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Abstract
Our aim in this paper is to study the existence of pullback attractors for the 3D
Navier-Stokes-Voigt equations with delays. The forcing term g(t,u(t – ρ(t))) containing
the delay is sub-linear and continuous with respect to u. Since the solution of the
model is not unique, which is caused by the continuity assumption, we establish the
existence of pullback attractors for our problem by using the theory of multi-valued
dynamical system.
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1 Introduction
Let � ⊂ R

 be an open, bounded and connected set. We consider the following prob-
lem for three-dimensional Navier-Stokes-Voigt (NSV) equations with delays in continu-
ous and sub-linear operators:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut – ν�u – α�ut + (u · ∇)u +∇p = g(t,u(t – ρ(t))), in (τ , +∞)× �,
divu = , in (τ , +∞)× �,
u(x, t) = , on (τ , +∞)× ∂�,
u(τ ,x) = u(x), x ∈ �,
u(τ + t,x) = ϕ(t,x), t ∈ (–h, ),x ∈ �.

(.)

Here u = (u(t,x),u(t,x),u(t,x)) is the velocity vector field, ν is a positive constant, α is
a characterizing parameter of the elasticity of the fluid, p is the pressure, g is the external
force term which contains memory effects during a fixed interval of time of length h > ,
ρ(t) is an adequate given delay function, u is the initial velocity field at the initial time
τ ∈R, ϕ is the initial datum on the interval (–h, ).
Equation (.) with α =  becomes the classical three-dimensional Navier-Stokes (NS)

equation. In the past decades, many authors [–] investigated intensively the classical
three-dimensional incompressible NS equation. For the sake of direct numerical simu-
lations for NS equations, the NSV model of viscoelastic incompressible fluid has been
proposed as a regularization of NS equations.
Equation (.) governs themotion of a Klein-Voigt viscoelastic incompressible fluid. Os-

kolkov [] was the first to introduce the system which gives an approximate description
of the Kelvin-Voigt fluid (see, e.g., [, ]). In , Levant et al. [] investigated numeri-
cally the statistical properties of the Navier-Stokes-Voigt model. Kalantarov and Titi []
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studied a global attractor of a semigroup generated by equation (.) for the autonomous
case. Recently, Luengo et al. [] obtained asymptotic compactness by using the energy
method, and they further got the existence of pullback attractors for three-dimensional
non-autonomous NSV equations.
Let us recall some related results in the literature. Yue and Zhong [] studied the long

time behavior of the three-dimensional NSV model of viscoelastic incompressible fluid
for system (.) by using a useful decomposition method. The authors in [, ] deduced
the existence of D-pullback attractors for D non-autonomous NSV equations using the
energymethod. As we know from [], delay terms appear naturally. In recent years, Cara-
ballo and Real [–] developed a fruitful theory of existence, uniqueness, stability of
solutions and global attractors for Navier-Stokes models including some hereditary char-
acteristics such as constant, variable delay, distributed delay, etc. However, our present
problemhas no uniqueness of solutions. To overcome the difficulty, wemay cite the results
by Ball [] and byMarín-Rubio and Real []. Gal andMedjo [] proved the existence of
uniform global attractors for a Navier-Stokes-Voigt model with memory. As commented
before, in comparison with three-dimensional Navier-Stokes equations, there is no regu-
larizing effect. Our result of this paper is to establish the existence of pullback attractors
for three-dimensional NSV equations in H

 when the external forcing term g(t,u) ∈ H
and the function g(t,u) is continuous with respect to u. Another difficulty is to obtain that
the multi-valued processes are asymptotically compact. In , Kapustyan and Valero
[] presented a method suitable for verifying the asymptotic compactness. The authors
[] applied this method to D Navier-Stokes equations with delays in continuous and
sub-linear operators. We shall apply the energy method to prove that our multi-valued
processes are asymptotically compact by making someminor modifications caused by the
term –α	ut in (.).
This paper is organized as follows. In Section , we recall briefly some results on the

abstract theory of pullback attractors. In Section , we introduce some abstract spaces
necessary for the variational statement of the problem and give the proof of the global
existence of solutions. In Section , we consider the asymptotic behavior of problem (.).

2 Basic theory of pullback attractors
By using the framework of evolution processes, thanks to [, , ], we now briefly recall
some theories of pullback attractors and the related results. On the one hand, we have to
overcome some difficulties caused by multi-valued processes. On the other hand, since
our model is non-autonomous, we should use the related results for classical multi-valued
processes in [, ], but which are not completely adapted to our model.
Let (X,d) be ametric space, and letP(X) be the class of nonempty subsets ofX. As usual,

we denote by distX(B,B) the Hausdorff semi-distance in X between B ⊂ X and B ⊂ X,
i.e.,

distX(B,B) = sup
x∈B

inf
y∈B

dX(x, y) for B,B ⊂ X,

where dX(x, y) denotes the distance between two points x and y in X.
We now formulate an abstract result in order to establish the existence of pullback at-

tractors for the multi-valued dynamical system associated with (.).
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Definition . A multi-valued process U is a family of mappings U(t, τ ) : X → P(X) for
any pair τ ≤ t of real numbers such that

U(t, τ )x⊂U(t, r)U(r, τ )x, ∀x ∈ X,∀τ ≤ r ≤ t.

If the above relation is not only an inclusion but also an equality, we say that the multi-
valued process is strict. For example, the relation generalized by Dnon-autonomousNSV
equation (see, e.g., []) is an equality, while the relation generalized by D NS equations
(see, e.g., []) is strict.

