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Abstract
In this paper, we study the parabolic Monge-Ampère equation

–ut det(D2u) = f (t,u) in � × (0, T ].

Using the method of moving planes, we show that any parabolically convex solution
is symmetric with respect to some hyperplane. We also give a counterexample in
R

n × (0, T ] and an example in a cylinder to illustrate the results.
MSC: 35K96; 35B06

Keywords: parabolic Monge-Ampère equations; symmetry; method of moving
planes

1 Introduction
TheMonge-Ampère equation has been of much importance in geometry, optics, stochas-
tic theory, mass transfer problem, mathematical economics and mathematical finance
theory. In optics, the reflector antenna system satisfies a partial differential equation of
Monge-Ampère type. In [, ], Wang showed that the reflector antenna design problem
was equivalent to an optimal transfer problem. An optimal transportation problem can be
interpreted as providing a weak or generalized solution to the Monge-Ampère mapping
problem []. More applications of the Monge-Ampère equation and the optimal trans-
portation can be found in [, ]. In the meantime, the Monge-Ampère equation turned
out to be the prototype for a class of questions arising in differential geometry.
For the study of elliptic Monge-Ampère equations, we can refer to the classical pa-

pers [–] and the study of parabolic Monge-Ampère equations; see the references [–
] etc. The parabolic Monge-Ampère equation –ut det(Du) = f was first introduced by
Krylov [] together with the other parabolic versions of elliptic Monge-Ampère equa-
tions; see [] for a complete description and related results. It is also relevant in the
study of deformation of surfaces by Gauss-Kronecker curvature [, ] and in a maxi-
mum principle for parabolic equations []. Tso [] pointed out that the parabolic equa-
tion –ut det(Du) = f is the most appropriate parabolic version of the elliptic Monge-
Ampère equation det(Du) = f in the proof of Aleksandrov-Bakelmanmaximum principle
of second-order parabolic equations. In this paper, we study the symmetry of solutions to
the parabolic Monge-Ampère equation

–ut det
(
Du

)
= f (t,u), (x, t) ∈Q, (.)
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u = , (x, t) ∈ SQ, (.)

u = u(x), (x, t) ∈ BQ, (.)

where Du is the Hessian matrix of u in x, Q = � × (,T], � is a bounded and convex
open subset in R

n, SQ = ∂� × (,T) denotes the side of Q, BQ = � × {} denotes the
bottom of Q, and ∂pQ = SQ∪BQ denotes the parabolic boundary of Q, f and u are given
functions.
There is vast literature on symmetry and monotonicity of positive solutions of elliptic

equations. In , Gidas et al. [] first studied the symmetry of elliptic equations, and
they proved that if � = R

n or � is a smooth bounded domain in R
n, convex in x and

symmetric with respect to the hyperplane {x ∈ R
n : x = }, then any positive solution of

the Dirichlet problem

�u + f (u) = , x ∈ �,

u = , x ∈ ∂�

satisfies the following symmetry and monotonicity properties:

u(–x,x, . . . ,xn) = u(x,x, . . . ,xn), (.)

ux (x,x, . . . ,xn) <  (x > ). (.)

The basic technique they applied is the method of moving planes first introduced by
Alexandrov [] and then developed by Serrin []. Later the symmetry results of elliptic
equations have been generalized and extended by many authors. Especially, Li [] con-
sidered fully nonlinear elliptic equations on smooth domains, and Berestycki and Niren-
berg [] found a way to deal with general equations with nonsmooth domains using the
maximum principles on domains with small measure. Recently, Zhang andWang [] in-
vestigated the symmetry of the elliptic Monge-Ampère equation det(Du) = e–u and they
got the following results.
Let � be a bounded convex domain in R

n with smooth boundary and symmetric with
respect to the hyperplane {x ∈R

n : x = }, then each solution of the Dirichlet problem

det
(
Du

)
= e–u, x ∈ �,

u = , x ∈ ∂�

has the above symmetry andmonotonicity properties (.) and (.). Extensions in various
directions including degenerate problems [] or elliptic systems of equations [] were
studied by many authors.
For the symmetry results of parabolic equations on bounded and unbounded domains,

the reader can be referred to [, , ] and the references therein. In particular, when
Q = � × J , J = (,T], Gidas et al. [] studied parabolic equations –ut +�u + f (t, r,u) = 
and –ut + F(t,x,u,Du,Du) = , and they proved that parabolic equations possessed the
same symmetry as the above elliptic equations. When J = (,∞), Hess and Poláčik []
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first studied the asymptotic symmetry results for classical, bounded, positive solutions of
the problem

ut –�u = f (t,u), (x, t) ∈ � × J , (.)

u = , (x, t) ∈ ∂� × J . (.)

