Hu and Wang Boundary Value Problems 2013, 2013:187 0 BOU nda ry Va I ue PrOblemS

http://www.boundaryvalueproblems.com/content/2013/1/187 a SpringerOpen Journal

RESEARCH Open Access

Blow-up criteria for smooth solutions to the
generalized 3D MHD equations

Liping Hu'" and Yinxia Wang?

“Correspondence:
Iphuhnau@163.com

'College of Information and
Management Sciences, Henan
Agricultural University, Zhengzhou,
450011, China

Full list of author information is
available at the end of the article

@ Springer

Abstract

In this paper, we focus on the generalized 3D magnetohydrodynamic equations. Two
logarithmically blow-up criteria of smooth solutions are established.
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1 Introduction
We study blow up criteria of smooth solutions to the incompressible generalized magne-
tohydrodynamics (GMHD) equations in R3

du+u-Vu—-B-VB+(-A)u+V(p+1lBP) =0,
B+u-VB-B-Vu+(-A)PB=0, (11)
V-u=0, V-B=0

with the initial condition
t=0: wu=uy(x),B=By(x), xeR> (1.2)

Here u = (uy, up,u3), B=(B1,B,B3) and P=p + %|B|2 are non-dimensional quantities cor-
responding to the flow velocity, the magnetic field and the total kinetic pressure at the
point (x, £), while uo(x) and By(x) are the given initial velocity and initial magnetic field
with V -1y =0and V - By = 0, respectively.

The GMHD equations is a generalized model of MHD equations. It has important phys-
ical background. Therefore, the GMHD equations are also mathematically significant. For
3D Navier-Stokes equations, whether there exists a global smooth solution to 3D impress-
ible GMHD equations is still an open problem. In the absence of global well-posedness, the
development of blow-up/ non blow-up theory is of major importance for both theoretical
and practical purposes. Fundamental mathematical issues such as the global regularity of
their solutions have generated extensive research and many interesting results have been
established (see [1-5]).

When o = 8 =1, (1.1) reduces to MHD equations. There are numerous important pro-
gresses on the fundamental issue of the regularity for the weak solution to (1.1), (1.2) (see
[6-18]). A criterion for the breakdown of classical solutions to (1.1) with zero viscosity and
positive resistivity in R? was derived in [9]. Some sufficient integrability conditions on two
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components or the gradient of two components of «# + B and u — B in Morrey-Campanato
spaces were obtained in [10]. A logarithmal improved blow-up criterion of smooth solu-
tions in an appropriate homogeneous Besov space was obtained by Wang et al. [11]. Zhou
and Fan [15] established various logarithmically improved regularity criteria for the 3D
MHD equations in terms of the velocity field and pressure, respectively. These regularity
criteria can be regarded as log in time improvements of the standard Serrin criteria es-
tablished before. Two new regularity criteria for the 3D incompressible MHD equations
involving partial components of the velocity and magnetic fields were obtained by Jia and
Zhou [17].

When o =1, B =0, (1.1) reduces to Navier-Stokes equations. Leray [19] and Hopf [20]
constructed weak solutions to the Navier-Stokes equations, respectively. The solution is
called the Leray-Hopf weak solution. Later on, much effort has been devoted to establish
the global existence and uniqueness of smooth solutions to the Navier-Stokes equations.
Different criteria for regularity of the weak solutions have been proposed and many inter-
esting results have been obtained [21-25].

In the paper, we obtain two logarithmically blow-up criteria of smooth solutions to (1.1),
(1.2) in Morrey-Campanato spaces. We hope that the study of equations (1.1) can improve
the understanding of the problem of Navier-Stokes equations and MHD equations.

Now we state our results as follows.