Definition . Suppose that D̂ = {D(t)}t∈R ⊂ P(X) is a family of sets. A multi-valued
process U is said to be D̂-asymptotically compact if for any t ∈ R, any sequences {τn}∞n=
with τn → –∞, xn ∈ D(τn), and ξn ∈ U(t, τn)xn, the sequence {ξn} is relatively compact
in X.

Lemma . If a multi-valued process U is D̂-asymptotically compact, then the sets
�(D̂, t) are nonempty compact subsets of X, where

�(D̂, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ )D(τ )
X
, ∀t ∈R.

Furthermore, �(D̂, t) attracts in a pullback sense to D̂ at time t, i.e.,

lim
τ→–∞dist

(
U(t, τ )D(τ ),�(D̂, t)

)
= .

Indeed, it is the minimal closed set with this property.

Definition . The family of subsets D̂ = {D(t)}t∈R is said to be pullback-absorbingwith
respect to a multi-valued processU if for every t ∈R and all bounded subset B of X, there
exists a time τ (t,B) ≤ t such that

U(t, τ )B⊂D(t), ∀τ ≤ τ (t,B).

Lemma . Let the family of sets D̂ = {D(t)}t∈R be pullback-absorbing for the multi-
valued process U , and let U be D̂-asymptotically compact. Then, for any bounded sets
B of X, it holds that

lim
τ→–∞dist

(
U(t, τ )B,�(D̂, t)

)
= .

Definition . Suppose that U is a multi-valued process. A familyA = {A(t)}t∈R ⊂P(X)
is said to be a pullback attractor for a multi-valued processU if the setA(t) is compact for
any t ∈R and attracts at time t to any bounded set B ⊂ X in a pullback sense, i.e.,

lim
τ→–∞dist

(
U(t, τ )B,A(t)

)
= .

We can see obviously that a pullback attractor does not need to be unique. However,
it can be considered unique in the sense of minimal, that is, the minimal closed family
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with such a property. In this sense, we obtain the following property and the existence of
pullback attractors.

Lemma . [] Assume that U is a multi-valued process, and U is D̂-asymptotically
compact and a family D̂ is pullback-absorbing for U .Then, for any t ∈R and any bounded
subset B of X, the set

�(B, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ )B
X
, ∀t ∈R,

is a nonempty compact subset contained in�(D̂, t),which attracts to B in a pullback sense.
In fact, �(D̂, t) defined above is the minimal closed set with this property.
Furthermore, for any bounded set B, the set A(t) =

⋃
B �(B, t)

X
is a pullback attractor.

From Definitions . and ., it is easy to see that A(t)⊂ �(D̂, t).
If there exists a time T ∈ R such that

⋃
t≤T D(t) is bounded, for bounded B, then

A(t) =
⋃
B

�(B, t)
X
= �(D̂, t), ∀t ≤ T .

As we know, for the single-valued processes, the continuity of processes provides in-
variance; while in the multi-valued processes, the upper semi-continuity (defined below)
provides negatively invariance of the omega limit sets �(B, t) and the attractor. The fol-
lowing is the definition of the upper semi-continuity of the multi-valued processes (see in
[]).

Definition . Let U be a multi-valued process on X. It is said to be upper semi-
continuous if for all t ≥ τ , the mapping U(t, τ ) is upper semi-continuous from X into
P , that is to say, given a converging sequence xn → x, for some sequence {yn} such that
yn ∈ U(t, τ )xn for all n, there exists a subsequence of {yn} converging in X to an element of
U(t, τ )x.

Lemma . [] Assume that a multi-valued process U and a family D̂. If, in addi-
tion, U(t, τ ) is D̂-asymptotically compact and upper semi-continuous, then the family
{�(D̂, t)}t∈R is negatively invariant, i.e.,

�(D̂, t) ⊂U(t, τ )�(D̂, τ ), ∀t ≥ τ ,

where B is a bounded set B of X. The family {�(B, t)}t∈R is also negatively invariant and
the familyA(t) defined in Lemma . is also negatively invariant.

Lemma. [] Given a universeD, if amulti-valued process U isD-asymptotically com-
pact, then, for any t ∈R and for any D̂ ∈D, the omega limit set �(D̂, t) is a nonempty com-
pact set of X that attracts to D̂ at time t in a pullback sense. Indeed, it is the minimal closed
set with this property. If, in addition, the multi-valued process U is upper semi-continuous,
then {�(D̂, t)}t∈R is negatively invariant.

From the above lemmas, we obtain the following results which are rather similar to The-
orem  in []. We only sketch it here.
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Lemma . Suppose that D is a universe and D̂ is pullback D-absorbing for a multi-
valued process U ,which is also D̂-asymptotically compact. Then the results in Lemma .
hold. Furthermore, the familyAD = {AD(t)}t∈R, whereAD(t) = �(D̂, t), and the following
results hold:
() For each t ∈R, the set AD(t) defined above is compact.
() AD attracts pullback to any D̂ ∈D.
() Suppose U is upper semi-continuous, then AD is negatively invariant.
() AD(t) = �(D̂, t) =

⋃
D̂∈D �(D̂, t).

() Assume D̂ ∈D, the minimal family of closed sets AD attracts pullback to elements
of D.

