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Abstract
In this paper, we study the parabolic Monge-Ampere equation

—udet(D?u) =f(t,u) in Q2 x (0, T].

Using the method of moving planes, we show that any parabolically convex solution
is symmetric with respect to some hyperplane. We also give a counterexample in

R" x (0, 7] and an example in a cylinder to illustrate the results.
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1 Introduction

The Monge-Ampeére equation has been of much importance in geometry, optics, stochas-
tic theory, mass transfer problem, mathematical economics and mathematical finance
theory. In optics, the reflector antenna system satisfies a partial differential equation of
Monge-Ampeére type. In [1, 2], Wang showed that the reflector antenna design problem
was equivalent to an optimal transfer problem. An optimal transportation problem can be
interpreted as providing a weak or generalized solution to the Monge-Ampeére mapping
problem [3]. More applications of the Monge-Ampeére equation and the optimal trans-
portation can be found in [3, 4]. In the meantime, the Monge-Ampére equation turned
out to be the prototype for a class of questions arising in differential geometry.

For the study of elliptic Monge-Ampére equations, we can refer to the classical pa-
pers [5-7] and the study of parabolic Monge-Ampére equations; see the references [8—
11] etc. The parabolic Monge-Ampeére equation —u, det(D?u) = f was first introduced by
Krylov [12] together with the other parabolic versions of elliptic Monge-Ampére equa-
tions; see [8] for a complete description and related results. It is also relevant in the
study of deformation of surfaces by Gauss-Kronecker curvature [13, 14] and in a maxi-
mum principle for parabolic equations [15]. Tso [15] pointed out that the parabolic equa-
tion —u, det(D*u) = f is the most appropriate parabolic version of the elliptic Monge-
Ampeére equation det(D?u) = f in the proof of Aleksandrov-Bakelman maximum principle
of second-order parabolic equations. In this paper, we study the symmetry of solutions to
the parabolic Monge-Ampeére equation

—Uy det(Dzu) =f(tu), 1) eq, (1.1)
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u=0, (x1)eSQ, (1.2)

u=ugx), (x1)eBQ, (1.3)

where D%y is the Hessian matrix of u in x, Q = Q x (0, T], Q is a bounded and convex
open subset in R”, SQ = 3Q x (0, T) denotes the side of Q, BQ = Q x {0} denotes the
bottom of Q, and 3,Q = SQU BQ denotes the parabolic boundary of Q, f and u; are given
functions.

There is vast literature on symmetry and monotonicity of positive solutions of elliptic
equations. In 1979, Gidas et al. [16] first studied the symmetry of elliptic equations, and
they proved that if 2 = R” or Q is a smooth bounded domain in R”, convex in x; and
symmetric with respect to the hyperplane {x € R” : x; = 0}, then any positive solution of
the Dirichlet problem

Au+f(u)=0, x€,

u=0, xe€dQ
satisfies the following symmetry and monotonicity properties:

U(=%1,%9, ..., %) = U(X1,%2, ..., %X,), (1.4)

Uy (X1,%2,...,%,) <0 (%1 > 0). 1.5)

The basic technique they applied is the method of moving planes first introduced by
Alexandrov [17] and then developed by Serrin [18]. Later the symmetry results of elliptic
equations have been generalized and extended by many authors. Especially, Li [19] con-
sidered fully nonlinear elliptic equations on smooth domains, and Berestycki and Niren-
berg [20] found a way to deal with general equations with nonsmooth domains using the
maximum principles on domains with small measure. Recently, Zhang and Wang [21] in-
vestigated the symmetry of the elliptic Monge-Ampére equation det(D?u) = e™ and they
got the following results.

Let 2 be a bounded convex domain in R” with smooth boundary and symmetric with
respect to the hyperplane {x € R” : x; = 0}, then each solution of the Dirichlet problem

det(D2u) =e, xeq,

u=0, xe€df2

has the above symmetry and monotonicity properties (1.4) and (1.5). Extensions in various
directions including degenerate problems [22] or elliptic systems of equations [23] were
studied by many authors.

For the symmetry results of parabolic equations on bounded and unbounded domains,
the reader can be referred to [16, 24, 25] and the references therein. In particular, when
Q=9 xJ,J=(0,T], Gidas et al. [16] studied parabolic equations —u; + Au + f(¢t,r,u) =0
and —u; + F(¢,x, u, Du, D*u) = 0, and they proved that parabolic equations possessed the

same symmetry as the above elliptic equations. When J = (0, 00), Hess and Polacik [25]
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first studied the asymptotic symmetry results for classical, bounded, positive solutions of

the problem
u—Au=f(tu), xt)eQx], (1.6)
u=0, (x1t)e€d2x]. 1.7)

The symmetry of general positive solutions of parabolic equations was investigated in [24,
26, 27] and the references therein. A typical theorem of J = R is as follows.

