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1 Introduction and main results
This paper is concerned about the existence and uniqueness of the weak solutions to the

non-Newtonian magneto-micropolar fluid equations in Q x (0, T'), which are described
by

e+ (- Vu —div(le(w)P~2e(w)) + V(r + 3|b|*) = x rotw + (b - V)b,
wi+ (- V)o—puAw+2xw = x rotu,

by —AAb+wu-V)b—(b-V)u=0,

divu=divb =0,

(1.1)

here 2 € R? is an open-bounded domain with Lipschitz boundaries, and the unknowns u,
w, b,  denote the velocity of the fluid, the micro-rotational velocity, magnetic field and
hydrostatic pressure, respectively. x, i, A are positive numbers associated with properties
of the material: x is the vortex viscosity, u is spin viscosity and % is the magnetic Reynold.
In (1.1), e(x) is the symmetric part of the velocity gradient, i.e.,

2e(u) = Vu + (Vu)T.
To (1.1) we append the following initial and boundary conditions

u(x, 0) = ug(x), w(x,0) = wo(x), b(x,0) = by(x), Vxe&, (1.2)

ulx, t) = w(x, t) = b(x,t) =0, V(x,t)e X7, (1.3)

where X7 =090Q x (0, T).

The theory of micropolar fluid was first proposed by Eringen [1] in 1966, which enabled
us to consider some physical phenomena that cannot be treated by the classical Navier-
Stokes equations for the viscous incompressible fluid, for example, the motion of animal
blood, liquid crystals and dilute aqueous polymer solutions, etc.
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If p = 2, system (1.1) reduces to the classical magneto-micropolar fluid equations, and
there are many earlier results concerning the weak and strong solvability in a bounded do-
main Q € R3. For strong solutions, Galdi and Rionero [2] stated, without proof, the results
of existence and uniqueness of strong solutions. Rojas-Medar [3] studied it and established
the local in time existence and uniqueness of strong solutions by the spectral Galerkin
method. In 1999, Ortega-Torres and Rojas-Medar [4] proved global existence of strong
solutions with the small initial values. For weak solutions, Rojas-Medar and Boldrini [5]
proved the existence of weak solutions, and in the 2D case, also proved the uniqueness of
the weak solutions.

On the other hand, there are few existence results about the non-Newtonian magneto-
micropolar fluid, i.e., the p # 2 case. In a recent work, Gunzburger et al. [6] studied the
reduced problem (with both w = 0 and x = 0), and gave the global unique solvability of
the first initial-boundary value problem in a bounded two or three-dimensional domain.
Improved results are proved for the periodic boundary condition case.

In this paper, we will prove the global existence and uniqueness of the weak solutions
for the full system (1.1)-(1.3) under the condition that p > % These results are based on
the Galerkin method and a series of uniform estimates, which do not depend on the pa-
rameters.

Throughout this work, we use a standard notation L7(2) (normed || - ||,,) for Lebesgue
L?-spaces, as well as W*?(Q2) (normed || - llx,p) for the usual Sobolev spaces. As usual,
C5°(2) denotes the set of all C*-functions with the compact support in Q. Given T > 0
and a Banach space X, we denote by L7(0, T; X) Bochner spaces, which are equipped with

the norm

T 1
q q
- lastoro0 = ( / BE ds) .
0

We also introduce the following functional vector spaces:

V={ueCEQ),divu=0},
H = the closure of V in L*(),

V,, = the closure of V in WP (Q).
We next introduce the definition of a weak solution for problems (1.1)-(1.3).
Definition 1.1 We say that (4, w, D) is a weak solution to problems (1.1)-(1.3) if

ueLl>(0,T;V,), u, € L*(0, T; H),

w e L®(0, T; W"(Q)) N L*(0, T; W>(R)),
(1.4)
b e L™(0,T; V2) N L*(0, T; W**(R)),

w, € L*(0, T; WH(Q)), b, €L*(0,T;H)
satisfy

(U, ) + (|e()|"e(w), e(@)) = x (rotw, ) + (b - V)b, ¢) — (1t - V), )
forall¢ e V,, (1.5)
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(W) + w(Veo, V) = x (rotu, vr) = ((u - VI, ¥) = 2x (0, %)
for all Y € W2(), (1.6)

(b, n) + A(Vb,Vn) = ((b “Vu, 7]> - ((u - V)b, 77)

for all n € V>, 1.7)

where the symbol (-, -) denotes a generic duality pairing.