() Assume D̂ ∈D, each D(t) is closed and the universe D is inclusion-closed, then
AD ∈D and it is the only family of D which satisfies the above properties (), () and
().

() If D contains the families of fixed bounded sets, then A = {A(t)}t∈R defined in
Lemma . is the minimal pullback attractor of bounded sets, and A(t)⊂AD(t) for
each t ∈R. In addition, if there exists some T ∈ R such that

⋃
t≤T D(t) is bounded,

then A(t) =AD(t) for all t ≤ T .

3 Introduction to some abstract spaces and the existence of solutions
Wefirst recall some notations about the function spaces which will be used later to discuss
the regularity of pullback attracting sets. Let us consider the following abstract space:

V =
{
u ∈ (

C∞
 (�)

) : divu = 
}
.

The symbolsH ,V denote the closures ofV in L(�),H
(�), respectively. In other words,

H = the closure of V in (L(�)) with the norm | · | and the inner product (·, ·), where for
u, v ∈ (L(�)),

(u, v) =
∑
i=

∫
�

ui(x)vi(x)dx.

V = the closure of V in (H
(�)) with the norm associated to the inner product ((·, ·)),

where for u, v ∈ (H
(�)),

(
(u, v)

)
=

∑
i,j=

∫
�

∂uj
∂xi

vj
∂xi

dx.

We shall use ‖v‖V ′ to denote the norm of V ′. The value of a functional from V ′ on an
element from V is denoted by brackets 〈·, ·〉. It follows that V ⊂ H ≡ H ⊂ V ′, and the
injections are dense and compact.
DefineAu = –P�u for all u ∈D(A), where P is the ortho-projector from (L(�)) ontoH .

Considering the properties of the operator A, we have A : V → V ′ as

〈Au, v〉 := (
(u, v)

)
, ∀u, v ∈ V .

http://www.boundaryvalueproblems.com/content/2013/1/191
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We define

b(u, v,w) =
∑

i,j=

∫
�

ui
∂vj
∂xi

wj dx,

for every function u, v, w :� → R
, and the operator B : V ×V → V ′ as

〈
B(u, v),w

〉
= b(u, v,w), ∀u, v,w ∈ V .

Obviously, b(u, v,w) is a continuous trilinear form such that

∣∣b(u, v,w)∣∣ ≤ C‖u‖‖v‖‖w‖, ∀u, v,w ∈ V ,

which yields

∥∥B(u, v)∥∥V ′ ≤ C‖u‖‖v‖, ∀u, v ∈ V .

Moreover, b and B satisfy the following:

b(u, v,w) = –b(u,w, v), ∀u, v,w ∈ V ,

b(u, v, v) = , ∀u, v,w ∈ V .

Now, we make some assumptions. The given delay function ρ satisfies ρ ∈ C([, +∞);
[,h]), and there is a constant ρ independent of t satisfying

ρ ′(t) ≤ ρ <  ∀t ≥ , (.)

where ρ ′ = dρ

dt .
Moreover, we assume that g : [τ , +∞)×H → H satisfies the following assumptions:
(H) g(·,u) : [τ , +∞)→H is measurable for all u ∈ V .
(H) For all t ≥ τ , g(t, ·) :H →H is continuous.
(H) There exist two functions γ ,β : [τ , +∞) → [, +∞). The above γ ∈ Lp(τ ,T) and

β ∈ L(τ ,T) for all T > τ , for  ≤ p≤ +∞, such that ‖g(t,u)‖V ′ ≤ γ (t)‖u‖ + β(t),
∀t ≥ τ , ∀u ∈ V .

As to the initial datum, we assume
(H) u ∈ V , and ϕ ∈ Lq(–h, ;V ), where 

p +

q = .

Next, we shall consider the solution of (.).

⎧⎪⎨⎪⎩
u(t) + αAu(t) +

∫ t
τ
(νAu(s) + B(u(s)))ds

= u + αAu +
∫ t
τ
g(s,u(s – ρ(s)))ds, ∀t ≥ τ ,

u(τ + t) = ϕ(t), a.e. t ∈ (–h, ).
(.)

Definition . It is said that u is a weak solution to (.) if u belongs to u ∈ Lq(τ –
h,T ;V ) ∩ L∞(τ ,T ;V ) for all t ≥ τ such that u(τ + t) coincides with ϕ(t) in (–h, ) and
satisfies equation (.) in V ′ for all t ≥ τ .

http://www.boundaryvalueproblems.com/content/2013/1/191
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If u is a solution of (.), then it is easy to get u(t) + αAu(t) ∈ L(τ ,T ;V ′), and
d
dt (u(t) + αAu(t)) ∈ L(τ ,T ;V ′) for all T > τ . From the property of the operator A, we
have u(t) + αAu(t) ∈ C(τ , +∞;V ′). On the other hand, reasoning as in [], we have
u ∈ C([τ , +∞);V ).
Now, we define a functional γ̃ (t) = γ ◦ ζ –(t), where ζ : [τ , +∞) → [ρ(τ ), +∞) is a differ-

entiable and nonnegative strictly increasing function given by ζ (s) = s – ρ(s). We have

∫ t

τ

∥∥g(t,u(
t – ρ(t)

))∥∥
V ′ dt

≤
∫ T

τ

γ (t)
∥∥u(

t – ρ(t)
)∥∥ dt +

∫ T

τ

β(t)dt

≤ 
 – ρ

∫ T–ρ(T)

τ–ρ(τ )
γ̃ (t)

∥∥u(t)∥∥ dt +
∫ T

τ

β(t)dt

≤ 
 – ρ

(∫ 

–ρ(τ )
γ̃ (t + τ )‖ϕ‖ dt +

∫ T

τ

γ̃ (t)
∥∥u(t)∥∥ dt

)
+

∫ T

τ

β(t)dt. (.)

