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1 Introduction

It is well known that boundary value problems for ordinary differential equations can be
used to describe a large number of physical, biological and chemical phenomena. In re-
cent years, boundary value problems for sixth-order ordinary differential equations, which
arise naturally, for example, in sandwich beam deflection under transverse shear have been
studied extensively, see [1-4] and the references therein. The deformation of the equilib-
rium state of an elastic circular ring segment with its two ends simply supported can be
described by a boundary value problem involving a sixth-order ordinary differential equa-
tion

u® +2u® 1y =f(t,u), O0<t<l, o
1
u(0) = u(1) = u”(0) = 4" (1) = u®?(0) = ¥ (1) = 0.

Liu and Li [5] studied the existence and nonexistence of positive solutions of the non-
linear fourth-order beam equation

uP(t) + pu () — au(t) = M (L ult)), 0<t<l, o)
2
u(0)=u(l) =u"(0) =u"(1) = 0.

They showed that there exists a A* > 0 such that the above boundary value problem has at
least two, one, and no positive solutions for 0 < A < A*, A = A* and A > A*, respectively.

In this paper, we discuss the existence of positive solutions for the sixth-order boundary
value problem

—u® + A@u® + BO)u” + Ct)u = (D) + u)p + Af(t,u), O<t<l,
—¢" +xp=pu, 0<t<l, (3)
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u(0) = u(1) = u”(0) = " (1) = u®(0) = u® (1) = 0,

9(0) = (1) =0.

For this, we shall assume the following conditions throughout

(H1) f(¢,u):[0,1] x [0,00) —> [0, 00) is continuous;

(H2) a,byceR,a=x + o +r3>—-2, b=—-Xhy— Ak —AAs3>0,c=Aidak3 <0
where A; > 0> Xy > 72,0 <Az <—Ay and 7° + an* — b2 +¢> 0, and
A,B,C,D € C[0,1] with a = sup, (o1 A(£), b = infyc[o,1) B(¢) and ¢ = sup,[g 1) C(2).

Let K = maxo<;<1[-A(#) + B(t) = C(t) = (—a+b—c)] and T = 2% + an* - b? + c.

Assumption (H2) involves a three-parameter nonresonance condition.

More recently Li [6] studied the existence and multiplicity of positive solutions for a
sixth-order boundary value problem with three variable coefficients. The main difference
between our work and [6] is that we consider boundary value problem not only with three
variable coefficients, but also with two positive parameters A and u, and the existence
of the positive solution depends on these parameters. In this paper, we shall apply the
monotone iterative technique [7] to boundary value problem (3) and then obtain several
new existence and multiplicity results. In the special case, in [8] by using the fixed point
theorem and the operator spectral theorem, we establish a theorem on the existence of
positive solutions for the sixth-order boundary value problem (3) with A = 1.

2 Preliminaries

Let Y =C[0,1] and Y, = {u € Y : u(t) > 0,¢t € [0,1]}. It is well known that Y is a Banach
space equipped with the norm ||u[o = sup,¢(o; [4(£)]. Set X = {u € C*[0,1] : u(0) = u(1) =
u"(0) = u”(1) = 0}. For given x > 0 and v > 0, we denote the norm || - ||, by

Il = sup { @ @] + x| ()] +v|u(®)

}, ueX.
te[0,1]

We also need the space X, equipped with the norm

u® ”0}'

"
u

lluellz = max{[lullo, || " |,

In [8], it is shown that X is complete with the norm || - ||, and ||#[|2, and moreover Vu € X,
llullo < Nl llo < [l4™lo.

For /1 € Y, consider the linear boundary value problem

—u® au® s bu’ +cu=h(t), 0<t<l,

(4)
u(0) = u(1) = u"(0) = u” (1) = u™(0) = ¥ (1) = 0,
where a, b, ¢ satisfy the assumption
78 +an* —brn?+¢>0, (5)

andlet T' = 76 + an* — bn? + c. Inequality (5) follows immediately from the fact that I" =

7%+ aw* —br? + c is the first eigenvalue of the problem —u® + au™ + by + cu = Au, u(0) =

u(1) = u”(0) = " (1) = u®(0) = u™(1) = 0, and ¢, (¢) = sin ¢ is the first eigenfunction, i.e.,
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" > 0. Since the line /) = {(a,b,¢) : 7% + an* — bx? + ¢ = 0} is the first eigenvalue line of
the three-parameter boundary value problem —u©® + au® + bu” + cu = 0, u(0) = u(1) =
u’(0) = u”(1) = u®(0) = u®(1) = 0, if (a, b, c) lies in I;, then by the Fredholm alternative,
the existence of a solution of the boundary value problem (4) cannot be guaranteed.

Let P(A) = A2 + BA — a, where B < 272, a > 0. It is easy to see that the equation P(1) = 0

- 2
has two real roots A, Ay = P2V ‘zﬁﬁa with A; > 0 > Xy > —72. Let A3 be a number such

that 0 < A3 < —X,. In this case, (4) satisfies the decomposition form

© 4 gu® &’ &’ &’
"
—u” +au" + bu +CM=(—E +)\1><_ﬁ +)\,2)(—E +)\.3>M, O0<t<l. (6)

Suppose that G;(t,s) (i =1,2,3) is the Green’s function associated with
—u" + 0 u=0, u(0) =u(1) = 0. (7)
We need the following lemmas.

Lemmall [5,9] Let w; = \/|);], then Gi(¢,s) (i = 1,2, 3) can be expressed as
(i) when A; >0,

sinh w;t sinh w;(1 — s)

- ,0<t<s<l,
w; sinh w;

Gi(t,s) =1 . .
i(69) sinh w;s sinh w;(1 — £)

w; sinh wj
(ii) when A; =0,

t(l-s5),0<t<s<l],
Gi(t,S)Z H
s1-1),0<s<t<l1

(iii) when -2 < A; <0,

sin w;t sin w;(1 — s) 0<t<s<l
_— s<1,

w; Sin w;

Gi(t,s) =1 . .
i(6:s) sinw;ssinw; (1 —t)

t<1

w; Sin w; e
Lemma 2 [5] G;(¢,s) (i = 1,2,3) has the following properties
(i) G;(t,s)>0,Vetse(0,1);
(i) Gi(t,s) < C;Gy(s,s), Vt,s € [0,1];
(iii) G;(¢,8) > 8,G;(t,1)G(s,s), Y, s € [0,1],
where Ci=1,8i= @ ,lf)\l‘>0; C,'=1, (SiZI,éf)Li:O; Cl'=L 5i=wisina),»,Lf

sinh w; sinw;’
72 <A <O.