Let ©Q be convex and symmetric in x;. If # is a bounded positive solution of (1.6) and
(1.7) with J = R satisfying

infu(x,t)>0 (xeQ,te]),
teR
then u has the symmetry and monotonicity properties for each ¢ € R:

u(—xl,x/, t) = u(xl,x',t) (x = (xl,x/) eQ,te R),

Uy (x%,8) <0 (xeQ,x>0,teR).

The result of J = (0, 00) is as follows.
Assume that u is a bounded positive solution of (1.6) and (1.7) with J = (0, o) such that
for some sequence t, — 00,

liminfu(x,t,) >0 (x € Q).

n—00

Then u is asymptotically symmetric in the sense that
tlirgo(u(—xl,x’, t) - u(xl,x/, t)) =0 (xeQ),

limsupu, (x,£) <0 (x € Q,x >0).

t—00

In this paper, using the method of moving planes, we obtain the same symmetry of solu-
tions to problem (1.1), (1.2) and (1.3) as elliptic equations.

2 Maximum principles

In this section, we prove some maximum principles. Let Q2 be a bounded domain in R”, let
a¥(x,t), b(x,t), c(x, t) be continuous functions in Q, Q =  x (0, T]. Suppose that b(x, t) < 0,
¢(x, t) is bounded and there exist positive constants Ao and A such that

hols” < a’(x, 085 < Aols”,  VE €R".

Here and in the sequel, we always denote

32
= —, DU = .
8xi Bxi ax]‘

D;

We use the standard notation C?**(Q) to denote the class of functions u such that the

derivatives D;D’tu are continuous in Q for i + 2j < 2k.
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Theorem 2.1 Let A(x,t) be a bounded continuous function on Q, and let the positive func-
tion ¢ € C*1(Q) satisfy

b(x, t)p, + al(x, t)Dyip — A(x, t)p < 0. (2.1)

Suppose that u € C*'(Q) N C°(Q) satisfies

b(x, )u, + a’(x, t)Dju —c(x,hiu <0, (x,t) €Q, (2.2)

u>0, (x1)ed,Q. (2.3)
If

clx, t) > A, 1), (x1)eQ, (2.4)

thenu >0 in Q.
Proof We argue by contradiction. Suppose there exists (¥,£) € Q such that u(x,7) < 0. Let

u(x, t)
p(xt)

vix, t) =

(x,£) € Q.

Then v(x,£) < 0. Set v(x, o) = ming v(x, £), then xo € €2 and v(xo,Zo) < 0. Since v(-,Zo) at-
tains its minimum at xg, we have Dv(xg,ty) = 0, D*v(xo,%;) > 0. In addition, we have
ve(%0,t0) < 0. A direct calculation gives

_ Wy —up:

Ve = )
2
()

1 u 1 1
Dl‘jV = —Dl]I/l — —2Dl]§0 — —DlVDIQD — —D]'VDl‘(p.
% @ @ %

Taking into account u(xy, £p) < 0, we have at (xo, %),

. . ai/D»»(p
0 < pa’Dyjv=a’Dju - Y

u
.. u
< a’Dyu + —(by, — o)
@
i b
< a’'Dyu+ —up — A
%
= a‘7Dlju +bu; — Au

< a’leju +bu; —cu

<o.
This is a contradiction and thus completes the proof of Theorem 2.1. 0

Theorem 2.1 is also valid in unbounded domains if & is nonnegative at infinity. Thus we
have the following corollary.
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Corollary 2.2 Suppose that Q is unbounded, Q = Q x (0, T]. Besides the conditions of

Theorem 2.1, we assume

liminf u(x, ) > 0. (2.5)

[x]— 00
Then u>0in Q.

Proof Still consider v(x,¢) in the proof of Theorem 2.1. Condition (2.5) shows that the
minimum of v(x, £) cannot be achieved at infinity. The rest of the proof is the same as the

proof of Theorem 2.1. d

If Q is a narrow region with width /,
Q= {xeR”|O<x1<l},
then we have the following narrow region principle.
Corollary 2.3 (Narrow region principle) Suppose that u € C*'(Q) N C°(Q) satisfies (2.2)
and (2.3). Let the width | of Q be sufficiently small. If on 9,Q, u > 0, then we have u > 0

in Q. If 2 is unbounded, and liminf|,_, », u(x,t) > 0, then the conclusion is also true.

Proof LetO<e </,

X1 +&

@(x,t) =t +sin
Then ¢ is positive and
(" 1y

) 1\2
ﬂllDl'}'@:_(i) allw'

Choose A(x, t) = —Ao/[2. In virtue of the boundedness of c(x, £), when [ is sufficiently small,

we have c(x, t) > A(x, t), and thus

bg; + a’Dyjp — Lo

From Theorem 2.1, we have u > 0. O
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3 Main results
In this section, we prove that the solutions of (1.1), (1.2) and (1.3) are symmetric by the

method of moving planes.