From the above analysis, taking into account γ̃ (t) ∈ LP(–ρ(τ ),T) for all T > τ , we obtain
that g(t,u(t – ρ(t))) ∈ L(τ ,T ;V ′). Hence, it is clear that u is a weak solution to (.) if
u ∈ C([τ , +∞);V ), u′ ∈ L(τ ,T ;V ) for all T > τ , and satisfies the energy equality



d
dt

(∣∣u(t)∣∣ + α∥∥u(t)∥∥) + ν
∥∥u(t)∥∥ =

〈
g
(
t,u

(
t – ρ(t)

))
,u(t)

〉
, a.e. t > τ

in the distributional sense on (τ , +∞).

Theorem . Suppose that (H)-(H) hold. Then there exists a global solution u to (.).

Proof We shall prove the result by the Faedo-Galerkin scheme and compactness method.
For convenience and without loss of generality, we set the initial time τ = . As to different
value τ , we only proceed by translation.
Consider the Hilbert basis ofH formed by the eigenfunctions {vk} of the above operator

A, i.e., Avk = λkvk . In fact, these elements allow to define the operator Pmv =
∑m

k=(vk , v)vk ,
which is the orthogonal projection of H and V in Vm := span[v, . . . , vm] with their respec-
tive norms.
Denote um(t) =

∑m
k= ηmk(t)vk , where ηmk(t) = (um(t), vk), k = , , . . . ,m, are unknown

real functions satisfying the finite-dimensional problem

⎧⎪⎨⎪⎩
(um, vk) + α(Aum(t), vk) + ν

∫ t
 〈Aum(s), vk〉ds +

∫ t
 〈B(um(s),um(s)), vk〉ds

= (u, vk) + α(Au, vk) +
∫ t
 (g(s,u

m(s – ρ(s))), vk)ds, t > ,∀≤ k ≤ m,
um(t) = ϕm(t), a.e. t ∈ (–h, ),

(.)

with ϕm(t) = Pmϕ(t). From [], we can obtain the local well-posedness of this finite-
dimensional delay problem. The following provides estimates which imply that the so-
lutions are well defined in the whole [,+∞).

http://www.boundaryvalueproblems.com/content/2013/1/191
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By (.), we obtain

d
dt

((
um, vk

)
+ α(Aum(t), vk)) + ν

〈
Aum(t), vk

〉
+ B

(
um(t),um(t)

)
, vk〉

=
(
g
(
t,um

(
t – ρ(t)

))
, vk

)
, t > ,∀≤ k ≤ m. (.)

Multiplying (.) by (um(t), vk), summing from k =  to k =m, and using the properties of
the operator b, we easily get

d
dt

(∣∣um(t)∣∣ + α∥∥um(t)∥∥) + ν
∥∥um(t)∥∥ = 

〈
g
(
t,um

(
t – ρ(t)

))
,um(t)

〉
. (.)

Observing (H) and using the Young inequality, we have


〈
g
(
t,um

(
t – ρ(t)

))
,um(t)

〉
≤ 

∥∥g(t,u(
t – ρ(t)

))∥∥
V ′

∥∥um(t)∥∥
≤ 

(
γ


 (t)

∥∥um(
t – ρ(t)

)∥∥ + β

 (t)

)∥∥um(t)∥∥
= γ


 (t)

∥∥um(
t – ρ(t)

)∥∥∥∥um(t)∥∥ + β

 (t)

∥∥um(t)∥∥
≤ ν( – ρ)

∥∥um(
t – ρ(t)

)∥∥ +
γ (t)

ν( – ρ)
∥∥um(t)∥∥ + β(t) +

∥∥um(t)∥∥

= ν( – ρ)
∥∥um(

t – ρ(t)
)∥∥ +

(
 +

γ (t)
ν( – ρ)

)∥∥um(t)∥∥ + β(t). (.)

Considering the above inequality in (.) and observing that

∫ t



∥∥um(
s – ρ(s)

)∥∥ ds ≤ 
 – ρ

∫ t–ρ(t)

–ρ()

∥∥um(s)∥∥ ds

≤ 
 – ρ

(∫ 

–h

∥∥ϕ(s)
∥∥ ds +

∫ t



∥∥um(s)∥∥ ds
)
, (.)

we easily get

∣∣um(t)∣∣ + α∥∥um(t)∥∥ + ν
∫ t



∥∥um(s)∥∥ ds

≤ |u| + α(t)‖u‖ +
∫ T


β(s)ds + ν

∫ 

–h

∥∥ϕ(s)
∥∥ ds

+
∫ t



(
 + ν +

γ (t)
ν( – ρ)

)∥∥um(s)∥∥ ds. (.)

