(t,x), 0<t<],

x(0) =x(1) =4/(0) =x'(1) = 0,

where
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(Al) one of following conditions holds:
(i) k, I satistying (k,1) € {(k,])|k € (—00,0],/ € (0,00)} \ {(O, %)} U{(k, Dk e
(=00, 72),1 € (00, 0]} are given constants with

2

2
nz(k—n2)<l§i(k—%> ; (1.3)

(ii) k, I satisfying (k,{) € {(k,[)|k € (0, ”2—2),1 € (0,00)} are given constants with

4
i(ﬁk- %) << 2/& (1.4)

In this paper, we consider bifurcation from interval and positive solutions for problem
(1.2). In order to prove our main result, condition (A1) and the following weaker conditions
are satisfied throughout this paper:

(H1) £:[0,1] x [0,00) — [0, 00) is continuous and there exist functions ag(£), a°(¢),

bso(t), and b (t) € C([0,1], [0, 00)) such that

ao(t)x — &1(t, %) < f(t,%) < a’(£)x + &(6,%) (1.5)
for some functions &, &, defined on [0,1] x [0, 00) with
&t,x)=ox),  &(tx)=o0x) asx—0 (1.6)
uniformly for ¢ € [0,1], and
boo 05— 01(6,%) < f(,2) < b(O)x + o(t,2) 17)
for some functions {1, ¢, defined on [0,1] x [0, 00) with
&(tx) = o(x), 5o(t,x) =o0(x) asx— o0 (1.8)
uniformly for ¢t € [0,1].
(H2) f(¢,x) >0 for ¢t € [0,1] and x € (0, 00).
(H3) There exists a function ¢(¢) € C([0,1], [0, 00)) with ¢(¢) # 0 in any subinterval of
[0,1] such that
ft,x) > c(t)x, (¢ x)€[0,1] x [0,00). (1.9)
It is the purpose of this paper to study the existence of positive solutions of (1.2) un-
der conditions (Al), (H1), (H2) and (H3). The main tool we use is the following global

bifurcation theorem for the problem which is not necessarily linearizable.

Theorem A (Rabinowitz [10]) Let V be a real reflexive Banach space. Let F:R x V — V
be completely continuous such that F(A,0) =0, VA € R. Let a,b € R (a < b) be such that
u =0 is an isolated solution of the following equation:

u-FAu)=0, ueV (1.10)
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for & = a and ) = b, where (a,0), (b,0) are not bifurcation points of (1.10). Furthermore,
assume that

d(I - F(a,-), B.(0),0) #d(I - F(b,-), B,(0),0), (1.11)

where B,(0) is an isolating neighborhood of the trivial solution. Let

S= {()», u) : (A, u) is a solution of (1.10) with u 7!0} U ([a, b] x {0}).

Then there exists a continuum (i.e., a closed connected set) C of S containing [a,b] x {0},
and either

(i) C is unbounded in V x R, or

(i) CN IR\ [a,b]) x {0}] #9.

Remark 1.1 For other results on the existence and multiplicity of positive solutions and
nodal solutions for boundary value problems of fourth-order ordinary differential equa-
tions based on bifurcation techniques, see [11-20].

2 Hypotheses and lemmas
Let

Lix] :=x"" + kx"" + Ix. (2.1)

Theorem 2.1 (see [7, Theorem 2.4]) Let (Al) hold. Then
(i) L[x] =0 is disconjugate on [0,1], and L[x] has a factorization

L{x] = pa(p3(02(p1(p0x)'))') s (2.2)

where px € C**[0,1] with px > 0 (k =0,1,2,3,4);
(i) »(0) =x(1) =x'(0) =«'(1) = 0 if and only if

(Lox)(0) = (Lox)(1) = (L1%)(0) = (L1x)(1) = 0O, (2.3)
where
Lox = pox,
(2.4)

Lix = ,Ol’(Llle)/, i= 1) 27 3’ 4.

Theorem 2.2 (see [7, Theorem 2.7]) Let (Al) hold and h € C([0,1], [0, 00)) with h(t) £ 0
on any subinterval of [0,1]. Then
(i) the problem

X" () + kx(t) + Ix(¢) = Mh(t)x, O0<t<l,
x(0)=x(1)=x'(0)=x'(1)=0

(2.5)

has an infinite sequence of positive eigenvalues

0<Ai(h) <ro(h) < <Ap(h) < hjn(B) < -+ - (2.6)
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(if) Ax(h) — +00 as k — +00;

(ili) to each eigenvalue \i(h), there corresponds an essential unique eigenfunction Yy
which has exactly k — 1 simple zeros in (0,1) and is positive near 0;

(iv) given an arbitrary subinterval of [0,1], an eigenfunction that belongs to a sufficiently
large eigenvalue changes its sign in that subinterval;

(v) foreach k € N, the algebraic multiplicity of A(h) is 1.