The symmetry of general positive solutions of parabolic equations was investigated in [,
, ] and the references therein. A typical theorem of J =R is as follows.
Let � be convex and symmetric in x. If u is a bounded positive solution of (.) and

(.) with J =R satisfying

inf
t∈R

u(x, t) >  (x ∈ �, t ∈ J),

then u has the symmetry and monotonicity properties for each t ∈R:

u
(
–x,x′, t

)
= u

(
x,x′, t

) (
x =

(
x,x′) ∈ �, t ∈ R

)
,

ux (x, t) <  (x ∈ �,x > , t ∈R).

The result of J = (,∞) is as follows.
Assume that u is a bounded positive solution of (.) and (.) with J = (,∞) such that

for some sequence tn → ∞,

lim inf
n→∞ u(x, tn) >  (x ∈ �).

Then u is asymptotically symmetric in the sense that

lim
t→∞

(
u
(
–x,x′, t

)
– u

(
x,x′, t

))
=  (x ∈ �),

lim sup
t→∞

ux (x, t)≤  (x ∈ �,x > ).

In this paper, using the method of moving planes, we obtain the same symmetry of solu-
tions to problem (.), (.) and (.) as elliptic equations.

2 Maximum principles
In this section, we prove somemaximumprinciples. Let� be a bounded domain inR

n, let
aij(x, t), b(x, t), c(x, t) be continuous functions inQ,Q = �× (,T]. Suppose that b(x, t) < ,
c(x, t) is bounded and there exist positive constants λ and � such that

λ|ξ | ≤ aij(x, t)ξiξj ≤ �|ξ |, ∀ξ ∈R
n.

Here and in the sequel, we always denote

Di =
∂

∂xi
, Dij =

∂

∂xi ∂xj
.

We use the standard notation Ck,k(Q) to denote the class of functions u such that the
derivatives Di

xD
j
tu are continuous in Q for i + j ≤ k.

http://www.boundaryvalueproblems.com/content/2013/1/185
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Theorem . Let λ(x, t) be a bounded continuous function on Q, and let the positive func-
tion ϕ ∈ C,(Q) satisfy

b(x, t)ϕt + aij(x, t)Dijϕ – λ(x, t)ϕ ≤ . (.)

Suppose that u ∈ C,(Q)∩C(Q) satisfies

b(x, t)ut + aij(x, t)Diju – c(x, t)u≤ , (x, t) ∈Q, (.)

u≥ , (x, t) ∈ ∂pQ. (.)

If

c(x, t) > λ(x, t), (x, t) ∈ Q, (.)

then u ≥  in Q.

Proof We argue by contradiction. Suppose there exists (x, t) ∈Q such that u(x, t) < . Let

v(x, t) =
u(x, t)
ϕ(x, t)

, (x, t) ∈Q.

Then v(x, t) < . Set v(x, t) = minQ v(x, t), then x ∈ � and v(x, t) < . Since v(·, t) at-
tains its minimum at x, we have Dv(x, t) = , Dv(x, t) ≥ . In addition, we have
vt(x, t)≤ . A direct calculation gives

vt =
utϕ – uϕt

ϕ ,

Dijv =

ϕ
Diju –

u
ϕDijϕ –


ϕ
DivDjϕ –


ϕ
DjvDiϕ.

Taking into account u(x, t) < , we have at (x, t),

 ≤ ϕaijDijv = aijDiju –
aijDijϕ

ϕ
u

≤ aijDiju +
u
ϕ
(bϕt – λϕ)

≤ aijDiju +
b
ϕ
utϕ – λu

= aijDiju + but – λu

< aijDiju + but – cu

≤ .