From the above inequality and the Gronwall inequality, one has that {um} is bounded in
L(,T ;V ), also in L∞(,T ;V ), for any T > . Observing (.), we know that the sequence
{ dumdt }m≥ is bounded in L(,T ;V ′) for all T > . The reason is the same as in [].
By the compactness of the injection of V into H , using the above estimates and the

Ascoli-Arzelà theorem, we deduce that there exist a subsequence {um}m≥ (we relabel the
same) and u ∈ W ,(,T ;V ) ∩ Lq(–h,T ;V ) for any T >  with u = ϕ in (–h, ). Recalling

http://www.boundaryvalueproblems.com/content/2013/1/191
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(.) and the above analysis, we have

um
∗

⇀ u weakly-star in L∞(,T ;V ), (.)

um → u strongly in C(,T ;H) for all T > , and

um(t) → u(t), a.e. t >  in V . (.)

By the properties of operator A and (.), we deduce that Aum ⇀ Au weakly in
L(,T ;V ′). Reasoning as in [] on page , we deduce that B(um) ⇀ B(u) weakly in
L(,T ;V ′) for any T > .
On the other hand, observing that by (.), (H) and the hypothesis on ρ in (.), for

any time t, we conclude for any T > 

g
(
t,um

(
t – ρ(t)

)) → g
(
t,u

(
t – ρ(t)

))
in V a.e.  < t < T (.)

and as {um} is bounded in the space L∞(,T ;V ′) obtained from (.), by (H), we deduce

∥∥g(t,um(
t – ρ(t)

))∥∥
V ′ ≤

{
β(t) + γ (t), t > ρ(t),
β(t) + γ (t)‖ϕ(t – ρ(t))‖, t < ρ(t),

(.)

where C = supm≥ ‖um‖L∞(,T ;V ). Thus we can easily derive from (.) and (.)

g
(
t,um

(
t – ρ(t)

)) → g
(
t,u

(
t – ρ(t)

))
in L

(
,T ;V ′). (.)

From the above discussion, passing to the limit, we prove that u is a global solution of (.)
in the sense of Definition .. �

Remark . We can obtain the uniqueness if there are additional assumptions on the
forcing term g . For example, if we suppose that g satisfies (H), (H), for an arbitrary T > τ

and CT = Cmaxt∈[τ ,T](‖u(t)‖,‖v(t)‖) > , then for the solutions u, v,

∥∥g(t,u) – g(t, v)
∥∥
V ′ ≤ (ν +CT )‖u – v‖,

then we obtain the uniqueness of solutions.

4 Existence of pullback attractors
In this section, we discuss the existence of pullback attractors for the D Navier-Stokes-
Voight equations with delays in continuous and sub-linear operators. At first, we propose
the assumptions for g given in Section :

(H′) For all u ∈ V , g(·,u) :R→H is measurable.
(H′) For all t ∈R, g(t, ·) :H →H is continuous.
(H′) There are two nonnegative functions γ (t),β(t) :R → [, +∞) with γ (t) ∈ Lploc(R) for

some  ≤ p≤ +∞ and β(t) ∈ Lloc(R) such that for any u ∈ V ,

∥∥g(t,u)∥∥
V ′ ≤ γ (t)‖u‖ + β(t) for any t ∈R.

http://www.boundaryvalueproblems.com/content/2013/1/191
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To construct a multi-valued process, we introduce symbols CV = C([–h, ];V ) and SqV =
V × Lq(–h, ;V ), where 

p + 
q =  as two phase spaces. Let D(τ ,u,ϕ) denote the set of

global solutions of (.) in [τ , +∞) and the initial datum (u,ϕ) ∈ SqV .
By Theorem ., we know there exists a solution to problem (.) although we have

no discussion on the uniqueness of solutions to problem (.). We may define two strict
processes, (CV , {U(·, ·)}) as

U(t, τ )ϕ =
{
u(t) : u ∈ D

(
τ ,ϕ(),ϕ

)}
for any ϕ ∈ CV ,

and (SqV , {U(·, ·)}) as

U(t, τ )(u,ϕ) =
{
u(t) : u ∈D

(
τ ,u,ϕ

)}
for any (u,ϕ) ∈ SqV .

Considering the regularity of the problem, the asymptotic behavior of the two processes
shall be the same, as we shall see in what follows.
In order to simplify the calculation form, we introduce a function κσ . For any σ > , we

set

κσ (t, s) =
(
d –

σ + d
α

)
(t – s) –

edh

αd( – ρ)

∫ t

s
γ (r)dr, ∀t, s ∈R. (.)

From (.), we can find that

–κσ (t, s) = κσ (, t) – κσ (, s), ∀t, s ∈R, (.)

and for any σ :  < σ < αd – d, then

κσ (, r)≤ κσ (, t) +
(
d –

σ + d
α

)
h, ∀r ∈ [t – h, t], (.)

where d = νmin{λ, 
α

}.

Lemma . Suppose that (H′)-(H′) hold, for any initial datum (u,ϕ) ∈ SqV and any
u ∈ D(τ ,u,ϕ), it holds

∥∥u(t)∥∥ ≤ 
αCτ e–κσ (t,τ ) +


α σ –

∫ t

τ

e–κσ (t,s)β(s)ds, (.)

where Cτ = d
∫ 
–h e

dr‖ϕ(r)‖ dr + |u| + α‖u‖.