Theorem 2.3 (see [7, Theorem 2.8]) (Maximum principle) Let (Al) hold. Let e € C[0,1]
with e > 0 on [0,1] and e # 0 in [0,1]. If x € C*[0,1] satisfies

X" () + kx" () + Ix =e(t), O0<t<]1,
x(0) =x(1) =«'(0) =x'(1) = 0,

(2.7)

then x>0 on (0,1).

Let Y = C[0,1] with the norm ||x» = maxcpo1 |x|. Let E = C?[0,1] with its usual norm
[l]] = max{||% oo, ||| co» 12" || }- By @ positive solution of (1.2), we mean x is a solution of
(1.2) with x > 0 (i.e., x > 0 in (0,1) and x £ 0).

Let H := L*(0,1) with the inner product (-,-) and the norm || - ||;2. Further, define the
linear operator L:DOL)CE—Y

Ix=x"+k& +1x, xeDQ) (2.8)
with
D() = {x € C*[0,1]]x(0) = x(1) = x(0) = #'(1) = 0}. (2.9)

Then I is a closed operator and I':Y—>Eis completely continuous.

o~

Lemma 2.4 Let Y be the first eigenfunction of (2.5). Then, for all x € D(L), we get
(Lx, 1) = (L) (2.10)
Proof Obviously, Vx € D(f), we have

¥1(0) =1 (1) = ¥1(0) = ¥1(1) =0, x(0) =x(1) =«'(0) =«'(1) = 0.

Integrating by parts, we obtain

1
(Lx,yn) = / [« (t) + k' (&) + Lx(t) |y (8) it
0

1
_ / KO[W" () + Kyl (€) + b (©)] dt = 1, Tyn). .
0
Let ¥ C R* x E be the closure of the set of positive solutions of the problem

Lx = Af(t,x). (2.11)
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We extend the function f to a continuous function f defined on [0,1] x R by

- B ft.x), (t,x)e[0,1] x [0,00],

ftx) = (2.12)
f(t,0), (t%)€[0,1] x (-00,0].

Thenf(t,x) > 0 for (£,x) € [0,1] x R. For A > 0, let x be an arbitrary solution of the problem
Lx = Af (£, %). (2.13)
Since )f(t,x(t)) > 0 for ¢ € [0,1], we have x > O for ¢ € [0,1]. Thus x is a nonnegative
solution of (2.11), and the closure of the set of nontrivial solutions (A, x) of (2.13) in R* x E
is exactly X.
Let N : E — Y be the Nemytskii operator associated with the function f
N@)(t) =f(t,x), x€E. (2.14)
Then (2.13), with A > 0, is equivalent to the operator equation

x=A"'N(x), xeE. (2.15)

In the following, we shall apply the Leray-Schauder degree theory, mainly to the mapping
o, :E—E,

@, (x) = x — AL N (). (2.16)

For R> 0, let Bg = {x € E: ||x|| < R}, and let deg(®;, Bg, 0) denote the degree of ®; on Bg
with respect to 0.

Lemma 2.5 Let A C R* be a compact interval with [11(a®), M (ag)] N A = @. Then there

exists a number 81 > 0 with the property
@, (x) #0, Vx€E:0< ||x]| <&,VAe€A. (2.17)
Proof Suppose to the contrary that there exist sequences {u,} C A and {x,} in E: u, —
u* €A, x, — 0in E, such that ®,,,(x,,) = 0 for all # € N, then x,, > 0 in [0,1].
Set y,, = %/ %, ||. Then Ly, = )%, || "N (%) = |2l (¢,,) and ||y, || = 1. Now, from
condition (H1), we have the following:

a0 (), — E1(t, %) < f(t, %) < a’ ()% + E2(8, %), (2.18)

and, accordingly,

(2.19)

Sl(t!xn)> < f(tixn)

n
(B (B

EZ(tvxn))

< In <a°(t)yn T

Mn <“0(t)yn -

Page 5 of 12
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Let ¢° and ¢, denote the nonnegative eigenfunctions corresponding to () and
M (ao), respectively. Then we have, from the first inequality in (2.19),

<Mn <ao(t)yn - El(t’x")),¢o> < < f(t’x"),¢o> = Ly o). (2:20)