This is a contradiction and thus completes the proof of Theorem .. �

Theorem . is also valid in unbounded domains if u is nonnegative at infinity. Thus we
have the following corollary.

http://www.boundaryvalueproblems.com/content/2013/1/185
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Corollary . Suppose that � is unbounded, Q = � × (,T]. Besides the conditions of
Theorem ., we assume

lim inf|x|→∞ u(x, t)≥ . (.)

Then u≥  in Q.

Proof Still consider v(x, t) in the proof of Theorem .. Condition (.) shows that the
minimum of v(x, t) cannot be achieved at infinity. The rest of the proof is the same as the
proof of Theorem .. �

If � is a narrow region with width l,

� =
{
x ∈R

n| < x < l
}
,

then we have the following narrow region principle.

Corollary . (Narrow region principle) Suppose that u ∈ C,(Q) ∩ C(Q) satisfies (.)
and (.). Let the width l of � be sufficiently small. If on ∂pQ, u ≥ , then we have u ≥ 
in Q. If � is unbounded, and lim inf|x|→∞ u(x, t)≥ , then the conclusion is also true.

Proof Let  < ε < l,

ϕ(x, t) = t + sin
x + ε

l
.

Then ϕ is positive and

ϕt = ,

aijDijϕ = –
(

l

)

aϕ.

Choose λ(x, t) = –λ/l. In virtue of the boundedness of c(x, t), when l is sufficiently small,
we have c(x, t) > λ(x, t), and thus

bϕt + aijDijϕ – λϕ

= b –
(

l

)

aϕ –
(
–

λ

l

)
ϕ

= b –
(

l

)

aϕ +
λ

l
ϕ

≤ b < .

From Theorem ., we have u ≥ . �

http://www.boundaryvalueproblems.com/content/2013/1/185
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3 Main results
In this section, we prove that the solutions of (.), (.) and (.) are symmetric by the
method of moving planes.

Definition . A function u(x, t) :Q →R is called parabolically convex if it is continuous,
convex in x and decreasing in t.

Suppose that the following conditions hold.
(A) fu(t,u)/f (t,u) is bounded in [,T]×R.
(B) ∂u/∂x <  and

u(x)≤ u
(
xλ

)
, x ∈ �λ, (.)

where xλ = (λ – x,x, . . . ,xn), �λ = � ∩ {x ∈ � : x ≤ λ} (λ < ).

Theorem . Let � be a strictly convex domain in R
n and symmetric with respect to

the plane {x ∈ � : x = }, Q = � × (,T]. Assume that conditions (A) and (B) hold and
u ∈ C,(Q) ∩ C(Q) is any parabolically convex solution of (.), (.) and (.). Then
u(x,x′, t) = u(–x,x′, t), where (x, t) = (x,x′, t) ∈R

n+, and when x ≥ , ∂u(x, t)/∂x ≤ .

Proof Let in �λ × (,T], uλ(x, t) = u(xλ, t), that is,

uλ(x,x, . . . ,xn, t) = u(λ – x,x, . . . ,xn, t), (x, t) ∈ �λ × (,T].

Then

Duλ(x,x, . . . ,xn, t) = PTDu(λ – x,x, . . . ,xn, t)P,

where P = diag(–, , . . . , ). Therefore,

–uλ
t det

(
Duλ

)
= –ut(λ – x,x, . . . ,xn, t)det

(
Du(λ – x,x, . . . ,xn, t)

)
= f

(
t,u(λ – x,x, . . . ,xn, t)

)
= f

(
t,uλ

)
. (.)

We rewrite (.) in the form

log
(
–uλ

t
)
+ log

(
det

(
Duλ

))
= log f

(
t,uλ

)
. (.)

On the other hand, from (.), we have

log(–ut) + log
(
det

(
Du

))
= log f (t,u). (.)

