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Abstract
In this paper, we present a regularity result for weak solutions of the N-dimensional
(N = 2 or 3) porous media equation with supercritical (α < 1) dissipation �α . If a
Leray-Hopf weak solution is Hölder continuous θ ∈ Cδ(RN) with δ > 1 – α on the time
interval [0, t], then it is actually a classical solution on (0, t].
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1 Introduction
We use Darcy’s law to describe the flow velocity, which reads

v = –k(∇p + gγ θ ),

where v ∈ R
N is the liquid discharge, p is the scalar pressure, θ is the liquid temperature,

k is the matrix position-independent medium permeabilities in the different directions,
respectively, divided by the viscosity, g is the acceleration due to gravity and γ ∈R

N is the
last canonical vector eN . For brevity, we only consider k = g = .
In this article, we study the system of heat transfer with a fractional diffusion in an in-

compressible N ( or )-dimensional flow []

(DPM)α

⎧⎪⎪⎨
⎪⎪⎩

∂tθ + v · ∇θ + ν�αθ = ,

v = –(∇p + γ θ ), div v = ,

θ (,x) = θ(x),

()

where ν >  is the dissipative coefficient, and the differential operator �α is given by
�α := (–	) α

 . Considering the scaling transform θ (t,x) → θλ(t,x) := λα–θ (λαt,λx) for
λ > , the system will be divided into three cases: the case α =  is called the critical case,
the case α >  is subcritical and the case α <  is supercritical.
Next, by rewriting Darcy’s law, we obtain the expression of velocity v only in terms of

temperature θ [, ]. In the D case, thanks to the incompressibility, taking the curl oper-
ator first and the ∇⊥ := (–∂x , ∂x ) operator second on both sides of Darcy’s law, we have

–	v =∇⊥(∂xθ ) =
(
–∂x∂xθ , ∂


xθ

)
,
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thus the velocity v can be recovered as

v(t,x) = –

π

∫
R

ln |x – y|
(
–

∂θ

∂y∂y
(t, y),

∂θ

∂y
(t, y)

)
dy, x ∈R

.

Through integration by parts, we finally get

v(t,x) = –


(
, θ (t,x)

)
+


π

PV
∫
R

H(x – y)θ (t, y)dy, x ∈R
, ()

where the kernel H(·) is defined by

H(x) =
(
xx
|x| ,

x – x
|x|

)
.

Similarly, in the D case, applying the curl operator twice to Darcy’s law, we get

–	v =
(
–∂∂θ , –∂∂θ , ∂

 θ + ∂
θ

)
,

where ∂i := ∂
∂xi

, thus

v(t,x) = –


(
,, θ (t,x)

)
+


π

PV
∫
R

K (x – y)θ (t, y)dy, x ∈R
, ()

where

K (x) =
(
xx
|x| ,

xx
|x| ,

x – x – x
|x|

)
.

We observe that, in general, each coefficient of v(·, t) (with t as parameter) is only the
linear combination of the Calderón-Zygmund singular integral (for the definition, see the
sequel) of θ and θ itself. We write the general version as

v := T (θ ) = C(θ ) + S(θ ), ()

where T = (Tk), C = (Ck), S = (Sk),  ≤ k ≤ N , are all operators mapping scalar functions
to vector-valued functions and Ck equals a constant multiplication operator, whereas Sk

means a Calderón-Zygmund singular integral operator. Especially the corresponding spe-
cific forms in D or D are shown as () or ().
We observe that the system (DPMα) is not more than a dissipative transport diffusion

equation with non-local divergence-free velocity field (the specific relationship between
velocity and temperature as () shows). It sharesmany similaritieswith another flowmodel
- D dissipative quasi-geostrophic (QG) equation, which has been intensively studied by
many authors [–]. From amathematical point of view, the system (DPMα) is somewhat
a generalization of (QG) equation. Very recently, the system (DPMα) was introduced and
investigated by Córdoba and his group. In [], the authors obtained some results on strong
solutions, weak solutions and attractors for the dissipative system (DPMα). For finite en-
ergy, they obtained global existence and uniqueness in the subcritical and critical cases.
In the supercritical case, they obtained local results in Hs, s > (N – α)/ +  and extended
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to be global under a small condition ‖θ‖Hs ≤ cν , for s > N/ + , where c is a small fixed
constant. In [], they treated the nondissipative (ν = ) D case and obtained the local
existence and uniqueness in the Hölder space Cδ for  < δ <  by the particle-trajectory
method and gave some blowup criteria of smooth solutions.
In this paper we present a regularity result of weak solutions of the porous media equa-