Theorem 1.1 Let uy,By € H”"(R?), m > 3, with V -uy =0, V - By = 0 and % <a=B<1
Assume that (u, B) is a smooth solution to (1.1), (1.2) on [0, T). If u satisfies

T lu@®I’; 2% 3 3
/ Mpa dt<oo, 242 11=2q, <p<oo,l<p<gq, (13)
o L+In(e+ ||u(t)||ro) rop 200 -1

then the solution (u, B) can be extended beyond t = T.
We have the following corollary immediately.
Corollary 1.1 Let uo, By € H"(R®), m >3, with V - 1ug =0,V -By=0and 3 <a = <1.

Assume that (u, B) is a smooth solution to (1.1), (1.2) on [0, T). Suppose that T is the maxi-
mal existence time, then

T @)l 2w 3 3
/ Moa dt=00, —+>41=2a, <p<ool<p<gq (14)
o 1+1In(e+ [lze(£)ll ) r p 200—1

Theorem 1.2 Let uy,By € H™(R?), m > 3, with V - uy =0, V - By = 0 and % <a=B<1
Assume that (u, B) is a smooth solution to (1.1), (1.2) on [0, T). If

T Va1 2w 3 3
/ Mpa dt < 0o, —a+—=2a,—<p§oo,1<p§q, (1.5)
o 1+In(e+ ||Vu(t)| =) r p 20

then the solution (u, B) can be extended beyond t = T.

We have the following corollary immediately.
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Corollary 1.2 Let uy, By € H™(R®), m > 3, with V -1y =0,V -By=0and 3 <a = <1.
Assume that (u, B) is a smooth solution to (1.1), (1.2) on [0, T). Suppose that T is the maxi-
mal existence time, then

T Vu(@®)|’; 2% 3 3
/ Mpa dt = oo, —a+—:2a,—<p§oo,1<p§q. (1.6)
o l+In(e+ |[Vu(t)| ro) rop 20

The paper is organized as follows. We first state some preliminaries on function spaces
and some important inequalities in Section 2. Then we prove main results in Section 3
and Section 4, respectively.

2 Preliminaries
Before stating our main results, we recall the definition and some properties of the homo-

geneous Morrey-Campanato space.

Definition 2.1 For 1< p < g < +00, the Morrey-Campanato space Mp,q(Rs) is defined by

: 3_3
Mpq = {f € Lo (R%) : flljg,,, = sup sup R P [|f [l oae,zy < OO},

R>0 xcR3

where B(x, R) denotes the ball of center x with radius R.

Let1 < g <p' < oo, we define the homogeneous space Np/,q/ (R3) by

. s fel’ R)|f =3 cngo where (gr) C L{;mp(Rs) and
Ny y(R%) = 3(4-1)
Yorers @t 7 llgklly < 00,  where for anyk, di = diam(Supp g) < oo,

where L’C’;mp(Rs) is the space of all L¥' functions in R® with compact support. sz,q/ (R3) is
a Banach space when it is equipped with the norm
11

‘ 3(%-1)
”fv”Np/,q/ = lnf{zdk T ”gk”l}?, }7

keN

where the infimum is taken over all possible decompositions.

|

==+

Lemma 2.1 Let1<q <p' < oo and p, q satisfy }7 + > = 1. Then Mp,q(]R3) is the

dual space of Ny, (R®).

1_1
Y aq

_

Lemma 2.2 Let1<q/§p/<2,mz2and§+%:l.Set

3 3 3
y=—=+—-+—¢€(0,1].
2 g m

Then there exists a constant C > O such that for any f € H” and g € L™,

Wl , < Clf Lz liglom.

The following lemma comes from [21].
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Lemma 2.3 Assume that1<p < o0o. Forf,g € W™, and 1< q < 00,1 <r< o0, wehave

Vet -fveg|,, < CUIVF Il |V g o + gl | VF 1)

Lr2))

+i=L41

wherel<a <mand L =21 =,
p q1 r q2 r

The following inequality is the well-known Gagliardo-Nirenberg inequality.