According to (.) and (.), we have

log(–ut) – log
(
–uλ

t
)
+ log

(
det

(
Du

))
– log

(
det

(
Duλ

))
= log f (t,u) – log f

(
t,uλ

)
.

http://www.boundaryvalueproblems.com/content/2013/1/185
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Therefore

∫ 



d
ds

log
(
–sut – ( – s)uλ

t
)
ds +

∫ 



d
ds

logdet
(
sDu + ( – s)Duλ

)
ds

=
∫ 



d
ds

log f
(
t, su + ( – s)uλ

)
ds.

As a result, we have

b(x, t)
(
u – uλ

)
t + aij(x, t)

(
u – uλ

)
ij – c(x, t)

(
u – uλ

)
= , (x, t) ∈ �λ × (,T], (.)

where

b(x, t) =
∫ 



ds
sut + ( – s)uλ

t
,

aij(x, t) =
∫ 


gijs ds,

c(x, t) =
∫ 



fu
f

(
t, su + ( – s)uλ

)
ds,

gijs is the inverse matrix of sDu+ (– s)Duλ. Then b(x, t) < , c(x, t) is bounded and by the
a priori estimate [] we know there exist positive constants λ and � such that

λ|ξ | ≤ aijξiξj ≤ �|ξ |, ∀ξ ∈ R
n.

Let

wλ = u – uλ,

then from (.),

b(x, t)wλ
t + aij(x, t)wλ

ij – c(x, t)wλ = , (x, t) ∈ �λ × (,T]. (.)

Clearly,

wλ(x, t) = , x ∈ ∂�λ ∩ {x = λ},  < t ≤ T . (.)

Because the image of ∂� ∩ ∂�λ about the plane {x = λ} lies in �, according to the maxi-
mum principle of parabolic Monge-Ampère equations,

uλ(x, t)≤ , ∀x ∈ ∂� ∩ ∂�λ.

Thus

wλ(x, t) = u – uλ =  – uλ ≥ , x ∈ ∂� ∩ ∂�λ,  < t ≤ T . (.)

http://www.boundaryvalueproblems.com/content/2013/1/185
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On the other hand, from (.),

wλ(x, ) = u(x) – u
(
xλ

) ≥ , x ∈ �λ. (.)

From Corollary ., when the width of �λ is sufficiently small, wλ(x, t) ≥ , (x, t) ∈ �λ ×
(,T].
Now we start to move the plane to its right limit. Define

� = sup
{
λ < |wλ(x, t)≥ ,x ∈ �λ,  < t ≤ T

}
.

We claim that

� = .

Otherwise, we will show that the plane can be further moved to the right by a small dis-
tance, and this would contradict with the definition of �.
In fact, if � < , then the image of ∂� ∩ ∂�� under the reflection about {x = �} lies

inside �. According to the strong maximum principle of parabolic Monge-Ampère equa-
tions, for x ∈ �, u� < . Therefore, for x ∈ ∂�� ∩ ∂�, we have w� > . On the other hand,
by the definition of�, we have for x ∈ ��,w� ≥ . So, from the strongmaximumprinciple
[] of linear parabolic equations and (.), we have for (x, t) ∈ �� × (,T],

w�(x, t) > . (.)

Let d be the maximumwidth of narrow regions so that we can apply the narrow region
principle. Choose a small positive constant δ such that�+δ < , δ ≤ d/–�.We consider
the function w�+δ(x, t) on the narrow region

��+δ × (,T] =
(

��+δ ∩
{
x >� –

d


})
× (,T].

Then w�+δ(x, t) satisfies

b(x, t)w�+δ
t + aij(x, t)Dijw�+δ – c(x, t)w�+δ = , (x, t) ∈ ��+δ × (,T]. (.)

Now we prove the boundary condition

w�+δ(x, t)≥ , (x, t) ∈ ∂p
(
��+δ × (,T]

)
. (.)

Similar to boundary conditions (.), (.) and (.), boundary condition (.) is satisfied
for x ∈ ∂��+δ ∩ ∂�, x ∈ ∂��+δ ∩ {x = � + δ} and for t = . In order to prove (.) is
satisfied for x ∈ ∂��+δ ∩ {x = � – d/}, we apply the continuity argument. By (.) and
the fact that (�– d/,x, . . . ,xn) is inside ��, there exists a positive constant c such that

w�

(
� –

d

,x, . . . ,xn, t

)
≥ c.

http://www.boundaryvalueproblems.com/content/2013/1/185
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Because wλ is continuous in λ, then for small δ, we still have

w�+δ

(
� –

d

,x, . . . ,xn, t

)
≥ .