tion with α <  (the supercritical case). The result asserts that if a Leray-Hopf weak so-
lution θ of () is in the Hölder class Cδ with δ >  – α on the time interval [, t], then it
is actually a classical solution on (, t]. The proof involves representing the functions in
the Hölder space in terms of the Littlewood-Paley decomposition and using Besov space
techniques. When θ is in Cδ , it also belongs to the Besov space Ḃδ(–/p)

p,∞ for any p ≥ . By
taking p sufficiently large, we have θ ∈ Cδ ∩ Ḃδ

p,∞ for δ >  – α. The idea is to show that
θ ∈ Cδ ∩ Ḃδ

p,∞ with δ > δ. Through iteration, we establish that θ ∈ Cγ with γ > . Then
θ becomes a classical solution.
The rest of this paper is divided into two sections. Section  provides the definition of

Besov spaces and necessary tools. Section  states and proves the main result.

Notation Throughout the paper, C denotes various ‘harmless’ large finite constants, and
c denotes various ‘harmless’ small constants. We shall sometimes use X � Y to denote the
estimate X ≤ CY for some C.

2 Besov spaces and related tools
In this preparatory section, we give the definition of Besov spaces based on the Littlewood-
Paley decomposition, introduce the Calderón-Zygmund singular integral, and finally we
review some important results that will be used in the following.
Let us recall the Littlewood-Paley decomposition. Let S(RN ) be the Schwartz class of

rapidly decreasing functions. Given f ∈ S(RN ), its Fourier transform F f = f̂ is defined by

f̂ (ξ ) = (π )–
N


∫
RN

e–ix·ξ f (x)dx.

Choose two nonnegative radial functionsχ ,ϕ ∈ S(RN ), supported respectively inB = {ξ ∈
R

N , |ξ | ≤ 
 } and C = {ξ ∈RN ,  ≤ |ξ | ≤ 

 }, such that

χ (ξ ) +
∑
j≥

ϕ
(
–jξ

)
= , ξ ∈R

N ,

∑
j∈Z

ϕ
(
–jξ

)
= , ξ ∈R

N\{}.

Setting ϕj(ξ ) = ϕ(–jξ ). Let h = F–ϕ and h̃ = F–χ , we define the frequency localization
operator as follows:

	jf = ϕ
(
–jD

)
f = jN

∫
RN

h
(
jy

)
f (x – y)dy,

Sjf =
∑
k≤j–

	kf = χ
(
–jD

)
f = jN

∫
RN

h̃
(
jy

)
f (x – y)dy.
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Informally, 	j = Sj – Sj– is a frequency projection to the annulus {|ξ | ≈ j}, while Sj is a
frequency projection to the ball {|ξ |� j}. One easily verifies that with our choice of ϕ,

	j	kf ≡  if |j – k| ≥  and 	j(Sk–f	kf ) ≡  if |j – k| ≥ .

Now we give the definitions of Besov spaces.

Definition . Let s ∈R, ≤ p,q ≤ ∞, the homogeneous Besov space Ḃs
p,q is defined by

Ḃs
p,q =

{
f ∈Z ′(

R
N)

;‖f ‖Ḃsp,q < ∞}
.

Here,

‖f ‖Ḃsp,q =
⎧⎨
⎩
(
∑

j∈Z jsq‖	jf ‖qp)

q for q <∞

supj∈Z ‖	jf ‖p for q =∞,

and Z ′(RN ) denotes the dual space of Z ′(RN ) = {f ∈ S(RN ); ∂γ f̂ () = ;∀γ ∈ N
N multi-

index} and can be identified by the quotient space of S ′/P with the polynomials space P .

The following proposition lists a few simple facts that we will use in the subsequent
section. The proof is rather standard and one can refer to [].

Proposition . Assume that s ∈R and p,q ∈ [,∞].
() If ≤ q ≤ q ≤ ∞, then Ḃs

p,q ⊂ Ḃs
p,q .