In what follows, we let D; = max;e[o,1] fol Gi(t,s) ds.

Lemma 3 [10] Let X be a Banach space, K a cone and 2 a bounded open subset of X. Let
0eQandT:KNQ — K be condensing. Suppose that Tx # vx for all x € K N 3 and
v>1. Then i(T,K N Q,K) = 1.
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Lemma 4 [10] Let X be a Banach space, let K be a cone of X. Assume that T : K, — K
(here K, = {x € K | ||x|| <7}, r > 0) is a compact map such that Tx # x for all x € dK,. If
llxll < || Tx|| for x € 3K,, then i(T,K,,K) = 0.

Now, since

d? d? d?
(6) (4) ’ _
—U + au +bu/ + Ccu = <—E +)\.1><—E +)\2) <_E +)\.3>I/l

a2 d? a’
= <—@ + )L2> (—% + )Ll) <_E + )L3>u = h(t)r (8)

the solution of boundary value problem (4) can be expressed as

1,1 pl
u(t):/o/0/0Gl(t,v)Gg(v,s)Gg(s,r)h(t)drdsdv, t €[0,1]. 9)

Thus, for every given 4 € Y, the boundary value problem (4) has a unique solution « €
C*®[0,1], which is given by (9).
We now define a mapping 7" : C[0,1] — CI0,1] by

1 1 pl
(Th)(t):/o /0 /o Gi(t,v)Gy(v,8)G3(s, T)h(t)dt dsdv, te][0,1]. (10)

Throughout this article, we shall denote T/ = u the unique solution of the linear bound-

ary value problem (4).

Lemma 5 [8] T:Y — (X, - lly,v) is linear completely continuous, where x = Ay + A,
v =MAs and ||T|| < Dy. Moreover,Yh € Y., ifu= Th,thenu € XNY,,andu" < 0,u™® > 0.

We list the following conditions for convenience

(H3) f(¢, u) is nondecreasing in u for ¢ € [0,1];

(H4) f(¢,0)>c>0 forall £ € [0,1];

(H5) foo = limuém@ = oo uniformly for ¢ € [0, 1];

(H6) f(t, pu) = p*f(t,u) for p € (0,1) and ¢ € [0,1], where « € (0,1) is independent of p
and u.

Suppose that G(¢, s) is the Green’s function of the linear boundary value problem
—u +2u=0, u(0) = u(1) = 0. (11)
Then, the boundary value problem
—¢"+xp=pu,  9(0)=9(1)=0,

can be solved by using Green’s function, namely,

1
o(t) = ,u/o G(t,s)u(s)ds, 0<t<l, (12)
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where 7 > —2. Thus, inserting (12) into the first equation in (3), yields

~u® + AOu® + BOu" + CO)u = 1 (D(e) + u(t)) / 1 G(t,s)u(s) ds + Af (t,u),
0

(13)
u(0) = u(1) = u"(0) = " (1) = u?(0) = (1) = 0.
Let us consider the boundary value problem
19+ AQ)u® + BOu + COu=h(t), 0<t<l,
(14)

u(0) = u(1) = ”(0) = u”(1) = u®(0) = u® (1) = 0.

Now, we consider the existence of a positive solution of (14). The function z € C®(0,1) N
C*[0,1] is a positive solution of (14), if u > 0, t € [0,1], and u # 0.
Let us rewrite equation (13) in the following form

—u® +au® + by + cu= — (A@W) - a)u® — (B(t) - b)u" - (C(£) - ¢)u
+ 1 (D) + u(r)) /0 1 G(t, s)uls) ds + h(2). (15)
For any u € X, let
Gu = —(A(®) - a)u' - (B(t) - b)u" — (C(¢) - c)u + uD(t) fo 1 G(t,s)u(s) ds.

The operator G: X — Y is linear. By Lemmas 2 and 3 in [8], Vu € X, ¢ € [0,1], we have

(Gu)(®)] = [-A®) + Bt) ~ C(6) = (=a+ b~ )] llull> + nCah | ullo
< (K + uCey)ull2 < (K + uCely) | ull .,

where C = maxcp ) D(£), K = maxee[o,)[-A() + B(t) — C(t) — (ma + b - ¢)], di =
MaXe[o,1] fol G(t,s)ds, x = 1 + A3 =0, v =AA3 > 0. Hence [|Gullo < (K + pnCdy)||ull v
and so |G|l < (K + uCd,). Also u € C*[0,1] N C®(0,1) is a solution of (13) if # € X satisfies
u = T(Gu + hy), where hy(t) = pu(t) fol G(t,s)u(s)ds + h(t), i.e.,

ueX, (U-TGu=Th. (16)

The operator / — TG maps X into X. From || T'|| < D, together with ||G|| < (K + uCd;) and
the condition D, (K + uCd,) <1, and applying the operator spectral theorem, we find that

(I - TG)™! exists and is bounded. Let i € (0, %), where 1-D,K > 0, then the condition

Dy (K + uCdy) <1 is fulfilled. Let L = Do(K + uCd,), and let pu** = Z—fcz;f'

Let H = (I - TG)™'T. Then (16) is equivalent to u = Hk;. By the Neumann expansion
formula, H can be expressed by

H:(I+ TG+-~~+(TG)”+---)T:T+(TG)T+-~~+(TG)”T+-~~. (17)

The complete continuity of T with the continuity of (I — TG)™! guarantees that the operator
H:Y — X is completely continuous.