The following theorem gives the main results of this paper.
Theorem 1.1 Let Q € R3 be an open-bounded domain with a Lipschitz boundary 3. As-
sume that p > %, uy € WY (), wo, by € WY(Q). Then, for VT € (0, +00), there exists a

unique weak solution to problem (1.1)-(1.3) in the sense of Definition 1.1.

Remark 1.1 If (1.4)-(1.5) hold, it could be easy to introduce the pressure = € L*(0, T;
L7 (Q)), p' = p/(p - 1). This will be done at the end of Section 3.

For latter use, let us state some useful inequalities.

Lemma 1.1 (See [7]) (Korn’s inequality) Let 1 < p < 0o. Then there exists a constant C, =
C,(R2) such that

Collviy < ||e(v) ”p forallve Wé’p(Q), (1.8)
where Q € R” is open and bounded with a Lipschitz boundary.

Lemma 1.2 (See [8]) (On negative norm) Let 1< p < 00, and let v € Wé’p(ﬂ). Then there
exists a constant C such that

Clvlly = Vll-p + IVVI-1p-

Lemma 1.3 (See [9]) Let v,w € WY?(Q). For each 2 < p < oo, there exists a constant C' =
C'(p) > 0 such that

let) -ew)|” < C' fQ (lem)|"*ew) - [e(w)|"*e(w)) (e(v) — e(w)).
By using Holder’s inequality and the imbedding inequality, we could arrive at
letllm < COm, )| Vaall, + Clom, 1)1l 1.9)
with

m<3r/(3-r) forrell,3),
foranym<oo forr=3,

m= 00 for r > 3.
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Here, C(m,7) = 0 if u|yq = 0 or Jo udx = 0. We will also apply the so-called multiplicative

inequalities

lully < C@IVuls - llulls™ + C(@)lulls (1.10)

ot:3<l - l) e€[0,1], gqe€l2,6].
2 q

If ulyq = 0 or [, udx =0, then Clg) =0.

Finally, the paper is organized as follows. In Section 2, we focus on the derivation of the
priori estimates for the smooth solutions. On the bases of these estimates, in Section 3,
we get the existence result with the help of the Galerkin method. The aim of Section 4 is

to give the uniqueness criterion.

2 The priori estimates
Let (&, w, b) be a smooth solution to system (1.1)-(1.3). The goal of this section is to derive
some priori estimates about it. In all the following sections, we always assume that p > %
holds.

Setting ¢ = u in (1.5), ¥ = w in (1.6), n = b in (1.7), and observing that ((x - V)u,u) =
(- V)w,w) = {(u-V)b,b) =0, we obtain

E%HMH% + ||e(u) ”;’ = x (rotw,u) + <(b - V)b, u),
Eﬁllwlli + 1l Vool + 2x lol5 = x (rotu, w),
%%nbn% + 1Bl = (b Vu,b).

Adding the identities above, noting that ((b- V)b, u) + {(b- V)u, b) = 0, and Korn’s inequality
(1.8), we get

| &

(lull3 + loll3 + 1613) + (Coll Valls + ml Voll3 + 2x ol + A VAI3)

N =
QU

t

= x (rotw, u) + x (rotu, )
<Cx(IVoly - llullz + Va2 - llol)
<e(IVoll + IVul?) + Ce(loll; + #]3)  (for p > 2).