Lemma 2.4 Let j, m be any integers satisfying 0 <j < m, and let 1 < q,r < 00, and p € R,
# <0 <1 be such that

1 (1 1
——ize(—-z>+(1—9)—.
p n ron q

Then, for all f € L1(R") N W (R"), there is a positive constant C depending only on n, m,
J> q, r» 0 such that the following inequality holds:

o (22)

|V, < CIFIEY | v™f

with the following exception: if 1 < r < 00 and m — j — - is a nonnegative integer, then (2.2)
holds only for a satisfying ﬁ <0<l

3 Proof of Theorem 1.1

Proof Let A = (—A)%. We multiply the first equation of (1.1) by —Au and use integration
by parts. This yields

1 d +o

E%HVM(L‘) HEZ + H AP (t) ||i2 = /R3 u-Vuludx — /RSB - VBAudx. (3.1)
Similarly, we obtain

ld 2 l+a 2

E%H VB(®)| 2 + | A"B@)| > = /RBWVBAde—/D;BB-VuAde. (3.2)

Summing up (3.1) and (3.2), we deduce that

d
S ([vu®| + [VBO ) + (1A w2 + | B0 2)
:/ u-VuAudx—/ B-VBAudx+/ u-VBAde—/ B-VuABdx
R3 R3 R3 R3
£ [1 +12 +13 +I4. (33)

By using Lemmas 2.1, 2.2 and (2.2), we have

I < Cllully,, IVuduly,,

< Clluell g, IV tull e | A
pq
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< C||M||MM||/\1+au||L2||Vu”1 5t g ”/\IH"M” e
= C”u”Mpq”Vu”l %t g ”/\1*0‘ ”;H—%

< §||A“°'u||§2 + Cllully, 1Vl (3.4)

where r = —2—.
=56 *ma

We apply integration by parts, V - B = 0, Lemmas 2.1, 2.2 and (2.2). This gives

12 +I4, = —/ 8,%Bi3,'B,'ujdx—2/ 8kBi8i8kBjujdx
R3 R3
= Cllully,, IVBABI,
< Cllullsy,, VBl e | ABll
3
< C”u”Mpq||/\1+OIB||L2||VB” 2a ma || /\1+O[B| 20( ma
3
< C”””Mpq”VB” 2oz ma ||/\1+OIB||L 20{ ma

2
<3 SN B+l IVBI, (35)

_ 2
where r= hi—i'

2a " ma

Similarly, we obtain
1 2
Is = o[ A"“B[ L + Cllully, IVBIL, (3.6)

where r = 15#

Substltutmg (3 4) (3.6) into (3.3) yields

d
Vel + [VBO| ) + (1A @] + [ B0 2)

< Cllully, (1Vulzz +1VBIIL)
CM(IIWIIZ +1VBIZ)
T 1+1In(e+ [lullL) r 2

= ot r Ly U1V + IVBIE) [+ (e + )]

I o BN 2 2
< Clnte s ey 1Vl + IVBIL)[1+ Infe + flulle)]

m("wlliz +IVBI%)[1+1n(e + lull?s)]

m(”w”ﬂ +IVBIZ)[1+In(e+ |V3ull, + |V3B|2)]. 37

Owing to (1.3), we know that for any small constant & > 0, there exists T < T such that

t IIM(T)IIV p
—— —dt<e K1l
/;0 1+In(e+ ||L£||Loo)

Page 5of 11
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Forany Tp <t< T, let
o = sup ([V°u(e)[ +[V°BE)12).
0=<T=<t
By (3.7), we obtain

d
SV + [vBO ) + (1A u@)] 3 + [ VB )

r

ull'..
ol

= Cm(nwniz +VB|%)[1 +In(e + ©())]. (3.8)