Hon
(B (B

From Lemma 2.4, we have

Ly 90) = Y Lo) = A1(@0) (Vs a0 (£)0)- (2.21)
Since x,, — 0 in E, from (1.6) we have

Sl(tr xn)

[l

— 0 as|x,||— 0. (2.22)

By the fact that ||y, || = 1, we conclude that y, — y in E. Thus,

(s a0(O)p0) = (¥, a0 (). (2.23)
Combining this and (2.21) and letting » — oo in (2.20), we get

(w*ao(®)y, po) < M(ao)|ao(t)eo,¥)s (2.24)
and consequently

w* < rilao). (2.25)
Similarly, we deduce from the second inequality in (2.19) that

M(a®) < pt. (2.26)
Thus, A1(a®) < u* < A(ap). This contradicts u* € A. O

Corollary 2.6 For A € (0,1,(a®)) and § € (0,5,), deg(®;,Bs,0) = 1.

Proof Lemma 2.5, applied to the interval A = [0, A], guarantees the existence of §; > 0 such
that for § € (0, 87),

X — rkf’lN(x) #0, x€E:0<|«x|| <8,7€l0,1]. (2.27)
Hence, for any § € (0, 8;),
deg(‘mes, 0) = deg(L B(S’ 0) =1, (228)

which ends the proof. O

Page 6 of 12
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Lemma 2.7 Suppose A > A1(ao). Then there exists 8 > 0 such thatVx € Ewith 0 < ||x|| < 63,
VT >0,

D;.(x) # T9o, (2.29)

where @ is the nonnegative eigenfunction corresponding to ri(ao).

Proof We assume to the contrary that there exist 7, > 0 and a sequence {x,}, with ||x,|| > 0
and ||x,|| — O in E, such that ®; (x,) = 1,9 for all » € N. As

Lty = AN (%) + Tura (@0)ao(H)po (2.30)
and t,A1(ag)ao(t)po > 0 in (0, 1), it follows that

%, >0, tel0,1]. (2.31)
Notice that x, € D(L) has a unique decomposition

Xy = Wy + SpPo, (2.32)
where s, € Rand (w,, ao(t)@o) = 0. Since x,, > 0 on [0,1] and ||x, || > 0, we have from (2.32)

that s,, > 0.
Choose o > 0 such that

o< %1(%). (2.33)
By (H1), there exists r; > 0 such that

|§1(t,x)| <oap(t)x, te[0,1],x€[0,n]. (2.34)
Therefore, for ¢ € [0,1], x € [0, 1],

ft,x) = ap(t)x — &1(¢,x) = (1 - 0)ag(t)x. (2.35)
Since ||x,|| — 0, there exists N* > 0 such that

0<x,<n, VYn>=N~ (2.36)
and consequently

f(t,x,) = (1= 0)ag(t)x,, VYn=N". (2.37)
Applying Lemma 2.4 and (2.37), it follows that

suh1(@0)(o, @0(2)o) = (%, Leo) = (L, o) (2.38)

= MN (%), @o) + Tu1(@o)(ao(t)@o, vo)

Page 7 of 12
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> AN (%), o) = M1 = 0)ao ()%, vo)

M1 = a)ao(t)po, xx)

= A(1 = 0)sn(ao(t)po, po)- (2.39)

Thus,
Mlao) > A1 -0). (2.40)
This contradicts (2.33). a

Corollary 2.8 For & > Aj(ag) and § € (0,8,), deg(P;,Bs,0) = 0.

Proof Let 0 <8 < §,, where &, is the number asserted in Lemma 2.7. As &, is bounded in
Bj, there exists ¢ > 0 such that ®; (x) # cgo for all x € Bs. By Lemma 2.7, one has

D, (x) #Tcpy, «x€03Bs, T e[0,1]. (2.41)
Hence

deg(®;, Bs, 0) = deg(®;, — cgg, Bs,0) = 0. (2.42)

O

Now, using Theorem A, we may prove the following.

Proposition 2.9 [1;(a’), A(ao)] is a bifurcation interval from the trivial solution for (2.15).
There exists an unbounded component C of a positive solution of (2.15), which meets
[11(a®), M(ao)] x {0}. Moreover,

CN[(R\ [A1(a®), Mla0)]) x {0}] = 2. (2.43)

Proof For fixed n € N with A1(a®) - X > 0, let us take that a, = 21(a®) - %, b, = 21(a0) + 2
and 8 = min{4y, 8,}. It is easy to check that for 0 < § < §, all of the conditions of Theorem A
are satisfied. So, there exists a connected component C, of solutions of (2.15) containing
[an, b,] x {0}, and either

(i) C, isunbounded, or

(ii) CuN[R\ [ay, bu]) x {0}] #90.