Proof Let u be a solution of (.), so u ∈D(τ ,u,ϕ). Multiplying (.) by u(t) and using the
energy equality and the Poincaré inequality, we have

d
dt

(∣∣u(t)∣∣ + α∥∥u(t)∥∥) + d
(∣∣u(t)∣∣ + α∥∥u(t)∥∥)

≤ 
∥∥g(t,u(

t – ρ(t)
))∥∥

V ′
∥∥u(t)∥∥V ,

http://www.boundaryvalueproblems.com/content/2013/1/191
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where d = νmin{λ, 
α

}. Thus

d
dt

[
edt

(∣∣u(t)∣∣ + α∥∥u(t)∥∥)]
≤ edt

∥∥g(t,u(
t – ρ(t)

))∥∥
V ′

∥∥u(t)∥∥V

≤ edt
(
γ


 (t)

∥∥u(
t – ρ(t)

)∥∥ + β

 (t)

)∥∥u(t)∥∥
≤ edtγ


 (t)

∥∥u(t)∥∥∥∥u(
t – ρ(t)

)∥∥ + edtβ

 (t)

∥∥u(t)∥∥
≤ C–

 edt
∥∥u(

t – ρ(t)
)∥∥ +

(
Cγ (t) + σ

)
edt

∥∥u(t)∥∥ + σ –edtβ(t), (.)

where we have denoted

C =
edh

d( – ρ)
.

Considering

∫ t

τ

eds
∥∥u(

s – ρ(s)
)∥∥ ds≤ edh

 – ρ

(∫ t

τ–h
edr

∥∥u(r)∥∥dr)
=

edh

 – ρ

(
edτ

∫ 

–h
edr

∥∥ϕ(r)
∥∥ dr +

∫ t

τ

edr
∥∥u(r)∥∥ dr

)
, (.)

and integrating (.) from τ to t, we deduce

edt
∣∣u(t)∣∣ + αedt

∥∥u(t)∥∥

≤ C–


∫ t

τ

eds
∥∥u(

s – ρ(s)
)∥∥ ds +

∫ t

τ

(
Cγ (s) + σ

)
eds

∥∥u(s)∥∥ ds + σ –
∫ t

τ

β(s)ds

+ edτ |u| + αedτ‖u‖

≤ C–
 × edh

 – ρ
× edτ

∫ 

–h
edr

∥∥ϕ(r)
∥∥ dr +C–

 × edh

 – ρ

∫ t

τ

edr
∥∥u(r)∥∥ dr

+
∫ t

τ

(
Cγ (s) + σ

)
eds

∥∥u(s)∥∥ ds + σ –
∫ t

τ

edsβ(s)ds + edτ |u| + αedτ‖u‖

= dedτ

∫ 

–h
edr

∥∥ϕ(r)
∥∥ dr +

∫ t

τ

eds
(
Cγ (s) + σ + d

)∥∥u(s)∥∥ ds

+ σ –
∫ t

τ

edrβ(r)dr + edτ |u| + αedτ‖u‖, (.)

where we set

Cτ = d
∫ 

–h
eds

∥∥ϕ(s)
∥∥ ds + |u| + α‖u‖.

Observing the above estimates, we easily deduce

edt
∣∣u(t)∣∣ + αedt

∥∥u(t)∥∥

≤ edτCτ +
∫ t

τ

(
Cγ (s) + σ + d

)
edr

∥∥u(r)∥∥ dr + σ –
∫ t

τ

edrβ(r)dr. (.)

http://www.boundaryvalueproblems.com/content/2013/1/191
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Applying the Poincaré inequality and theGronwall inequality to (.), we deduce that (.)
holds. This finishes the proof of this lemma. �

Next, we shall prove that the processes (CV , {U(·, ·)}) and (SqV , {U(·, ·)}) defined above
are pullback-absorbing. To obtain this, we propose the assumptions

(H′)

lim sup
t→–∞


t

∫ t


γ (s)ds = γ̄ ∈ [, +∞),

and the relation among constants σ > , d defined above, and α in (.) satisfies
(H′)

d –
σ + d
α –

C

α > ,

and β(t) satisfies
(H′)

∫ 

–∞
e–κσ (,r)β(r)dr < +∞,

where the function κσ (t, s) is given by (.).

Before proving that the two multi-valued processes possess pullback-absorbing sets, we
introduce the definition of the two natural tempered universes which shall play the key
role for our main purpose.

Definition . Suppose that Rσ (t) is the collection of the sets of all functions r : R →
[, +∞) such that

lim
t→–∞ e–κσ (,t)r(t) = .

Let DSqV
be the class of all families D̂ = {D(t) : t ∈ R} ⊂ P(SqV ) such that D(t) ⊂

BSqV
(, rD̂(t)) for some rD̂ ∈ Rσ . In the same way, let Dσ

CV
denote the class of all families

D̂ = {D(t) : t ∈R} ⊂P(CV ) satisfying D(t)⊂ BCV (, rD̂(t)) for some rD̂ ∈Rσ .
Let B be any fixed bounded subset of SqV . Observing that Dσ

CV
⊂ DSqV

, which is
inclusion-closed, by (H′) and (H′), we deduce that the family B̂ = {B(t) ≡ B, t ∈ R} is
contained inDσ

SqV
. With regard toDCV , we use the samemethod and obtain a similar con-

clusion if B is included in CV .
The following lemma provides that there exist pullback-absorbing sets for the two pro-

cesses mentioned above.

Lemma . Suppose that (H′)-(H′) hold and the constants α, d, C, γ̄ satisfy d – σ+d
α

–
C
α

γ̄ >  and γ̄ < .
() Then, for any t ∈R and any family B̂ = {B(t) : t ∈R}, there exits τ (̂B, t) ≤ t such that

any initial datum (u,ϕ) ∈ SqV and any u ∈D(τ ,u,ϕ) for any τ ≤ τ (̂B, t) satisfy that

http://www.boundaryvalueproblems.com/content/2013/1/191
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‖u(t)‖ ≤ RV (t), where the positive continuous function RV (·) is given by

R
V (t) =  +


α σ –

∫ t

τ

e–κσ (t,s)β(s)ds, ∀t ∈ R.