It follows from (3.8) and Gronwall’s inequality that
2 2 ! 1+a 2 l+a 2
[Vu@l 2+ [VBO L. + /T (A" @]+ [A"BE) 2) d
) ) O
< (IVuTo) 5 + ||VB(TO)HL2)exp{C(1 rin(e+ 000) [ 0 m”’f}
<Gy exp{Cs[l + ln(e + @(t))]}
< Coexp{2C¢[In(e + O(1))]}

)ZCE,

<Cole+O(t) 3.9)

where Co = [|Vu(To) |12, + | VB(To)I1%,.
Applying V"™ to the first equation of (1.1), then taking L? inner product of the resulting
equation with V" and using integration by parts, we get

d
e O] e Pt

=—/ V”’(u-Vu)V’”udx+/ V™(B-VB)V"udx. (3.10)
R3 R3

Similarly, we have

1d 2 - 2
2 dt ”VmB(t) ||L2 + ” A" B(t)”ﬁ
= —f V™u - VB)V"Bdx + / V™(B-Vu)V"Bdx. (3.11)
R3 R3
Combining (3.10)-(3.11), using V - u = 0, V - B = 0 and integration by parts yields

d
SV a@ 5+ 197" B@[ ) + A @] 2 + [ A" B@]

N =

=—/ [vm(u.W)—uv.vvmu]vmudx+/ [V"(B-VB)-B-VV"B|V"udx

R3 R3

=—/ [vm(u.VB)-W-VV’”B]V’”deJr/ [V*(B-Vu)-B-VV"u]V"Bdx
R3 R3

ENh+h+]s+a. (3.12)

Page 6 of 11
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In what follows, for simplicity, we set m = 3.
Using Holder’s inequality and (2.1), (2.2), we have

5 < |V Vi - u- V9P | VPul

< ClIVull 3 | Vuls

11

< C”V ” 2(2+;) ||/\3+a ||L (2+a)

)
||/\3+otu||L2 + C”Vl/l” 405 31

26a+l) g
=3 ||/\3+"‘u||L2 +Cle+O() =3 .

Similarly, we have

J» < ||V¥B-VB)-B- VVBB“L% ||V3”||L3

< CIIVBI|;3| V3B ;5| V?ul 5

4a+2

< C||\VB|Z™

(2+a)

2 -1
|/\3+aBHL22+a) ||V ” 20Q2+a)

| A eul 57

g” /\3+au”L2 + C”VB“ 4a+3 ”/\3+QB||2§¢+3 ||VM|| 4a+3)

< gl s A B+ CUVBIES v
- 8 12 12

1 2(6a+1)
=1 N ulp+ z || A2, 4 Cle+ O() 0

<[V VB)~u-VVB| 3 [V°B|

< C|Vulls |V2B|)}s + CIVBIs | V3B 15 | V3ul s

)Ce

IA

P A P e T
and

Ja = |V?(B-Vu)~B-VViul 5 |V°B]

< CIVul | B + CIVEILS V8] [Vl

= 51;” 3+a””L2 + _”/\BMB”LZ +C(e+O(1)) = 3)C6

Inserting (3.13)-(3.16) into (3.12) yields

d
(V@] + VB[ ) + [ w12 + | A BO|

(6ar+1)
<C(e+0(?) s .

Page 7 of 11

(3.13)

(3.14)

(3.15)

(3.16)

Gronwall’s inequality implies the boundedness of H3-norm of u and B provided that

2(6‘“1 Ce < 1, which can be achieved by the absolute continuous property of integral (1.3).

\X/e have completed the proof of Theorem 1.1.