Therefore boundary condition (.) holds for small δ. From Corollary ., we have

w�+δ(x, t)≥ , x ∈ ��+δ ,  < t ≤ T . (.)

Combining (.) and the fact that wλ is continuous for λ, we know that w�+δ(x, t)≥  for
x ∈ �� when δ is small. Then from (.), we know that

w�+δ(x, t)≥ , x ∈ ��+δ ,  < t ≤ T .

This contradicts with the definition of �, and so � = .
As a result, w(x, t)≥  for x ∈ �, which means that as x < ,

u(x,x, . . . ,xn, t) ≥ u(–x,x, . . . ,xn, t).

Since � is symmetric about the plane {x = }, then for x ≥ , u(–x,x, . . . ,xn, t) also
satisfies (.). Thus we can move the plane from the right towards the left and get the
reverse inequality. Therefore

∂u(x, t)/∂x ≤ , x ≥ ,

u(x,x, . . . ,xn, t) = u(–x,x, . . . ,xn, t). (.)

Equation (.) means that u is symmetric about the plane {x = }. Theorem . is
proved. �

If we put the x axis in any direction, from Theorem ., we have the following.

Corollary . If � is a ball, Q = � × (,T], then any parabolically convex solution u ∈
C,(Q) of (.), (.) and (.) is radially symmetric about the origin.

Remark . Solutions of (.) in R
n × (,T] may not be radially symmetric. For example,

–ut det
(
Du

)
= e–u, (x, t) ∈ R

n × (,T] (.)

has a non-radially symmetric solution. In fact, we know that f (x) =  log( + e
√
x) –

√
x–

log (x > ) satisfies f ′′ = e–f in R
, and f (x) = f (–x), x < . Define

u(x, t) = log(T – t) + f (x) + f (x) + · · · + f (xn),

then u is a solution of (.) but not radially symmetric.
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We conclude this paper with a brief examination of Theorem .. Let B = B() be the
unit ball in R

n, and let radially symmetric function u(x) = u(r), r = |x| satisfy

u(r)(u′
(r))n–u′′

(r)
rn–

= –,  < r < , (.)

u() = u′
() = . (.)

Example . Let u satisfy (.) and (.). Then any solution of

–ut det
(
Du

)
= , (x, t) ∈ B× (,T], (.)

u = , (x, t) ∈ ∂B× (,T), (.)

u = u, (x, t) ∈ B× {} (.)

is of the form

u = –
[
(n + )t + 

] 
n+ u(r), (.)

where r = |x|.

Proof According to Corollary ., the solution is symmetric. Let

u(x, t) = u(r, t), r = |x|.

Then

ui =
∂u(r, t)

∂r
xi
r
,

uij =
∂u(r, t)

∂r
xixj
r

+
∂u(r, t)

∂r

(
δij

r
–
xixj
r

)
,

det
(
Du

)
=

(
∂u/∂r

r

)n–
∂u
∂r

.

Therefore (.) is

–
∂u
∂t

(
∂u/∂r

r

)n–
∂u
∂r

= . (.)

We seek the solution of the form

u(r, t) = T(t)u(r).

Then

–u(r)T ′(t)
(u′

(r)T(t))n–

rn–
u′′
(r)T(t) = .

That is,

u(r)(u′
(r))n–u′′

(r)
rn–

= –


T ′(t)(T(t))n
. (.)
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Therefore

T ′(t)
(
T(t)

)n = . (.)

By (.), we know that

T() = . (.)

From (.) and (.), we have

T(t) =
[
(n + )t + 

] 
n+ .

As a result,

u(r, t) = –
[
(n + )t + 

] 
n+ u(r).

From the maximum principle, we know that the solution of (.)-(.) is unique. Thus
any solution of (.), (.) and (.) is of the form of (.). �
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