Definition 3.1 A function u(x,t) : Q — R is called parabolically convex if it is continuous,
convex in x and decreasing in ¢.

Suppose that the following conditions hold.
(A) fu(&,u)/f(t,u) is bounded in [0, T] x R.
(B) 0uo/dx1 <0 and
uo(x) <up(x*), x€Q, (3.1)
where &% = QA —x1,%2,...,%,), Q' =QN{x e Q:x <A} (A <0).
Theorem 3.1 Let Q2 be a strictly convex domain in R" and symmetric with respect to
the plane {x € Q:x; =0}, Q = Q x (0, T). Assume that conditions (A) and (B) hold and
u € C*(Q) N C°(Q) is any parabolically convex solution of (1.1), (1.2) and (1.3). Then
u(x, %, t) = u(—x1,%,t), where (x,t) = (x1,%', ) € R™%Y, and when x, > 0, du(x, t)/dx; <O0.
Proof Letin Q* x (0, T1, u*(x, t) = u(x*, ¢), that is,
W (X1, %2, ..oy % £) = U(2h — X1, %2, .., % £),  (,2) € Q* x (0, T].
Then
Dzu’\(xl,xz, ey Xy, B) = PTDzu(ZA —X1,%, ..., X, £)P,

where P = diag(-1,1,...,1). Therefore,

—u? det(Dzu’\) = —u;(2A — X1, %2, ..., X, 1) det(Dzu(Zk — X1, %2, ..,x,,,t))
=f (6 ur = x1,%2, ..., %0, 1))

=f(tu"). (3.2)
We rewrite (3.2) in the form
log(—u%) + log(det(Dzuk)) = logf(t, u*). (3.3)
On the other hand, from (1.1), we have
log(~u;) + log(det(D*u)) = logf(t, u). (3.4)
According to (3.3) and (3.4), we have

log(~u;) —log(~u}) + log(det(D*u)) - log(det(D*u*)) = logf(t, u) - logf (t,u").
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Therefore
Ld Lg
/ — log(—su; — (1 - s)uy ) ds + / — logdet(sD?u + (1 - s)D*u*) ds
o ds o ds

1
=/ ilogf(t,su+(1—s)uk)ds.
0 ds

As a result, we have

b(x, t)(u - ul)t +al(x, t)(u - ul) —c(x, t)(u - ul) =0, (x1)eQ*x(0,T],

i
where

1 ds
b(x,t) = _
G 2) ,/0 sup + (1—s)ul

1
a’l(x,t) = / gsij ds,
0

c(x,t) = /Olj% (t,su +(1- s)uk) ds,

(3.5)

g’ is the inverse matrix of sD?u + (1 —s)D*u*. Then b(x, £) < 0, c(x, £) is bounded and by the

a priori estimate [9] we know there exist positive constants Ao and A such that

MIEI* <a’EE < AolE*, VEeR”

Let
wh=u—u,
then from (3.5),

b(x, t)w? +al(x, t)w?j —clx, W =0, (x,t) e x(0,T].
Clearly,

whx,t) =0, x€d*N{x=1},0<t<T.

3.7)

Because the image of Q2 N dQ* about the plane {x; = A} lies in €, according to the maxi-

mum principle of parabolic Monge-Ampere equations,
u*(x,0) <0, VxedQNoQ"
Thus

W t)=u-u'=0-u*>0, x€dQNIN",0<t<T.

(3.8)

Page 7 of 12
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On the other hand, from (3.1),
w(x,0) = uo(x) — up(x*) =0, xe€Q. (3.9)
From Corollary 2.3, when the width of Q* is sufficiently small, w*(x, ) > 0, (x,2) € Q* x

0, T].

Now we start to move the plane to its right limit. Define
A= sup{k <OW*(x,8)>0,xe Q" 0<t < T}.
We claim that
A=0.
Otherwise, we will show that the plane can be further moved to the right by a small dis-
tance, and this would contradict with the definition of A.
In fact, if A <0, then the image of 92 N Q2 under the reflection about {x; = A} lies
inside Q. According to the strong maximum principle of parabolic Monge-Ampére equa-
tions, for x € ©, u® < 0. Therefore, for x € 9Q* N d, we have w™ > 0. On the other hand,

by the definition of A, we have forx € Q*, w”* > 0. So, from the strong maximum principle
[28] of linear parabolic equations and (3.6), we have for (x,t) € Q4 x (0, T],

wh(x,t) > 0. (3.10)

Let dy be the maximum width of narrow regions so that we can apply the narrow region

principle. Choose a small positive constant § such that A +8 < 0,8 < dy/2— A. We consider

A+(S(

the function w”*°(x, t) on the narrow region

»A % (0,T] = (QA“S N {xl >A— %}) x (0,T7].