() Let D̂ = {D(t) : t ∈R} be included P(CV ) which is given by

D(t) = BCV

(
, R̃V (t)

)
and R̃V (t) = max

t–h≤r≤t
RV (r), ∀t ∈ R.

Then the set D̂ ∈Dσ
CV

and is Dσ

SqV
-pullback absorbing for the process (SqV ,U).

Therefore, D̂ is Dσ
CV

-pullback absorbing for the process (CV ,U).

Proof Since the proof is a consequence of the definition of DSqV
, we only sketch it here.

From Lemma ., (H′) and (H′) , we have

∥∥u(t)∥∥ ≤ 
αCτ e–κσ (t,τ ) +


α σ –

∫ t

τ

e–κσ (t,s)β(s)ds

=

αCτ eκσ (,t) · e–κ(,τ ) +


α σ –

∫ t

τ

e–κσ (t,s)β(s)ds

=

αCτ e–κσ (,t) · e(d– σ+d

α
)τ– C

α
∫ τ
 γ (r)dr +


α σ –

∫ t

τ

e–κσ (t,s)β(s)ds

≤ Cτ

α e
κσ (,t)e(d–

σ+d
α

– C
α

)τ +

α σ –

∫ t

τ

e–κσ (t,s)β(s)ds

≤  +

α σ –

∫ t

–∞
e–κσ (t,s)β(s)ds. (.)

We complete the proof of (). Estimate () is a consequence of (). �

For the two processes (SqV ,U) and (CV ,U), they possess pullback-absorbing sets. In or-
der to apply Lemma . to obtain the existence of pullback attractors, it is necessary to
prove that the two multi-valued processes are asymptotically compact. This will be done
in the following lemma.

Lemma . Suppose that the assumptions in Lemma . hold. The two processes (CV ,U)
and (SqV ,U) are D̂-asymptotically compact.

Proof For any t ∈ R , a sequence {τn} ⊂ (–∞, t – h] with τn → –∞ and a sequence
{un} with un ∈ D(τn,ϕn(),ϕn) with ϕn ∈ D(τn), we shall prove that the sequence {unt} is
relatively compact in CV . By the properties concerning operator bmentioned in Section ,
we deduce that

∥∥(
un

)′∥∥
V ′ + α∥∥(

un
)′∥∥ ≤ ν

∥∥un∥∥ +
∥∥b(un,un, ·)∥∥V ′ +

∥∥g(t,un(t – ρ(t)
))∥∥

V ′ .

It is easy to get the above estimate which is independent of n. The sequences of {un} and
{(un)′} possess their subsequence, relabeled the same in suitable spaces such that there

http://www.boundaryvalueproblems.com/content/2013/1/191
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exist u ∈ L∞(t – h;V ) and u′ ∈ L(t – h, t;V ′) satisfying⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
un

∗
⇀ u weakly-star in L∞(t – h, t;V ),

un ⇀ u weakly in L(t – h, t;V ),
d
dt u

n ⇀ d
dt u weakly in L(t – h, t;V ′),

un(r) → u(r) strongly in V a.e. r ∈ (t – h, t).

(.)

According to the assumptions on a function g and analogously as in Theorem ., we
deduce that g(r,un(r – ρ(r)))→ g(r,u(r – ρ(r))) strongly in V a.e. r ∈ (t – h, t).
By the Lebesgue theorem and the uniform estimate of un in L∞(t – h, t;V ), we de-

duce that the function g(r,un(r – ρ(r))) converges to the function g(r,u(r – ρ(r))) strongly.
Therefore, for any t ∈ [t – h, t], we have u ∈ C([t – h, t];V ) and

u(t) + αAu(t) +
∫ t

t–h

(
νAu(r) + B

(
u(r)

))
dr

= u(t – h) + αAu(t – h) +
∫ t

t–h
g
(
r,u

(
r – ρ(r)

))
dr. (.)

The uniform estimate of {(un)′} in L(t – h, t;V ′) implies that the sequence {un} is
equicontinuous in V ′ for any t – h ≤ t ≤ t. In addition, the sequence {un} is bounded,
which is independent of n in C([t – h, t];V ). Using the Ascoli-Arzelà theorem, we can
obtain

un → u strongly in C
(
[t – h, t];V ′). (.)

From the uniform boundedness of the sequence {un} in C([t – h, t];V ), for any r ∈ [t –
h, t], we can also obtain un(r)⇀ u(r), weakly in V .
By the analogous argument, for any compact sequence {rn} ⊂ [t – h, t] and {rn} →

r ∈ [t – h, t], we obtain that the sequence {un(rn)} is convergent to u(r) weakly in V . To
achieve our result in Lemma ., we only need to prove

un → u strongly in C
(
[t – h, t];V

)
.