() (Besov embedding) If ≤ p ≤ p ≤ ∞ and s = s + n( 
p
– 

p
), then

Ḃs
p,q(RN ) ⊂ Ḃs

p,q(RN ).
() If  < p < ∞, then

Ḃs
p,min(p,) ⊂ Ẇ s,p ⊂ Ḃs

p,max(p,),

where Ẇ s,p denotes a standard homogeneous Sobolev space.

We next introduce the classical Bernstein inequality [].

Lemma . Let B be a ball, C be a ring,  ≤ a≤ b ≤ ∞. Then ∀k ∈ Z
+ ∪ {}, ∀λ > , there

exists a constant C >  such that

sup
|α|=k

∥∥∂αf
∥∥
Lb ≤ Cλk+N( a–


b )‖f ‖La if suppF f ⊂ λB,

C–λk‖f ‖La ≤ sup
|α|=k

∥∥∂αf
∥∥
La ≤ Cλk‖f ‖La if suppF f ⊂ λC.

Similar inequalities hold for the fractional derivative �β .

The following proposition provides a lower bound for an integral that originates from
the dissipative term in the process of Lp estimates (see [, ]).
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Proposition . Assume either α ≥  and p =  or  ≤ α ≤  and  < p < ∞. Let j be an
integer and f ∈ S ′. Then

∫
RN

|	jf |p–	jf�α	jf dx ≥ Cαj‖	jf ‖pLp

for some constant C depending on N , α and p.

The classical Calderón-Zygmund singular integrals are operators of the form

Tczf (x) := PV
∫
RN

�(y′)
|y|N f (x – y)dy = lim

ε→

∫
|y|>ε

�(y′)
|y|N f (x – y)dy,

where � is defined on the unit sphere of RN , SN–, and is integrable with zero average,
and where y′ := y

|y| ∈ SN–. Clearly, the definition is meaningful for Schwartz functions.
Moreover, if � ∈ C(SN–), Tcz is Lp bounded,  < p <∞.
The general version () of the relationship between v and θ is in fact ensured by the

following result (see, e.g., []).

Lemma . Let m ∈ C∞(RN\{}) be a homogeneous function of degree , and let Tm be
the corresponding multiplier operator defined by (Tmf )∧ =mf̂ , then there exist a ∈ C and
� ∈ C∞(SN–) with zero average such that for any Schwartz function f ,

Tmf = af + PV
�(x′)
|x|N ∗ f .

Remark . Since –	v = (∂∂Nθ , . . . , –∂N–∂Nθ , ∂
 θ + · · · + ∂

N–θ ), the Fourier multiplier
of the operator T is rather clear. In fact, each component of its multiplier is the linear
combination of the term like ξiξj

|ξ | , i, j ∈ {, , . . . ,N}, which of course belongs toC∞(RN\{})
and is homogeneous of degree .

3 Themain theorem and its proof
Theorem . Let θ be a Leray-Hopf weak solution of (), namely

θ ∈ L∞(
[,∞);L

(
R

N)) ∩ L
(
[,∞); Ḣα/(

R
N))

. ()

Let δ >  – α and let  < t <∞. If

θ ∈ L∞(
[, t];Cδ

(
R

N))
, ()

then θ ∈ C∞((, t]×R
N ) for N =  or .

Proof First we notice that () and () imply that

θ ∈ L∞(
[, t]; Ḃδ

p,∞
(
R

N))

for any p ≥  and δ = δ( – N
p ). In fact, for any τ ∈ [, t],

∥∥θ (·, τ )∥∥Ḃδ
p,∞

= sup
j
δj‖	jθ‖Lp ≤ sup

j
δj‖	jθ‖–


p

L∞ ‖	jθ‖

p
L ≤ ∥∥θ (·, τ )∥∥– 

p
Cδ

∥∥θ (·, τ )∥∥ 
p
L .
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Since δ >  – α, we have δ >  – α when

p > p ≡ Nδ

δ – ( – α)
.

Next, we show that

θ ∈ L∞(
[, t]; Ḃδ

p,∞ ∩Cδ
)

implies

θ (·, t) ∈ Ḃδ
p,∞ ∩Cδ

for some δ > δ to be specified. Let j be an integer. Applying 	j to the first equation of (),
we get

∂t	jθ + ν�α	jθ = –	j(v · ∇θ ). ()

By Bony’s notion of paraproduct,

	j(v · ∇θ ) =
∑

|k–j|≤

	j(Sk–v · ∇	kθ ) +
∑

|k–j|≤

	j(	kv · ∇Sk–θ )
∑
k≥j–
|k–l|≤

	j(	kv · ∇	lθ ).