Page 5 of 22
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NowVheY,, letu=Th thenueXNY,, and u’ <0, u® > 0. Thus, we have
(Gu)(®) = - (A(®) — a)u'® — (B(t) - b)u" — (C(t) - ¢)u
+ uD(t) /01 G(t,s)u(s)ds>0, tel[0,1].
Hence
VheY, (GTh)(®) >0, tel0,1], (18)

and so, (TG)(Th)(¢t) = T(GTh)(¢) > 0, t € [0,1].
It is easy to see [11] that the following inequalities hold: Vi € Y,

ﬁ(Th)(t) > (HI)(®) = (T(®), telo,1], 19)

and, moreover,

1
e, < an], 20
Lemma 6 [8] H:Y — (X,| - |l,.,) is completely continuous, where x = A + A3, v =
MAz and YNh € Y, ﬁ(Th)(t) > (Hh)(t) > (Th)(¢), t € [0,1], and, moreover, || Thl|ly >
A= L)IHhlo.

For any u € Y., define Fu = pu(t) fol G(t,s)u(s) ds + Af (¢, u). From (H1), we have that F :
Y, — Y, is continuous. It is easy to see that u € C*[0,1]NC®(0, 1), being a positive solution

of (13), is equivalent to u € Y., being a nonzero solution of
u = HFu. (21)

Let us introduce the following notations

1,1 pl
T, u(t) := TFu(t):/O /0 /0 Gi(t,v)Ga(v,5)G3(s, T)

X (//,u(r) /01 G(t,s)u(s)ds + Af(t,u(r))) dtdsdy,

Q. pt:=HFu = TFu + (TG)TFu + (TG?TFu+---+(TG)"TFu +---

=T+ (TG) Ty yu+ (TG Ty put + -+ (TG)" Ty yti+ -+ -,

i.e., Q,u = HFu. Obviously, Q,,, : Y, — Y, is completely continuous. We next show that
the operator Q,,, has a nonzero fixed point in Y.

LetP={u €Y, :u(t)>81-L)ga®)|u@)lot €[, 2]}, where gi(¢) = CLlGl(t, t). It is easy
to see that P is a cone in Y, and now, we show Q; ,(P) C P.

Lemma?7 Q,,(P) CPand Q,,, :P— P iscompletely continuous.
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Proof 1Itis clear that Q,, ,, : P — P is completely continuous. Now VYu € P, let i, = Fu, then
h €Y,. Using Lemma 6, i.e., (Q;,,u)(t) = (HFu)(¢) > (TFu)(t), t € [0,1] and by Lemma 2,
for all u € P, we have

(TFu)(t) < C1/1fl/1Gl(V,V)GQ(V,S)Gg(S,T)(FM)('()dT dsdv, Ytel0,1].

Thus,

1 1 1 1
/ / / Gr(v,9)Ga(v,5) G s, ) (Fut)(z) e ds v = — || TFulo. (22)
o Jo G

On the other hand, by Lemma 6 and (22), we have

1,1 pl
(TFu)(t)zélGl(t,t)/ / / G1(1,v)Gy(v,8)G3(s, T)(Fu)(t)dt dsdv

= &Gt t)—IITFullo > 861Gt t)c A -L)IQullo, Vte[0,1].

Thus, Qy,,.(P) C P. a

3 Main results

Lemma 8 Let f (¢, u) be nondecreasing in u for t € [0,1] and f(¢,0) >¢> 0 for all ¢ € [0,1],
where C is a constant and L < 1. Then there exists \* > 0 and u* > 0 such that the operator
Qs has a fixed point u* at (\*, u*) with u* € P\{6}.

Proof Setu(t) = (Q; %, u.)(t), where

u,(t) = —/ / / Gi(t,v)Ga (v, T)G3(1,8) dsdT dv.

It is easy to see that u,(t) € P. Let A% = MJZMI and p* = min(N;}; u**), where My, =
max;efo,1)f (£ u.(t)) and Nj, = max;eqo,1) 4. () fol G(t,5)u.(s) ds, respectively. Then Mg, > 0
and Np, > 0, and from Lemma 6, we obtain

Uo(t) = u(t) = —/ / / Gi(t,v)Ga (v, T)G3(t,s) dsdt dv

%L/O /0 /0 G1(t,v)G2 (v, T)G3(1, $)

1
x (A*f(s, () + M*u*(t)/o G(t,5)u.(s) ds) dsdr dv

1

= 777 D px )0 2 (Qux 2 ) (0) = T (0).

It is easy to see that

Un(t) = (Qux o U 1)(8)
= (Tys s tins + (TG) Ty sty + (TGP Ty s Ty + -+
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+ (TG)”TA%,M%ﬁn_l + - )
> (T)‘aze,lﬁ:e’lzn_z + (TG)T)L%,,L%ﬁn—Z + (TG)2 TA*,M*,’ZH—Z + ..

+ (TG)”T;L%,M%YZW_Q + - ) :ﬁn_l(t).

Indeed, for /1, hy € Y., let 1 (t) > hy(t), then from (10), we have u:1(¢) = Thy > Thy = uy(t).
Using equation (4) and (6), we obtain

1 1
—u + du = / / Gi(t,v)G3(v, T)h(t)dT dv, t€]0,1] (23)
0 0
and
1
u® — Ay + A3)u + Aohsu = / Gi(t,V)h(v) dv, t€][0,1]. (24)
0

Then by (23), we have for ¢ € [0,1]

1 p1
)(8) — (0) = 2y (1a(6) - 1(0)) / / Gy, V)Ga(w, 7) (a(6) — ha(0)) dr dv < 0,
o Jo
because A, < 0, and finally, from (24), we have

u () = S (0) = (g + 23) (W] (1) - (1)) = Do (w1(0) — (D))

1 1
¥ /o /0 Gi(t,) (I () - ha(8)) dTdv >0, t€[0,1]

because A, + A3 < 0 and AyA3 < 0. From the equation

1
(Gu)(®) = —(A(t) — a)u™ — (B(t) - b)u” — (C(t) - ¢)u + uD(t) / G(t,s)u(s)ds > 0,
0

t€[0,1]

we have

(Gu1)(2) — (Gua)(2)
= —(A®) - a) () - u$P0) - (B&) - b) (] (1) - u(2))