After choosing ¢ properly small, integrating over (0, £), ¢ € (0, T], the Gronwall’s inequality
yields that

T
S(llp)(llullg + ol + 15113) +/ (IVull + IVeli3 +11VDII3) < Cy, (2.1)
te(0,T 0

where C; is a constant depending on the time T and |luoll2, |[Woll2, |ol2-

Page 4 of 13
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Next, we derive the higher order estimates for @ and b. Setting ¥ = —Aw in (1.6), we find

1d

5 dtnw)ng +ullAwl3 = (1 Vo, Aw) + 2x (0, Aw) - x (rotu, Aw)

< |- Vo, Ao)| + el Awl} + C.(lol3 + IVu3) (2.2)

for the first term on the right hand side, we compute by the divergence free conditions

|((u -V, Aa))| =

Z (Orcti 9w, Ogeewy)
ijk

< c/ IVul|Vol? < C|[Vul, - [Vol?,
Q p-1
2p-3 3
<ClIVull, - (IVoll,” - Aol +[Vol3)

2p

<ellAol} + ClIVul,”™ - IVl + CliVull, - | Vall3, (2.3)

where Holder’s, Young’s inequality and (1.9), (1.10) have been used.
Inserting (2.3) into (2.2), choosing & = £ and integrating over (0, ), ¢ € (0, T], we have

1 w !
SVl + 5 [ ol

2p

t t
- 1
< C/ (IVull,” +IVull,) - Vo3 + C/ (llwll3 + [IVa]l3) + 5||Vwo||§
0 0

1) t 23 , 1 )
< C | (IvVull,”” +IVull,) - IVoll3 + 3 IVaxll; + Ci, (2.4)
0

since p > 5 we have

2p
— <p. 2.5
2p-3 (2.5)

Gronwall’s inequality and estimate (2.1) now provide the bound

T
sup IIVw||§+/ |Aw|3 < Cy, (2.6)
te(0,7T) 0

where C, is a constant depending on the time T, C; and ||Vayl|2.
Next, set n = —Ab in (1.7) to discover

1d
5 71 VP13 + AIABIS = (- V)b, AB) ~ (b V), AD)
< (G- V)b, AB)| + |((b- V)u, Ab)|. (2.7)
Reasoning similar to (2.3), we could find

2p
P

(- V)b, AB)| < el ABIIS + CelIVull,”™ - I1V]5 + Cl[Vul, - 1 VD5 (2.8)
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For the second term on the right hand side of (2.7), we compute

(- V)u, Ab)|
<ellAbI2+Co|(b- V)ul;

< ellAbl; + CelIVull - 1151,

p-2
<ellAbl + Cel|Vaully - VB,
5p—6

2(2p-3) 2(3-p)

<ell MBI+ ColIVul2- (IVBl, © - 14bl, " +(VbI3)

2p

< el|AB|3 + 8[| AbII3 + Cesl| Vael, - IIVBIS + Cel Vel - VB3, (2.9)
where we have used Holder’s, Young’s inequality and (1.9), (1.10). Choosing ¢ and § prop-
erly small, inserting (2.8)-(2.9) into (2.7) and integrating it over (0,¢), ¢ € (0, T], we find

1 2 A 2 ! b 2 2, 1 2
5||Vb||2 t3 IAbl; < C | (IVullp,” +11Vull,) - VDI + §||Vb0||2. (2.10)
0 0

Observing (2.5) and estimate (2.1), then Gronwall’s inequality yields

T
sup [VB]2 + / 1AbIE < s, @.11)
te(0,T) 0

where Cjs is a constant depending on the time 7', C; and || Vby||5.-
Reasoning analogously to (2.6) and (2.11), it is easy to see that identity (1.6) with ¥ = wy,
(1.7) with n = by, with the help of (2.6) and (2.11), guarantee the estimate

T T
/ lwell3 < Ca, / 16115 < Cs, (2.12)
0 0

where Cy4, C5 are both constants depending only on the time 7 and some norm of the
initial values.
In fact (we here only take b, as an example), set n = b, in (1.7), we deduce that