By Lemma 2.5, the case (ii) cannot occur. Thus C, is unbounded bifurcated from
[a,, b,] x {0} in R x E. Furthermore, we have from Lemma 2.5 that for any closed in-
terval I C [a,, b,] \ [L1(a®), Ai(ao)], if x € {x € E|(A,x) € X,A € I}, then |x|| = 0 in E is
impossible. So, C, must be bifurcated from [1;(a®), A1(a0)] x {0} in R x E. a

3 Main results
Theorem 3.1 Let (Al), (H1), (H2), (H3) hold. Assume that either

M(boo) <1< 2q(a°) (3.1)
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or
Mlag) <1< (boo), (3.2)

then problem (1.2) has at least one positive solution.

Proofof Theorem 3.1 It is clear that any solution of (2.15) of the form (1, x) yields a solution

x of (1.2). We will show that C crosses the hyperplane {1} x E in R x E. To do this, it is

enough to show that C joins [A1(a®), A1(a0)] x {0} to [A1(5>), A1(hoo)] x {00}. Let (1, x,) €
C satisfy

Mo + |2, ]| = 00. 3.3)
We note that u, > 0 for all n € N since (0, 0) is the only solution of (2.15) for A = 0 and
CN({0} xE)=40.
Case 1. M (bso) <1< 21(a).
In this case, we show that
()xl(boo),)\.l(ﬂo)) - {)\. € R|(A,x) (S] C}.
We divide the proof into two steps.
Step 1. We show that {,} is bounded.
Since (y,x,) € C, Lxy, = u,f(t,x,). From (H3), we have

Lx, > puc(t)x,. (3.4)

Let ¢ denote the nonnegative eigenfunction corresponding to A1(c).

From (3.4), we have
(L% @) > tnc(6)xn, @). (3.5)

By Lemma 2.4, we have

M) c(O)@) = (50, LG) = pn(c(t)@, x). (3.6)
Thus
n < A(c). (3.7)

Step 2. We show that C joins [A;(a®), 11(a0)] x {0} to [A1(6™°), A1 (boo)] x {00}
From (3.3) and (3.7), we have that ||x,|| — co. Notice that (2.15) is equivalent to the

integral equation

1
xn(£) = pn /0 G(t,)f (s, %u(s)) ds, (3.8)
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which implies that

1
o f Glt,)[Doo(2n(5) — £1(5,5(5))] s
0

<x,(t)
1
<100 [ G609 + 6s,6)] . (39)
0
We divide both of (3.9) by ||x,|| and set y, = Hzﬁ Since ¥, is bounded in E, there exists

a subsequence of {y,} and y* € E, with y* > 0 and y* % 0 on (0, 1), such that
Uy — (1, Yy —y* inE, (3.10)

relabeling if necessary. Thus, (3.9) yields that

1 1
W [ Gty ©ds <y 0 < [ b6y ds (3.11)
0 0
which implies that
Wb (t)y* < Ly* < n*b™(t)y* < Ly*. (3.12)

Let 9> and ¢, denote the nonnegative eigenfunction corresponding to 1;(6*°) and
M (bso), respectively. Then we have, from the first inequality in (3.12),

(1 boo ()Y, 900) < (", 9o0).
From Lemma 2.4, integrating by parts, we obtain that
W oo ()Y, 9o0) < (LY, 90) = (Lpoor ) = 21 (boo) (boo (B) o 1),
and consequently
1 < A(boo). (3.13)

Similarly, we deduce from the second inequality in (3.12) that

(b)) <. (3.14)
Thus
M (6%°) < u* < M(boo). (3.15)

So, Cjoins [A1(a%), 11(a0)] x {0} to [A1(b™), A1(bos)] x {00}
Case 2. M(ag) <1 < Aq1(b™).
In this case, if (1, x,) € C is such that

nlingo(ﬂn + ”xn”) =00
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and

lim w, = oo,
n— o0

then

(M(@0), 21(6™)) € {A € (0,00)(A,x) € C} (3.16)
and, moreover,

(L} xE)nC#0. (3.17)

Assume that {u,} is bounded; applying a similar argument to that used in Step 2 of
Case 1, after taking a subsequence and relabeling if necessary, we obtain

Wy — u* € [Al(ao),)q (b°°)], |, = 00 asn— oo. (3.18)

Again C joins [A1(a®), M1 (ao)] x {0} to [A(5%), 11(boo)] X {00} and the result follows. [
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