1
~(CO) — &) ((t) — 1x(8)) + uD(t) / G(t,9)(1(£) — 1x(8)) ds = 0,
0
te[0,1] (25)

i.e., (Gu)(t) > (Guy)(t) for all ¢ € [0,1]. Finally, if iy = Fu; and hy = Fusy, then

(Hm)(&) = T(m) + (TG)(Thy) + (TG)*(Thy) + - - - + (TG)"(Thy) + - -

> (Hho)(8) = T(hy) + (TG)(Ths) + (TG)*(Thy) + - - - + (TG)"(Thy) + - --

Page 8 of 22
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Qux yx
= (HFm)(t) = T(Fuy) + (TG)(TFuy) + (TG)*(TFuy) + - - - + (TG)"(TFuy) + - - -
> (HFu,)(t) = T(Fup) + (TG)(TFuy) + (TG)*(TFusy) + - - - + (TG)"(TFuy) + - - -

= Qux % U, (26)
and from (26), it follows that for 7, uy € Y., if u1(£) > u,(¢) then, we have
Qe x> Qpxe 5 . (27)
Set Uo(t) = u.(t) and 7, (t) = (Qus yr 1)), 1 =1,2,..., t € [0,1]. Then
Uo(t) = u,(t) 2w (t) > - > Uy (t) > --- > LiGi(8, ),
where
Ly = A%818283¢Co3C12Cs. O
Indeed, by Lemma 6, we have
Un(t) = Qyx oz tpr = (HF) (W) > (TF) (1)

1 p1 pl
ZA*/()A/0Gl(t,V)Gz(v,r)Gg(r,S)f(S,ﬁn-l(S))deTdV

1 1 pl
2)»*’5///Gl(t,v)Gz(V,t)Gg(T,s)dsdrdv
o Jo Jo
> A¥818283C12Caz C3 G (2, ).

Now, f(¢,u) nondecreasing in u for ¢t € [0,1], Lemma 2, and the Lebesgue convergence
theorem guarantee that {u,}°, = {Q;\%’#%ﬁo}ﬁo decreases to a fixed point u* € P\{0} of

the operator Q; %, x .
Lemma 9 Suppose that (H3)-(H5) hold, and L < 1. Set
S = {u elP:Quuu=u(kpn GA},

where A C [a, 00) x [b,00) for some constants a > 0, b > 0. Then there exists a constant Cy
such that |ullo < Ca forallu € S, ..

Proof Suppose, to the contrary, that there exists a sequence ({u,}52; such that
lim,, o [l #,ll0 = +00, where u,, € P is a fixed point of the operator Q, , at (A,, u,) € A
(n=1,2,...). Then

13
u,(£) = klluallo fortE[—,—}

where k = g—ll(l — L)min
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Choose J; > 0, so that

J1a818283C1o Cozmymok > 2,

and /; > 0 such that

13

ft,u)>hu forus>landte |:Z’ Z]’

and Ny, so that [luy, || > % Now,

(Q)»NO,MNO MNO)(%) = (TFMNO)(%)

1,1 pl
ZANOA/0/0G](%,V)Gg(v,'C)Gg(T,S)f(S,MNO(S))de'CdV

11\ (!
> )\N0818283C12C23G1(§, 5)_/0 Gs(s,8)f (s, uny (5)) ds

3
11 1
> Any818283C12Ca3 Gy <§, 5) /1 Gs(s,8)f (s, uny (5)) ds
1

> —a816283Cro CozmmaJiuy, (£)

> —a816283Cro CozmymaJik|lung llo > lleeng llos

N = N -

and so,
1
ll2enig llo = Nl Qungg iy 4N lo = ||(TF)MN0 ||0 > (TFun,) 5> llzenr, llos

which is a contradiction. O

Lemma 10 Suppose that L < 1, (H3) and (H4) hold and that the operator Q,,,, has a posi-
tive fixed point in P ath>0and &> 0. Then for every (A, [is) € (0,/)\\) x (0,11) there exists
a function u, € P\{0} such that Q, ., s = Us..

Proof Let 7i(t) be a fixed point of the operator Q; ,, at (%, 72). Then

u(t) = Q5 au(t) = Qu, 0 U(t),

where 0 < A, <, 0 < W, < . Hence

1,1 pl 1
/ / / G1(t,v)Gy(v, T)G3(1,3) (’):f(s,’ﬁ(s)) + wu(s) / G(s, p)u(p) dp) dsdt dv
o Jo Jo 0

> fo 1 /O 1 fo Gt 1)Gal, DG ()

1
X (A*f(s,fi(s)) + ufu\(s)/(; G(s,p)u(p) dp) dsdt dv.
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Set
1 1 1
(T )(2) = /O /o /0 Gr(t, V)G (v, T) (7, 5)

X ()\*f(s, u(s)) + o 1(S) /01 G(s,p)u(p) dp) dsdt dv
and
Qo )(®) = Ty 1t + (TG) Ty ts + (TGP Ty th+ -+ + (TG)' T th + -+
uo(t) =u(t) and u,(¢) = Qs ., n-1. Then

uo(t) =1(t) = Topi + (TG To i + (TG Topti+ -+ + (TG)' Trpth + - -

> T+ (TG T, d + (TG Ty, i+ -+ (TG)" Ty, U + - - - = uy (£)
and

u,(t) = Qb1 = T,y Uy + (TG) Ty, tn1 + (TG)2 T, thn1 + -
+(TG)" T,y thn-1 + -+ -
> T}»*,ﬂ, Uy + (TG) TK*,M* Uy + (TG)2 T)\*,,u* Uy + -

+ (TG)n T)\*,,u,,un—Z tee= Mn—l(t)

because f(t, u) is nondecreasing in u for ¢ € [0,1] and T, ,, u is also nondecreasing in u.