O
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4 Proof of Theorem 1.2

Proof Let A = (—A)% . Multiplying the first equation of (1.1) by —Au and using integration
by parts, we obtain

Zﬁ”VMﬂH2+“A”%Aﬂhz—A;M-VuAudx—A;B-VBAudm (4.1)

Similarly, we get

L IVBOIL + A B = /R - VBABdx - /R B-VuBdr. (4.2)

Summing up (4.1) and (4.2), we deduce that

d
SV + [vBOI) + (1A u@] + A B0 )

:/ u~VuAudx—/ B~VBAudx+/ u~VBAde—/ B-VuABdx
R3 R3 R3 R3

= / Vu-VuVudx — / VB-VBVudx + / Vu-VBVBdx — / VB-VuVBdx
R3 R3 R3 R3
SN+ L+ +1,. (4.3)
Using Lemmas 2.1, 2.2 and (2.2), we obtain

I < ClVully,, I VuVuly,,

= ClIVullig, IV ull e |V 1] g
< C”Vu”[\/[pq” /\1+auHL2||VM|| 20( mot ”/\1+al/i” Zu W?O(

< C”vu”Mpq”Vu” 2a ma ||/\1+OIMHL 2a %

1 2
< —H/\lwbt“Lz + Cllull’, ||Vu||i2, (4.4)
8 24
where r = —2 .
-5+ g

Similarly, we obtain

I, < C||Vuly,, IVBVBIy,,

= ClIVull g, IIVBll g | VBI| 1
3
< C||vu||Mqu/\l+aB”L2 "VB”I 2u+mot ”/\1+C(B” 2u ma

2a ma 1+a 1+2a 7301
<C||W||MM||VB|| |A*B]

2
=3 A2, + ClIValiy, VB, (4.5)
where r = 1_%2+%,

1 2
I < 3 I /\IWB”LZ + C||Vu||;wp’q||VB||i2 (4.6)
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and
1 2
I, < 5 A" B, + C||Vu||jwp,q||VB||i2. (4.7)
Combining (4.3)-(4.7) yields

d
@2+ [vBOI) + (1AM u@] + A B0 )

=< CIIVuIIJ’\;Ip_q(IIVMIIEz +VBIZ.)

Vul
1vally,

Vul|?, + || VB|?
e Ty Vel + 19EI2)

Vul
1Vl

C
~ 1+In(e+ |[Vul|zo)
Vull.
o v,
~ 1+In(e+ |Vul|zo)

Vul
1vuly,

(IVulZs + IVBIZ)[1+In(e+ | Vullz) ]

(IVull2, + IVBIZ,)[1+1n(e + lull )]

T ine s [Vl (IVul2, + [IVBI%)[1+In(e + ulls)]

Vul
1Vl

1+In(e+ || Vulz)

(IVul7, + IVBI7)
X [1 + 1n(e+ ||V3u||i2 + || VBBHEZ)]. (4.8)

Thanks to (1.5), we know that for any small constant ¢ > 0, there exists Ty < T such that

IVl
/TO T ne s [Vul) “7 <6<t
Forany Tp <t < T, set
o) = sup (|Vu@]: +[v*BO)]L). (4.9)
To<t<t

By (4.8) and (4.9), we obtain

d
2 IV + [VB@ ) + (1A @2 + |2 B@)]72)

Vul|”
1vuly,

C
~ 1+In(e+ ||Vul|zo)

(IIVull?, + IVB]7,)[1+ In(e + O@))]. (4.10)

Equation (4.10) and Gronwall’s inequality give the estimate

[Vu) |2 + [ VB@] 3 + / (I u@ + [ A1 B@)] ) dr

< (|vucTo)|;2 + [ VBT [2)

IVu(oly, }

1+1In(e+ |V o)

X exp{C(l +In(e+ ©())) ft
To

Page 9 of 11


http://www.boundaryvalueproblems.com/content/2013/1/187

Hu and Wang Boundary Value Problems 2013, 2013:187 Page 10 of 11
http://www.boundaryvalueproblems.com/content/2013/1/187

< Coexp{Ce[1+In(e+O())]}
<G exp{ZCs[ln(e + @(t))]}

< Cole+0(1)", (4.11)

where Co = | Vu(To) |13, + | VB(To)II2,.
From (4.11), H? estimate for this case is the same as that for Theorem 1.1. Thus, Theo-

rem 1.2 is proved. d
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