Multiplying () by p|	jθ |p–	jθ , integrating with respect to x and applying the lower
bound

∫
RN

|	jf |p–	jf�α	jf dx ≥ Cαj‖	jf ‖pLp

of Proposition ., we obtain

d
dt

‖	jθ‖pLp +Cναj‖	jθ‖pLp ≤ –p
∑

|k–j|≤

∫
RN

|	jθ |p–	jθ	j(Sk–v · ∇	kθ )dx

– p
∑

|k–j|≤

∫
RN

|	jθ |p–	jθ	j(	kv · ∇Sk–θ )dx

– p
∑
k≥j–
|k–l|≤

∫
RN

|	jθ |p–	jθ	j(	lv · ∇	kθ )dx

= I + I + I. ()

We now estimate I. The standard idea is to decompose it into three terms: one with com-
mutator, one that becomes zero due to the divergence-free condition and the rest. That is,
we rewrite I as

I = –p
∑

|k–j|≤

∫
RN

|	jθ |p–	jθ · [	j,Sk–v · ∇]	kθ dx

– p
∫
RN

|	jθ |p–	jθ · (Sjv · ∇	jθ )dx

http://www.boundaryvalueproblems.com/content/2013/1/225
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– p
∑

|k–j|≤

∫
RN

|	jθ |p–	jθ · (Sk–v – Sjv) · ∇	j	kθ dx

= I + I + I,

where we have used the simple fact that
∑

|k–j|≤ 	k	j =	j, and the brackets [ ] represent
the commutator, namely

[	j,Sk–v · ∇]	kθ =	j(Sk–v · ∇	kθ ) – Sk–v · ∇	j	kθ .

Since u is divergence free, I becomes zero. We now bound I and I. By Hölder’s in-
equality,

I ≤ p‖	jθ‖p–Lp
∑

|k–j|≤

∥∥[	j,Sk–v · ∇]	kθ
∥∥
Lp .

To bound the commutator, we have, by the definition of 	j,

[	j,Sk–v · ∇]	kθ = kN
∫
RN

h
(
k(x – y)

)(
Sk–(v)(x) – Sk–(v)(y)

) · ∇	kθ dy.

Using the fact that θ ∈ Cδ and thus

∥∥Sk–(v)(x) – Sk–(v)(y)
∥∥
L∞ ≤ ‖v‖Cδ |x – y|δ ,

we obtain

∥∥[	j,Sk–v · ∇]	kθ
∥∥
Lp ≤ –δj‖v‖Cδ k‖	kθ‖Lp .

Therefore,

|I| ≤ Cp‖	jθ‖p–Lp –δj‖v‖Cδ

∑
|k–j|≤

k‖	kθ‖Lp

≤ Cp‖	jθ‖p–Lp (–δ)j‖v‖Cδ

∑
|k–j|≤

δk‖	kθ‖Lp(k–j)(–δ)

≤ Cp‖	jθ‖p–Lp (–δ)j‖v‖Cδ ‖θ‖Ḃδ
p,∞

.

The estimate for I is straightforward. By Hölder’s inequality,

|I| ≤ Cp‖	jθ‖p–Lp
∑

|k–j|≤

‖Sk–v – Sjv‖Lp‖∇	jθ‖L∞

≤ Cp‖	jθ‖p–Lp (–δ)j‖θ‖Cδ

∑
|k–j|≤

‖	kv‖Lp

≤ Cp‖	jθ‖p–Lp (–δ)j‖θ‖Cδ

∑
|k–j|≤

δk‖	kv‖Lp(j–k)δk

≤ Cp‖	jθ‖p–Lp (–δ)j‖θ‖Cδ ‖v‖Ḃδ
p,∞

.
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We then bound I. By Hölder’s inequality, Bernstein’s inequality and the fact  – δ > , we
obtain