Thus

uo(t) = wa(t) > -+ > up(t) > upa1(£) > -+ > LyGi(t, 1), (28)
where

Ly = 15C818,83C12Cy3Cs. O

Indeed, by Lemma 6, we have
un(t) = Q)u,,ﬂ,,un—l = (HF)(un—l) > TM,M' (Mn—l)
1 p1 pl
> A,/ / / Gi(t, V)Gz(V,T)Gg(T,S)f(S, u,,_l(s)) dsdt dv
o Jo Jo
1,1 pl
> )»;C\/ / / Gl(t, V)GQ(V,'C)Gg(‘L’,S) dsdt dv > )\*’5618253C12C23C3G1(t, t).
o Jo Jo
Lemma 2 implies that {Q}.u} 2, decreases to a fixed point u, € P\{6}.
Lemma 11 Suppose that L < 1, (H3)-(H5) hold. Let
A= {A >0, >0:Q,,, have at least one fixed point at (A, ) in P}.

Then A is bounded.
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Proof Suppose, to the contrary, that there exists a fixed point sequence {u,}0°, C P of
Qs at (Ay, y,) such that lim, . A, = 00 and 0 < wu,, < u**. Then there are two cases to
be considered: (i) there exists a subsequence {u,,}5 such that lim,_, « ||z, |lo = 00, which
is impossible by Lemma 9, so we only consider the next case: (ii) there exists a constant
H > 0 such that ||u,|lo < H,n=0,1,2,3,....Inview of (H3) and (H4), we can choose /; > 0
such that f(¢,0) > loH, and further, f (¢, u,) > [oH for t € [0,1]. We know that

Up = Q)\mlln Un Z T)\.y[,ﬂn Up.

Let v,,(2) = Ty, u, Uns i-€., Uy(t) = v,(t). Then it follows that

n

1
—vgf) +av'® + bV + cvy = huf (& uy) + pc,,uy,(t)/ G(t,p)u,(p)dp, 0<t<l. (29)
0

Multiplying (29) by sin ¢ and integrating over [0,1], and then using integration by parts
on the left side of (29), we have

1 1 1 1
F/ v,,(t)sinntdt:k,,/ f(t,u,,)sinntdt+pc,,/ u,(t) sinnt/ G(t, p)u,(p) dpdt.
0 0 0 0
Next, assume that (ii) holds. Then
1 1
1"/ un(t)sinntdtzr'f v,(t)sinmtdt
0 0
1 1 1
:An/ f(t,u,,)sinntdt+,u,,/ u,,(t)sinnt/ G(t, p)u,(p) dp dt
0 0 0

and

1 1 1 1
FH/ sinntdtzl"”u,,”o/ sinntdtzF/ u,,(t)sinntdtz[‘f v, (t)sinmt dt
0 0 0 0

1

1 1
= kn/ f(t,u,)sinmwtdt + pc,,/ u,(t) sin rrt/ G(t, p)u,(p) dp dt
0 0 0
1
> AnloH/ sinmtdt
0
lead to I > A,ly, which is a contradiction. The proof is complete. g
Lemma 12 Suppose that L <1, (H3)-(H4) hold. Let
Ap={r>0:(\ ) € A and  is fixed),

and let %, = sup A,.. Then A, = (0,%,,], where A is defined in Lemma 11.

Proof By Lemma 10, it follows that (0,%) x (0, ) C A. We only need to prove (XM, uw) € A.
We may choose a distinct nondecreasing sequence {1,}52, C A such that lim,_, o A, = 3:“.

Set u, € P as a fixed point of Q; , at (A,, 1), n=1,2,..., i.e, u, = Q;, . 4,. By Lemma 9,
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{t4);2,, is uniformly bounded, so it has a subsequence, denoted by {u,, }7°;, converging to
U € P. Note that

Uy =Ty, uthy + (TG)T,, uthy + (TG)? Thypptin + -+ (TG)" Ty, puth + - - -

= Q)»y,,u,un' (30)

Taking the limit as # — 0o on both sides of (30), and using the Lebesgue convergence
theorem, we have

U="T;,u+(TG)T;, Gy + (TG’ T5 t + -+ + (TG)" T3 i + - -
which shows that Q; , has a positive fixed point # at (e, ). d

Theorem 1 Suppose that (H3)-(H5) hold, and L < 1. For fixed u* € (0, u**), then there
exists at \* > 0 such that (3) has at least two, one and has no positive solutions for 0 < A < 1%,
A =A* for & > \*, respectively.

Proof Suppose that (H3) and (H4) hold. Then there exists A* > 0 and u* > 0 such that
Q). has a fixed point uy« ,» € P\{6} at L = A* and p = p*. In view of Lemma 12, Q,,,, also
has a fixed point u; ;, < #ys i+, Uy, € P\{0}, and 0 <A <A*, 0 < p < pu*, u* € (0, u*). For
0 < A < A*\, there exists 30>0 such that

f(t, Upr > + 5) —f(t, u)‘r,ﬂ*) Sf(t, 0)()% - 1>

for t € [0,1], 0 < 8 < 8. In this case, it is easy to see that

1,1 opl
Tosttiese +9) =2 [ [ [ GG 006 (e15) (st10(9)+8) s
- o Jo Jo
1,1l pl
+&///‘Gl(t,V)Gz(V,T)Gg(T,S)(u;L*,M*(s)+8)
o Jo Jo
1
S / G(S,P)(uxr,,p (p) + 8) dpdsdr dv
0
1 p1 opl
5)“*/ / / G1(6,V)Go (v, T)G5 (1, 8)f (s, U= (5)) dsdr dv
o Jo Jo
1 p1opl
+ I’L*/ / f Gl(tr V)GZ(V, T)Gg(T,S)MAx7#*(S)
o Jo Jo
1
X/ G(S,P)Mw,u*(p)dpdsdr dv = T)L*,/,L*M)n*,/l.*~
0
Indeed, we have
1,1 pl
&///Gl(t'V)Gz(V,f)Gs(r,S)f(s,u»(S)+5)dsdrdv
o Jo Jo