Then w™*3(x, t) satisfies

b(x, t)wf\Hs +al(x, L‘)Di,fwA*‘S —clx, WA =0, (x,8) € =M x (0, T). (3.11)
Now we prove the boundary condition

wh(x,t) >0,  (x,2) € 3,(Z* x (0, T)). (3.12)
Similar to boundary conditions (3.7), (3.8) and (3.9), boundary condition (3.12) is satisfied
for x € X2 NIQ, x € X2 N {x; = A + 8} and for £ = 0. In order to prove (3.12) is

satisfied for x € 9X % N {x; = A — dy/2}, we apply the continuity argument. By (3.10) and

the fact that (A — dy/2,%5,...,%,) is inside Q*, there exists a positive constant cy such that

d
wh (A - To,xz,...,xn,t) > ¢o.
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A

Because w” is continuous in A, then for small §, we still have

d,
whd (A - go,xz,...,xn,t) > 0.

Therefore boundary condition (3.12) holds for small §. From Corollary 2.3, we have
wh(x,6) >0, xeXA0<t<T. (3.13)

Combining (3.10) and the fact that w* is continuous for A, we know that w”*3(x, ) > 0 for

x € Q" when § is small. Then from (3.13), we know that
W) >0, xeQ*0<e<T.

This contradicts with the definition of A, and so A = 0.

As a result, wO(x, t) > 0 for x € Q°, which means that as x; < 0,
u(xlix27 e Xy t) = u(_xlij’ B ) t)
Since Q is symmetric about the plane {x; = 0}, then for x; > 0, u(—x1,%3,...,%,,t) also

satisfies (1.1). Thus we can move the plane from the right towards the left and get the

reverse inequality. Therefore

du(x,t)/dx; <0, x>0,

u(x1, %2, ..., X, £) = U(—X1,%2, ..., Xp, ). (3.14)

Equation (3.14) means that u is symmetric about the plane {x; = 0}. Theorem 3.1 is

proved. 0
If we put the x; axis in any direction, from Theorem 3.1, we have the following.

Corollary 3.2 If Q is a ball, Q = Q x (0, T, then any parabolically convex solution u
C*Y(Q) of (1.1), (1.2) and (1.3) is radially symmetric about the origin.

Remark 3.1 Solutions of (1.1) in R” x (0, 7] may not be radially symmetric. For example,
—Uy det(Dzu) =e*, (xt)eR"x(0,T] (3.15)

has a non-radially symmetric solution. In fact, we know that f(x) = 2log(1 + eﬁ") —2x -
log4 (x > 0) satisfies f” = e7/ in R!, and f(x) = f(—x), x < 0. Define

u(x,t) =log(T —£) + fx1) +f(x2) + - - + f(x),

then u is a solution of (3.15) but not radially symmetric.
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We conclude this paper with a brief examination of Theorem 3.1. Let B = B;(0) be the
unit ball in R”, and let radially symmetric function u(x) = uo(r), r = |x| satisfy

o 1) aty ()"t () _

o -1, O«<r«l, (3.16)

1o(1) = 1)(0) = 0. (3.17)

Example 3.1 Let u, satisfy (3.16) and (3.17). Then any solution of

~u,det(D’u) =1, (x,¢)€B x (0,T], (3.18)
u=0, (xt)€dBx(0,T), (3.19)
u=uy (x1t)eBx{0} (3.20)

is of the form
1
u=—[(n+1)t+1]" uy(r), (3.21)
where r = |x|.

Proof According to Corollary 3.2, the solution is symmetric. Let

u(x) t) = u(r, t)r r= |x|'
Then
oul(r, t) x;
wi=———,
ar r

ulr,t) xixj  du(r,t) (85 xi;
Ui= ———— -2
Y orr  r? or r r3

Au/ar\" 1 0%u
ar2’

det(Dzu) = (
Therefore (3.18) is

Au [ ouldr\" ' 8%u
_o# -1 (3.22)
ot r ar?

r

We seek the solution of the form

u(r,t) = T(t)uo(r).

Then
—uo(r)T/(t)%(ri%(f)Wug NT(t) =1.
That is,
1o (r) ey ()" (1) 1

-1 - T()(T )" (3.23)
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Therefore

T'()(T()" =1. (3.24)
By (3.20), we know that

T(0) = 1. (3.25)

From (3.24) and (3.25), we have
T(t) = [(n + e +1]71.

As aresult,
u(r, ) = ~[(n + 1t + 1] ().

From the maximum principle, we know that the solution of (3.18)-(3.20) is unique. Thus
any solution of (3.18), (3.19) and (3.20) is of the form of (3.21). O
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