I ≤ Cp‖	jθ‖p–Lp
∑

|k–j|≤

‖	kv‖Lp‖∇Sk–θ‖L∞

≤ Cp‖	jθ‖p–Lp
∑

|k–j|≤

‖	kv‖Lp
∑

k′≤k–

k
′ ‖	k′θ‖L∞

≤ Cp‖	jθ‖p–Lp
∑

|k–j|≤

‖	kv‖Lp(–δ)k
∑

k′≤k–

(k
′–k)(–δ)k

′δ‖	k′θ‖L∞

≤ Cp‖	jθ‖p–Lp ‖θ‖Cδ

∑
|k–j|≤

‖	kv‖Lp(–δ)k

≤ Cp‖	jθ‖p–Lp ‖θ‖Cδ (–δ)j
∑

|k–j|≤

δk‖	kv‖Lp(k–j)(–δ)

≤ Cp‖	jθ‖p–Lp ‖θ‖Cδ (–δ)j‖v‖Ḃδ
p,∞

.

Last, we bound I. By Hölder’s inequality and Bernstein’s inequality,

I ≤ Cp‖	jθ‖p–Lp

∥∥∥∥	j∇ ·
( ∑

k≥j–
|k–l|≤

	lv	kθ

)∥∥∥∥
Lp

≤ Cp‖	jθ‖p–Lp j‖v‖Cδ

∑
k≥j–

–δk‖	kθ‖Lp

≤ Cp‖	jθ‖p–Lp (–δ)j‖v‖Cδ

∑
k≥j–

–δ(k–j)δk‖	kθ‖Lp

≤ Cp‖	jθ‖p–Lp (–δ)j‖v‖Cδ ‖θ‖Ḃδ
p,∞

.

Inserting the estimates for I, I and I in () and eliminating p‖	jθ‖p–Lp from both sides,
we get

d
dt

‖	jθ‖Lp +Cναj‖	jθ‖Lp ≤ (–δ)j‖v‖Cδ ‖θ‖Ḃδ
p,∞

+ (–δ)j‖θ‖Cδ ‖v‖Ḃδ
p,∞

+ (–δ)j‖θ‖Cδ ‖v‖Ḃδ
p,∞

+ (–δ)j‖v‖Cδ ‖θ‖Ḃδ
p,∞

.

Integrating with time t, we have

∥∥	jθ (t)
∥∥
Lp ≤ e–Cναjt∥∥	jθ ()

∥∥
Lp

+C
∫ t


e–Cναj(t–τ )(–δ)j

(‖v‖Cδ ‖θ‖Ḃδ
p,∞

+ ‖θ‖Cδ ‖v‖Ḃδ
p,∞

)
dτ .

Multiplying both sides by (α+δ–)j and taking the supremum with respect to j, we get

∥∥θ (t)
∥∥
Ḃα+δ–
p,∞

≤ sup
j

{
e–Cναjt(α+δ–)j

}∥∥θ ()
∥∥
Ḃδ
p,∞

+Cν– sup
j

{(
 – e–Cναjt)} max

τ∈[,t]
∥∥θ (τ )

∥∥
Ḃδ
p,∞

∥∥θ (τ )
∥∥
Cδ .
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Here we have used the fact that

‖v‖Cδ ≤ ‖θ‖Cδ and ‖v‖Ḃδ
p,∞

≤ ‖θ‖Ḃδ
p,∞

.

Therefore, we conclude that if

θ ∈ L∞(
[, t]; Ḃδ

p,∞ ∩Cδ
)
,

then

θ (·, t) ∈ Ḃα+δ–
p,∞ .

Since δ >  – α, we have δ + α –  > δ and thus gain regularity. In addition, according to
the Besov embedding of Proposition .,

Ḃα+δ–
p,∞ ⊂ Ḃδ∞,∞,

where

δ = δ + α –  –
N
p

= δ +
(

δ –
(
 – α +

N
p

))
.

We have δ > δ when

p > p ≡ N
δ – ( – α)

.

Noticing that

Ḃδ∞,∞ ∩ L∞ = Cδ ,

we conclude that, for p >max{p,p},

θ (·, t) ∈ Ḃδ
p,∞ ∩Cδ

for some δ > δ. The above process can then be iterated with δ replaced by δ. A finite
number of iterations allow us to obtain that

θ (·, t) ∈ Cγ

for some γ > . The regularity in the spatial variable can then be converted into regularity
in time. We have thus established that θ is a classical solution to the supercritical porous
media equation. Higher regularity can be proved by well-known methods. �
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