1 1 1
_A*A /O ‘/o Gl(t; V)Gz(V,T)Gg(f,sy(S’ u}ﬁ(S)) dsdt dv
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1,1 pl
=A///Gl(t,V)Gz(v,r)Gg(r,s){f(s,up(s)+8)—f(s,u,\*(s))}dsdrdv
0o Jo Jo
1 p1 p1
— (A=A Gi(t,v)Gy (v, T)G3(x, ,up(s))dsdt d
o =2) [ [ [ GieGats 06ate sy (s 0) dscte
1 p1l pl
< (A*—&)/ f f Gi(t,v)Ga (v, T)Gs(T,5)f (s,0) ds dt dv
o Jo Jo
1 p1 p1
— (A=A Gi(t,v)Gy (v, T)G3(7, ,up(s))dsdt d
=2 [ [ [ GieGats06ate sy (s 0) dscte
1 p1l gl
=(A*—&)/ / / Gl(t,V)Gz(v,r)Gg(r,s){f(s,O)—f(s,u,\*(s))}dsdrdvf0.
0o Jo Jo

Similarly, it is easy to see that

E/I /1 /1 Gi(t, V)Gz(V,T)Gg(T,S)(Mp,M*(S) + 8) /1 G(s, p) (s ux () + 6) dpdsdrt dv
Y 10 1 el ) 1
- u*/(; /0 /0 G1(8,v)Ga(v, T)Gs (T, S)upr,1* (s)/0 G(s, p)uss i+ (p) dpdsdr dv < 0.
Moreover, from (25), it follows that for T}, (4x,.x +8) < Thx yxthsx, i+ we have
G(Téyﬁ(up,u« + 8)) < G(Tor o thpr 2.
Finally, we have
(TG) Ty (s o +8) < (TG) Tr yux s o>
By induction, it is easy to see that
(TG)" TA:E(M)»',M* +8) < (TG)'Tis iy px, n=12,.... (31)
Hence, using (31), we have

QL&(M)L*'M* + 5) = TL&(”[A*,M' + 8) + (TG) T&g(”k‘,u* + 8)
+ (TG)2TLE(up,m +8) -+ (TG) Ty (e yr +8) + -+
< Tx*,m Wyryr + (TG) Tox s tyr i + (TG)? Ty U yux + -+ -
+ (TG)nka,MtMA*'Mr + .-

= QA'*YI/L* (M)L*YM*)

QL&(M)L*:M* + 8) - Q}Ly,#* (uk’,#*) E 0,

so that

Qupe (i pr +8) < Quryor (Wi ur) = Wpr px < Upnpx + 6.
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Ugr . P is com-

Set Dur,m ={u € C[0,1] : =6 < u(t) < u»,» + 8}. Then Quu:PND
pletely continuous. Furthermore, QL&” Zvuforv>1landuePnN 8Dumﬁ. Indeed set

uelPn BDMWL,. Then there exists ¢ € [0,1] such that u(ty) = [|ullo = ||t>» .« + 8]l and

(Quputt)(t0) = (T () + (TG) Ty () + (TG)* Ty (1) + -+ + (TG)" Ty (1) + - - - ) (ko)
< (T (e v +8) + (TG) Ty (1t =+ 8) + (TG)? Ty (s v +8) # -+

+(TG)" Ty (s > +8) + - N(to) = Qu (x,ux + 8)(%0)

<ty px(to) + 8 = ulty) < vulty), v=1

By Lemma 3, i(Qy,., PN 8DHAW,,P) =1.
Let k be such that

1
u(t) > klullo forte |:E’ Z]

We know that lim,,_, o, few)

= oo uniformly for ¢ € [0,1], so we may choose J5 > 0, so that
M3618283C12 Cozmy C3k > 2,

I3 > |l upx,x + 8o > 0, so that

- =

3
ft,u)>Jsu foru>ls andte|:4 4].

SetR; = % and Pr, ={u € P: |lullo < Ri}. Then Q;,, :ﬁR1 — P is completely continuous. It

is easy to obtain

1 pl pl
(QA’EM)(t)Z(TA’ﬁu)(t)Z&/O /0 /(; Gl(t,v)Gz(v,I)Gg(r,s)f(s,u(s))dsdrdv

1
> A816283C12Co3 Gy (8, ) / Gs(s, S)f(S, u(s)) ds
0

3
1
> 1818283 C1aCa3 Ga(t, 2) /1 Gs(s,9)f (s, u(s)) ds
1

1 1
> §A515253C12C23Wllc3]314(t) > §A515253C12C23M1C3]3k||14||0 > |lullo
for t € [0,1] and u € 9Pg,. Now u(t) > k||ullo = kR, = I3, and so

1Quttllo > llxllo-

In view of Lemma 4, i(QA,g ,Pr,, P) = 0. By the additivity of the fixed point index,

i(Q&,&’PRl \P mDup,MnP) = i(Q&,g: PerP) - i(QA,E’P N Dup’ﬂup) =-1

Thus Qy,, has a fixed point in {P N Dy, \{6} and has another fixed point in Pg,\P N
O

D”A*,u.* by choosing 1* = X.
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Let us introduce the notation u = 0 in the equation of (13), then we have

—u® + A + B)u" + C(t)u = Af(t, u), )
32
#(0) = u(1) = u”(0) = 4" (1) = u®(0) = u¥ (1) = 0.

In this case, we can prove the following theorem, which is similar to Theorem 1.

Theorem 2 Suppose that (H3)-(H5) hold, and L < 1. Then there exists at A* > 0 such that
(32) has at least two, one and has no positive solutions for 0 < A < A*, L = A* for A > A%,
respectively.

We follow exactly the same procedure, described in detail in the proof of Theorem 1 for

n=0.
Let us introduce the following notations for x =0 and A =1

1 p1 pl
TFu(t) = / / / Gi(t,v)Ga(v, s)Gg(s,r)f(r,u(r)) dtdsdy,
o Jo Jo (33)
Qu:=HFu = TFu + (TG)TFu + (TG)*TFu + - - - + (TG)"TFu + - - -,
i.e., Qu=Qou=HFu.

Lemma 13 Suppose that (H3), (H4) and (H6) hold, and L < 1. Then for any u €
C*[0,1]\{0}, there exist real numbers S,, > s,, > 0 such that

5.8(t) < (Qu)(t) < S,g(t), fortel0,1],
where g(t) = fol fol Gi(t,7)Gy(T,v)G3(v,v) dvdr.