Ad
16013+ 5 IVBI; = [{(b- V), )| + [{(as - V)b, )|

< 8||bt||% + CE(”(b- V)u”i + H (u - V)b”;). (2.13)
Now, we compute, by using Hélder’s, Young’s inequality and (1.9), (1.10)

|- V)u| < Va2 I161%,
2

2p

<C(Ivulb+1b1%, )
p-2

2p
p-2
< C(IVulz + Vb " )
5p-6
2(2p-3) 2(3-p)

2p
< ClIVullh + C(IVbl, "7 - IABI," +(VBIS7) (2.14)
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and
|Ge- VB3 < llulls, - 195112,
3-p 5p-6

< ClIVully - Vbl
5p—6

2p

<C(Ivulb+ Vbl )
56
2(2{7;3) 2(3:2;7) %
< ClIVullb + C(IVBl, ™ - 1ADbI,"™ +IVDI5™). (2.15)
Combining (2.13)-(2.15), by choosing ¢ = %, we arrive at
1 , Ad , 22p-3) 26-p) 2
SNy + == IVDI; < C(IVull + VBN, "™ - | ABIL™ +1VbIS™),
2 2 dt
noting that p > g, s0 2(3 - p)/(p —2) < 2, and now estimate (2.1), (2.11) and Gronwall’s

inequality imply the estimate of b, in (2.12).

In the following, we will derive the bound for ;. Setting n = u; in (1.5), we deduce that

1d
laae 3 + i e

<|(®- V)b, )| + (- V), )| + x| (rote, uy) |

<ellud?+ Co (|- V)b + |- Vyuls + [Vl3).

Integrating it over (0,£), t € (0, T], by choosing ¢ = § and Korn’s inequality, we have
1(f 2 ‘ 2 2
5AHWM+CNVM$SCA(WUVML+WwVWM%H& (2.16)

Now, we compute, by (2.11)

t t
fo ||<b~V>b||§sf0 1612 - 1V B2

t
=< C/ IVDI3 - (IVBllz - 1 ABl2 + I V5I3)
0

t

<C sup Vb5 [ 14Dl +C sup [[VbIl; -t
0

7€(0,2) 7€(0,t)
<Ci1+T), (2.17)
t 9 t t
[ el = [y, g <c [ v 218)
0 0 p-2 0

Inserting (2.17)-(2.18) into (2.16), by appealing to Korn’s inequality, it follows that

t t
IVully +/0 lluell < C/O IVulll - IVull,™ + Cs + Cll Vuo 1, (2.19)
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where Cq depends on T and Cs. Now, Gronwall’s inequality and (2.1) yield that

T
sup ||Vl + / el < o, (2.20)
te(0,T) 0

where C; depends on the time T, C;, C3 and || V|| .

3 Approximate solutions and existence result

In this section, we show the existence of a weak solution to the system (1.1)-(1.3) via the
Galerkin approximations. For this purpose, we take the set {¢'}%°, formed by the eigenvec-
tors ¢!, i =1,2,..., of the Stokes operator and the set (! 172, formed by the eigenvectors
Vi, i=1,2,..., of the Laplace operator. According to the Appendix of [7], the functions
{¢'}%, form a basis in the space V), and Vo N W>%(Q). Setting Ry = span{¢',¢?,...,¢*}
and S = span{y/}, ¥2,..., ¥}, we construct the Galerkin approximations {X, X, b*} be-
ing of the form

k k k
W)=Y af0d'@); @) =) dOVE; b =) di6¢'Ex)

i=1 i=1 i=1

where a* := (a’f,...,allg), ck = (c’f,...,cf), d* .= (d{‘,...,d’,;) solve the system of ordinary
equations