The proof is slightly different from Proposition  in [] or in []. We only sketch it
here. We use a contradiction argument. Suppose that it is not true, then there would exist
a value ε, a sequence (relabeled the same) {rn} ⊂ [rn–h, t], and r′ ∈ [t –h, t] with rn → r′

satisfying ‖un(rn) – u(r′)‖ ≥ ε for all n ≥ . We shall see un(rn) → u(r′) in V . In order to
achieve the last claim, because the sequence {un(rn)} is weakly convergent to u(r) in V ,
we only need the convergence of the norms above. In other words, ‖un(rn)‖ → ‖u(r′)‖ as
n→ ∞.
From the weak convergence of un(rn) in V , we get

∥∥u(
r′
)∥∥ ≤ lim

n→+∞ inf
∥∥un(r′)∥∥.

Therefore we have to check that

lim
n→+∞ sup

∥∥un(rn)∥∥ ≤ ∥∥u(
r′
)∥∥. (.)
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Li and Qin Boundary Value Problems 2013, 2013:191 Page 15 of 17
http://www.boundaryvalueproblems.com/content/2013/1/191

From the energy equality, for any t – h≤ r ≤ t ≤ t, we obtain



∣∣z(t)∣∣ + 


∥∥z(t)∥∥ + ν

∫ t

r

∥∥z(s)∥∥ ds

=


∣∣z(r)∣∣ + 


∥∥z(r)∥∥ +

∫ t

r

(
g
(
s, z

(
s – ρ(s)

)))
ds, (.)

where z = u or z = un. For any t ∈ [t – h, t], define the continuous functions J(t) and Jn(t)
as

J(t) =


∣∣u(t)∣∣ + 


∥∥u(t)∥∥ –

∫ t

t–h

(
g
(
s,u

(
s – ρ(s)

))
,u(s)

)
ds,

Jn(t) =


∣∣un(t)∣∣ + 


∥∥un(t)∥∥ –

∫ t

t–h

(
g
(
s,un

(
s – ρ(s)

))
,un(s)

)
ds.

By (.), it is clear that J and Jn are non-increasing functions. By the convergence (.),
for any t ∈ (t –h, t), we have that Jn(t)→ J(t). Using the same analysis method as in [],
we can deduce that for n≥ n(κε), Jn(rn) – J(r′)≤ ε, which gives (.) as desired. �

We can apply the technical method for any family in Dσ

SqV
in Lemma .. Suppose that

the assumptions in Lemma. hold.We can deduce that the processes (CV ,U) and (SqV ,U)
are Dσ

CV
-asymptotically compact and Dσ

SqV
-asymptotically compact.

Lemma . Suppose that (H′)-(H′) hold. The two processes (CV ,U) and (SqV ,U) are
semi-continuous and that U(t, τ ) : SqV → P(SqV ) and U(t, τ ) : CV → P(CV ) have compact
values in their respective topologies.

Proof In fact, the upper semi-continuity of the process (SqV ,U) can be obtained by similar
arguments to those used for the Galerkin sequence in Theorem ..
As to the process (CV ,U), applying the same energy-procedure in Lemma ., we shall

obtain that in [τ , t] any set of solutions possesses a converging subsequence in this process,
whence the assertion in Lemma . follows. �

According to the results in Section , the following two theorems shall be obtained,
which are our result in this paper. Observing Lemmas . and ., and applying Lem-
ma ., we obtain the following theorem.

Theorem. Suppose that (H′)-(H′) hold. For any t ∈ R, then there exist global pullback
attractors ACV = {ACV (t)} and ADσ

CV
= {ADσ

CV
(t)} for the process (CV ,U) in the universe

of fixed bounded sets and in Dσ
CV

, respectively. Moreover, they are unique in the sense of
Lemma . and negatively and strictly invariant for U respectively, and the following holds:

ACV (t)⊂ADσ
CV

(t).

The above theorem proves that there exist pullback attractors in the CV framework,
while we shall prove that there exist pullback attractors in the SqV framework in the fol-
lowing theorem.
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Theorem. Suppose that the assumptions in Theorem . hold. For any t ∈R, there exist
global pullback attractors ASqV

= {ASqV
(t)} and ADσ

SqV

= {ADσ

SqV

(t)} for the process (SqV ,U)

in the universes of fixed bounded sets and inDσ

SqV
.They are unique in the sense of Lemma .

and negatively and strictly invariant for U , respectively, and we have ASqV
(t) ⊂ ADσ

SqV

(t).

Moreover, the relationship between the attractors for (SqV ,U) and for (CV ,U) is as follows:

ASqV
(t) = f

(
ACV (t)

)
and ADσ

SqV

(t) = f
(
ADσ

CV
(t)

)
, (.)

where f : CV → SqV is the continuous mapping defined by f (ϕ) = (ϕ(),ϕ).

Proof The proof is rather similar to that of Theorem  in []. Since the regularity is dif-
ferent from [], we only sketch the proof of (.) here.
By Theorem ., we can conclude that U(t, τ ) maps SqV into bounded sets in CV if t ≥

τ + h, and also maps bounded sets from SqV into bounded sets of CV .
Noting that ASqV

(t) is the minimal closed set, and using Lemma . and the above ar-

guments, we deduce that f (ACV (t)) also attracts bounded sets in SqV in a pullback sense.
Therefore the inclusionASqV

(t) ⊂ f (ACV (t)) holds.
As to the opposite inclusion of the first identification in (.), for any bounded set

B, it follows from the continuous injection f (CV ) ⊂ SqV and the attractor ACV (t) =⋃
B �CV (B, t)

CV . Thus f (ACV (t)) =
⋃

B f (�CV (B, t))
CV , whence the opposite inclusion of

the first identification in (.) holds.
Analogously, it is obvious that the second relation in (.) holds. �
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