Proof For any u € C*[0,1]\{6} from Lemma 6, we have

1 1 pl
(Qu)(t)z(HFu)(t)fﬁ/o /0 /o G1(6,V)Go (v, T)Gs (1, 8)f (s, u(s)) ds dt dv

C3 1 1
§msler%g’)l(]f(s,u(s))/o /0 Gi(t, )Gy (T,v)Gs(v,v)dvdt

- I?L sIng{(;af(ﬂf(s, u(s))g(¢) = Sug(e) for ¢ € [0,1].

Note that for any u € C*[0,1]\{6}, there exists an interval [a;, 5] C (0,1) and a number
p > 0 such that u(t) > p for t € [ay, b;]. In addition, by (H6), there exists sy > 0 and u° €
(0,00) such that f(t,u®) > so for t € [a1,b;]. If p > u®, then f(t,u) > f(t,p) > f(t,u®) > so;
if p <u®, then f(t,u) > f(t,p) = f(t, L p) = (£5)*so. Hence

(Qu)(t) = (TFu)(2)

1 p1 pl
= / / / Gi(t,v)Ga(v, '()Gg('C,S)f(S, u(s)) dsdt dv
0o Jo Jo

1,1l opl
253/(;/(;/0Gl(t,V)Gz(V,T)Gg(‘L',T)Gg(S,S)f(S,M(S))de‘L’dV

Page 16 of 22
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b
> 53g(t)/ Gs(s,9)f (s, uls)) dsdt dv
P\ _
= (b - ﬂl)SSg(t)mG(E> = 5ug(£),

where mg = Minge(y, 5, G3(s, ), g(¢) = fol fol Gi(t, V)G (v, T)Gs (T, T)dT dv, s, = (b — a1) X
(Sgl’l’lG(uﬁo)a. O

Theorem 3 Suppose that (H3), (H4) and (H6) hold, L <1 and » = 1. Then
(i) (32) has a unique positive solution u* € C*[0,1]\{0} satisfying

m,g(t) <u*(t) <M,g(t) fortel0,1],

where 0 < m,, < M, are constants.
(i) For any uo(t) € C*[0,1]\{0}, the sequence

un(t) = (Qup1)(t) = (HFu,-1)(2)

= TFu,_1 + (TG)TFu,1 + (TG TFuyq + -+ (TG)" TFuyq + -

(n=1,2,...) converges uniformly to the unique solution u*, and the rate of
convergence is determined by

[a(®) = u*(®)] = O(1 = d*"),
where 0 < d < 1 is a positive number.

Proof In view of (H3), (H4) and (H6), Q: C*[0,1] — C*[0,1] is a nondecreasing opera-
tor and satisfies Q(pu) > p*Q(u) for t € [0,1] and u € C*[0,1]. Indeed, let u,(t) < u,.(£),
Uy, Uy € C*[0,1], since f(s, u) is nondecreasing in u, then by using f(s, #,(s)) <[ (s, Uus(5)),
for t € [0,1], it follows that

1,1 pl
TFu*(t):/O /O ‘/0 G1(6,V)Ga(v, T)G3 (1, 5)f (s, ua(s)) ds dT dv

1 p1 g1
< / / / Gi(t, V)Gz(V,‘L’)Gg(‘E,S)f(S, u**(s)) dsdt dv = TFu,,(t).
o Jo Jo
Moreover, from (25), it follows that for TFu,(t) < TFu,,(t)
G(TFu,)(t) < G(TFu,,)(t) forte]0,1]. (34)

Finally, since f(s,#) is nondecreasing in u, then by using form (34), f(s, G(TFu,)(t)) <
f(s, G(TFu.,,)(t)), for t € [0,1], we have

1 1 pl
(TG)TF(u*):/O/(;/(;Gl(t,v)Gz(v,t)Gg(t,s)f(s,G(TFu*)(s))dsdtdv

1 1 1
5/0 /0 /0 G1(t,v)Ga (v, T)Gs3(7, 8)f (5, G(TFu.)(s)) dsdr dv

=(TG)TFu,y,
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(TG)TF(u,) < (TG)TFut,y.
By induction, it is easy to see that
(TG)"TF(u,) < (TG)'TFu,,, n=12,.... (35)
Hence, using (35), we have

Qu,) = TF(u,) + (TG)TF(u,) + (TG)*TF(u,) + - - - + (TG)"TF (u,) + - - -
< TF(t) + (TG)TF(t4) + (TG TF (t142) + - - + (TG)" TF () + - - -
= Q(u**)~ (36)

Now, we show that Q : C*[0,1] — C*[0,1] satisfies Q(pu) > p*Q(u) for ¢t € [0,1] and
u € C*[0,1]. Note that

TF(pu) = /:/;/OIGI(L‘, V)GQ(V,'C)Gg(T,S)f(S,,OM(S)) dsdt dv

1 p1 p1
> ,0"‘/ / / Gl(t,V)Gz(V,T)Gg(T,S)f(S,I/l(S)) dsdt dv
o Jo Jo
= p*TF(u).
Moreover, from (25), it follows that for TF(pu) > p* TF(u),

G(TEpu)(t) = G(p* TEw))(¢)

= p*G(TFw))(t) fort € [0,1].
Finally, we have
1 1 g1
(TG)TF(,Ou)(t)=/ / / Gi(t,v)Ga (v, T)Gs(7, 8)f (s, G(TF pu)(s)) ds dt dv
o Jo Jo
1 1 1
G1(t,V)Ga (v, 1)Gs (1, 8)f (s, 0“ G(TF dsdr d
2/0 /(;/(; l(t V) 2(V T) 3('( S)f(S,O ( (M))(S)) sdt dv

1 1 1
zpa2f0 /0 /0 G1(6,v)Ga (v, T)Gs(1,8)f (s, G(TF(w))(s)) dsdt dv

= p (TG)TF(u)(t),

2
(TG)(TFpu)(t) = p* (TG)TF(u)(?).
By induction, it is easy to see that

(TG) (TFpu)(t) > p"‘n+1(TG)TF(pu)(t), n=12,.... (37)
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Hence, using (35) and p € (0,1), « € (0,1), we have

Qlou) = TF(pu) + (TG)TF(pu) + (TG)*TF(pu) + - - - + (TG)"TF(pu) + - - -

> p* TE(u) + p (TG)TE(u) + p* (TG TF(w) + - - + p*" (TG)" TE(u) + - - -

> p®TF(u) + p*(TG)TF(u) + p*(TG*TF W) + - - - + p*(TG)"TF(us) + - - -

= p*(TF(u) + (TG)TF(u) + (TG)*TF(ut) + - - - + (TG)" TF(us) + - -

= p*Qu).
By Lemma 13, there exists 0 < s, < S, such that
5ug(t) = Qg(t) < Sug(t).
Let
s=sup{sy:5.g(t) <Qg(1)},  S=inf{S,:Qg(t) < Sug(®)}.
Pick m, and M such that
0<my < min{l,sﬁ }
and
max{l,Sﬁ} =M; < 0.