() + (o) (), (@) = xlrota, g) (8- V)05 0} - (- V)i )

for all ¢ € Ry, 3.1)
(ks )+ 1V, V) = xfrotsd, )~ (- ¥)ak )~ 2x{o )

for all Y € S, (3.2)
(65, 0) + A0, 99) = (6 - 9 )ul) - (- V)0, )

for all ¢ € Ry. (3.3)

k

Moreover, we require that u¥, %, b* satisfy the following initial conditions

k k k

Wi =Y (u0,0)¢',  limo=) (00, W)W, Pleo=Y (bo,d)¢’. (34)

i=1 i=1 i=1

The local solvability is guaranteed by the Carathéodory theorem, and the global unique
solvability follows from the fact that

k

sup H Wk (t) ||§ = sup (czf(t))2 <C,
te(0,7) te(0,T)

k
Ko)|? = k1)’ <,
o '@, tg;;g);(cl( )" =

k
sup ku(t) Hi = sup Xj(oz'f.‘(t))2 <C

te(0,T) te(0,7) i-1

Page 8 of 13
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with upper bounds C that do not depend on k. Moreover, we have for u*, »* and b* the
same estimates for all norms we have obtained in Section 2. More precisely, we have

T
sup ||u* o sup || Vu e / w3 < C,
te(0,7) te(0,T) 0
¢ , T
sup o],y [ 1ol [ ledsc 65
te(0,T) 0 0

t T
w [0, [ [ ieagsc
t€(0,T) 0 0

with a constant C that does not depend on k.
Uniform estimates (3.5) imply that there exists a subsequence of {#*}, {w*} and {$*} (not
relabeled) such that

Uk —u, weak-*in L*(0, T; H) N L¥(0, T; V,),

o' = w, weakly in L*(0, T; W>*(R)) and weak-* in L (0, T; W**(Q)),
b* —~ b, weaklyin L2 (0, T; Vo N W**(Q)) and weak-* in L*(0, T; V5),
uf — Uy, b’t‘ — b;, weaklyin L*(0, T; H),

a)f — w;, weaklyin L? (0, T; LZ(Q)),

le(u)["*e(u*) — A, weaklyin L¥ (0, T; 17 (%)),

where p’ = p/(p — 1). Therefore, by making use of the Aubin-Lions lemma (see Lions [10],

Theorem 1.5.1), we have

Wk > u, strongly in L*(0, T; H),
o — w, strongly in L*(0, T; W"(R)),

bk — b, strongly in L*(0, T; V5).
With the convergence above, it is easy to pass to the limit as k — oo in (3.1)-(3.3) to find

(U, @) + (A, €(@)) = x (rotw, @) +((b- V)b,¢) - ((u- V)u,¢)
forallp € V,, (3.6)

(@i, ) + 1{V, V) = x {rotu, ¥r) = ((u - V), ) = 2x (@, ¥)

for all € W**(Q), (3.7)
(b ®) + M(VD, V) = ((b- V)u,p) - ((u- V)b, ¢)
forall ¢ € V5. (3.8)

Next, to complete the existence proof, we need to verify that

A = e e(w). (3.9)

Page9of 13
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By Lemma 1.3, we have

IA

|e(u*) - e(u)||§ c fg(|e(u") e (i) - le(w)|"e(w)) (e(u") - e(w))

C// |e(u*) ’pize(uk)e(uk)—/Q|e(u)|p72e(u)(e(uk)—e(u))

- [ el el et

«a;»X<mtwk,uk>+<<bf«v>bk,u> o

f|e(u)|p e(u)( e(u) /| )e(u).

Considering limy_, , of this identity together with (3.6) implies that
: k p
Jlim e() - et <0,

and thus (3.9) follows.

Having the estimates

<C, (3.10)

”M”LOC 0.T;Wa? (@) ”w”LOG(O,T;Wé’Z(Q))’ ”b”Lw(o,T;Wa'z(sz))

we can now introduce the pressure from (1.5). For ¢ € (0, T], define the functional F €
WL (Q) as

(F,£) := (div(|e(w)|”"e()), &) + x (rotw, &) — (b x rot b, £)
— (- V)u, &) - (u, €).

We have
(F,£)=0, VéeV, aete(0,T].

By using De Rahm’s theorem (see [11], Lemma 2.7), we obtain a function 7 € L¥ () such
that

F=-Vrm, aete(0,T].

Moreover, due to estimates (3.10),
IVl 1 () = C, ae.te(0,T].

Then, by Lemma 1.2, there is a generic constant C, depending only on the data such that
I7lly <C, aete(0,T].