Set uo(t) = myg(t), vo(t) = Myg(t), up = Quu1, and v, = Qvpo, n=1,2,....
(38), we have

mg(t) =uo(t) Su(t) < <up(t) <+ <vu(t) <--- <) < wo(t) =

Indeed, from (39) m; < 1, and m*~'s > 1, we have

ui(£) = Quo) = Q(mg(t)) > m2Q(g(t)) = m%sg(¢)

= m smsg(t) = m " suo(t) = uo(e),
and by induction
un+1(t) = Q(un) = Q(un—l) = un(t)~

From (40), M; > 1, and M*7'S < 1, we have

n(t) = Qvo) = My Q(g(t)) =M?Q< )=M§‘Q(g)

1
—V
M, °

< M2Sg < SM2'M,g = SMZ'vo(2) < wo(t),

)

(38)

(39)

(40)

From (36) and

Mg(t).  (41)
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and by induction
Vi1 (£) = Qi) < QVy-1) = viu(2).
Letd = 72. Then
u, >d"v,. (42)

In fact uy = dvy is clear. Assume that (42) holds with n = k (k is a positive integer), i.e.,
Uy > d"‘kvk. Then

i = Q) = QA vi) = (d) Qi) = d* ™ Qi) = d* .

By induction, it is easy to see that (42) holds. Furthermore, in view of (38), (41) and (42),
we have

0 < thyz = thy < vy — 1ty < (1=d* Jvg = (1-d*" ) Mig(2)
and
etz = ) < v = wnll < (1= ") Mgl
where z is a nonnegative integer. Thus, there exists u* € C*[0,1] such that
lim u,(t) = lim v,(¢) = u*(¢) forte[0,1]
n—00 n—00
and u*(¢) is a fixed point of Q and satisfies
mgg(t) < u’(£) < Mog(t).
This means that u* € C;[0,1], where C;[0,1] = {u € C*[0,1], u(¢) > 0 for t € (0,1)}.
Next we show that #* is the unique fixed point of Q in C/[0,1]. Suppose, to the contrary,
that there exists another % € C;[0,1] such that Qu = u. We can suppose that

u*(t) <u(e), u*(t) #u(t) forte[0,1].

LetT=sup{0<t<l:tu* <u<t'w*). Then0<T <1and Tu* <u < T 'u*. We assert
7 =1. Otherwise, 0 < T < 1, and then

This means that T%u* < u < (T%)~'u*, which is a contradiction of the definition of T, be-

cause T < T%.
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Let us introduce the following notations for u = 0

1 p1 pl
Txu(t)::TFu(t):)\/O /; /0 Gl(t,v)Gz(V,s)Gg(s,r)f(r,u(t))drdsdv,

Quu:= HFu = TFu + (TG)TFu + (TG)*TFu + - - - + (TG)"TFu + - - -

=T+ (TG Thu+ (TG Thu+---+(TG)"Thu+---,
i.e., Q,u = AQu, where Q is given by (33). a

Theorem 4 Suppose that (H3), (H4), (H6) and L < 1 hold. Then (32) has a unique positive

solution u, (t) for any 0 < A <1.

Proof Theorem 3 implies that for A =1, the operator Q, has a unique fixed point u; €
C*[0,1], that is Qiu; = u;. Then from Lemma 10, for every A, € (0,1), there exists a func-
tion u, € P\{0} such that Q;, u, = u,.

Thus, u; is a unique positive solution of (32) for every 0 < A <1. g

4 Application
As an application of Theorem 1, consider the sixth-order boundary value problem

—u® 4 (1 - 0.5t2)u(4) +(4.5-05sinwt)u” + C(=5 + cos 0.5 t)u

= (0.5t1 ) +u)p + A(L+sinmt +u?), 0<t<l,
—¢"+2¢0=pu, 0<t<l, (43)
u(0) = u(1) = u”(0) = u”(1) = u®(0) = (1) = 0,

¢(0) = (1) =0,

forafixed A\ =2, Ay ==2,A3=1and »x=2.Inthiscase,a=A1 + Ay + A3 =1, b = —AjAy —
Aoz — A3 = 4, and ¢ = AjAoAs = —4. We have A(¢) = 1 — 0.5¢%, B(t) = 4.5 — 0.5sinxt,
C(t) = -5 +c0s0.57¢, D(t) = 0.5¢(1 —t) and f (¢, u) = 1 + sin ¢t + u®. It is easy to see that 7 +
an* —bn* + ¢ =1,015.3 > 0, @ = sup, (o) A(t), b = infycjo1) B(¢) and ¢ = sup, (o ;; C(t). Note
also that K = maxg<¢<1[—A(t) + B(t) - C(¢) — (—a + b — )] = 2, D, = maxe[o,1] fol Gy(t,v)dv =
0.15768, C = max,c[o,1) D(¢) = 0.125, di = max,c[o1 fol G(¢,s)ds = 0.10336, u** = }521’3;5 =
336.1 and D,K = 0.3153 < 1. Thus, if 0 < i < 336.1, then the conditions of Theorem 1
(note L = Dy(K + uCdy) < 1) are fulfilled (in particular, (H3)-(H5) are satisfied). As a result,

Theorem 1 can be applied to (43).
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