Now, we complete the proof of the existence part of Theorem 1.1.

Page 10 0of 13
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4 Uniqueness criterion
Let (u1,@1,b1) and (13, s, by) be both solutions of the problem. Then, for their difference
il =ty — thy, & = w) — wy, b = by — by, we have
(i, 9) + (|eCu) ") - [e(ua)|" " e(u2), €(9))
= x (rot, @) + (b1 - V)b, ¢)
+{(b-V)ba, @) — (w1 - V)it,¢) — (it - V), ¢) forall g € V,, (4.1)
(@0 ¥) + (Y@, V) + 2x (@, 1) = x (roti, ) — (w1 - V)@, ) = (@ - Voo, ¥)
for all Y € W2(), (4.2)
(be,n) + A(Vb, V) = (b1 - V)it,n) + (b - V)uz, 1) — (w1 - V)b, 1) — (it - V)b, )

for all n € V5. (4.3)

Taking ¢ = u in (4.1), by Lemma 1.3 and the fact that ((z; - V)i, #) = 0 and p > 2, we obtain

1d _ _ - = _ _ _ =
E%HMH% + Gl V|l < x (rota, u) + ((b . V)bz,u) - ((u . V)Mz,bt) + ((bl - V)b, u)

3
= Ji+((b1-V)b,a)
i=1

for each J;, i = 1,2, 3, it follows from Hoélder’s, Young’s inequality and (1.9), (1.10) that

N < x|(rot@,@)| < x IVl - lall, < el Vall3 + Cellall,
Jo < |((B-V)bs, )| < IVhslls - 1blls - 1]l < C(I1Aala + [Vball2) - IVD, - ],

< el Vb3 + C.(I1Aba 13 + IV |13) - llall3,

2p-3 3
— - -2 -7 —
Js < (@ - Vug,a)| < IVusllp - il < Vsl - 20, - [IVall;
p-1

2p
=112 -3 =2
<e| Vil + CellVua |, - llull3,

so, we have

R TEATYA A4
5 7 I3 + Gl vy
<e(IVil + Va3 + 1VD3)

2p

+ Ce(L+ IVBal3 + 1 AB |3 + [ Vuiall,)7°) - Natll3 + By - V)b, ). (4.4)
Taking ¥ = @ in (4.2) and noting that {(¢; - V)®, ®) = 0, it follows

1d _ _ _ o _ _
—— @3 + nllVal3 +2x @13 = x (rotit, @) — (i - V)ws, @)

2dt
2
le‘,
i1

Page 11 0f 13
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andfor[;,i=1,2,

L < xIIVily - @2 < eVl + Celldl3,
L < Vol - @3- 172 < C(IAwalla + [ Vanll2) - IVl - |l

=2 2 2\ 172
<ellVals + Ce(lAmal + Vs ll3) - llll3,

thus, we obtain

1d _ - _ - -
Eallwlli + pllVall; < e(IIVal3 + IVall3) + Cellall;
+ Ce(llAma 5 + IVall3) - l1]5. (4.5)

Similarly, by taking 1 = b in (4.3), reasoning analogous as above, we could get

1d - - . _
Mnbn% + A VDI3 < ellVBIZ + Co (I A1 + 1IVD,13) - lli2]13
2p _ _
+ CellVuall,” - 16113 + (b1 - V)iz, b). (4.6)

Adding (4.4)-(4.6) and observing that ((b; - V)b, i) + ((by - V)i, b) = 0, after choosing ¢
properly small, we finally get

| &

(3 + @113 + 16113) + C(IIVall3 + | Vall3 + [V]3)

| =
.

t
< CF®) - (lall3 + lloll3 + 1513)

with

2p

F(@) =1+ [Vbal5 + |Abs 5 + | Vasall," + I Vanll3 + | Awnll5.

Since 2p/(2p - 3) <p for p > %, then Gronwall’s inequality and the estimates obtained
in Section 2 yield that

w=d=b=0 fortel0,T).

This completes the proof of the theorem.
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