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Abstract
In this work, we consider the Cauchy problem of the generalized
Dullin-Gottwald-Holm equation. We establish a blow-up result for the generalized
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solitary wave solutions of the equation.

Keywords: the generalized Dullin-Gottwald-Holm equation; blow-up; stability;
solitary wave solution

1 Introduction
The nonlinear evolution equation

yt + cux + uyx + yux + γuxxx = , t > ,x ∈ R ()

is, in the dimensionless space-time variable (x, t), a model for unidirectional shallowwater
waves over a flat bottom.Here, y = u–αuxx is amomentum variable, the constants α and
γ

c
are squares of length scales, and c =

√
gh >  (where c = ω) is the linear wave speed

for undisturbed water at rest at spatial infinity, where h is the mean fluid depth and g is
the gravitational constant. Dullin, Gottwald and Holm derived Eq. () by using asymptotic
expansions directly in the Hamiltonian for Euler’s equations in the shallow water regime
in []. Eq. () was shown to be bi-Hamiltonian and to have a Lax pair formulation. The
Dullin-Gottwald-Holm equation (we call it DGH equation for short) is an integrable sys-
tem via the inverse scattering transform (IST)method and contains both the Korteweg-de
Vries (KdV) and Camassa-Holm (CH) equations [] as limiting cases.
Using the notation y = u – αuxx, we can rewrite the initial value problem of Eq. () as

⎧⎪⎪⎨
⎪⎪⎩
ut – αuxxt + ωux + uux + γuxxx
= α(uxuxx + uuxxx), t > ,x ∈ R,

u(,x) = u(x), x ∈ R.

()

Eq. () relates two separately integrable soliton equations for water waves. Formally, when
α =  and γ �= , this equation becomes the KdV equation

ut + ωux + uux + γuxxx = .
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For α =  and γ = , Eq. () becomes the Camassa-Holm equation

ut – uxxt + ωux + uux = uxuxx + uuxxx.

Recently, the DGH equation has been studied by many authors. Tian et al. [] studied the
well-posedness of the Cauchy problem and the scattering problem for the DGH equation.
In [], Hakkaev proved the orbital stability of the peaked solitary waves for the DGH equa-
tion by using the method in []. It was shown that the DGH equation has global solutions
and blow-up solutions in [–].
If the term uux is replaced with umux in the DGH equation, then it is known as the

generalized DGH equation and has the following form:

ut – αuxxt + ωux + umux + γuxxx = α(uxuxx + uuxxx), m > . ()

Eq. () was studied in [, ]. In [], Lu et al. studied the local well-posedness of the
Cauchy problem for Eq. (). In [], the conservation laws for the generalized DGH equa-
tion were derived.
Recently, the local well-posedness problem for the following generalization of the DGH

equation:

⎧⎨
⎩ut – αuxxt + h(u)x + γuxxx = α( g

′(u)
 ux + g(u)uxx)x, t > ,x ∈ R,

u(,x) = u(x), x ∈ R,
()

was studied in []. For h(u) = ωu + 
u

 and g(u) = u, Eq. () becomes DGH Eq. ().
Eq. () can be written as the following Hamiltonian form:

ut + JF ′(u) = ,

where J = (I – α∂
x )–∂x is a skew-symmetric operator and

F(u) =



∫
R

(
H(u) + αg(u)ux – γux

)
dx,

where H ′(s) = h(s). We note that the functional F(u) is formally conserved. Moreover, the
other conserved quantity is

E(u) =



∫
R

(
u + αux

)
dx.

One of the aims of this paper is to give the precise blow-up scenario and to show that
Eq. () has blow-up solutions for g(u) = u. In addition to this, we investigate the stability
of solitary wave solutions of Eq. () with h(u) = ωu + p+

 up+ and g(u) = up.
The remainder of the paper is organized as follows. In Section , we give our basic no-

tation and recall some required results. In Section , we investigate blow-up of solutions
for Eq. (). In Section , we prove the stability of solitary wave solutions with the help of
the orbital stability theory [].
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2 Preliminaries
Firstly, we start by summarizing some notations. �s = ( – ∂

x )s/, s ∈ R; Hs = Hs(R) with
the norm

‖f ‖Hs = ‖f ‖s =
(∫

R

(
 + |ξ |)s∣∣̂f (ξ )∣∣ dξ

)/

and (·, ·) for its inner product. For the sake of simplicity, we employ the same symbol c for
different positive constants.
Some useful lemmas are as follows.

Lemma . [] Assume that s > . Then we have

∥∥[
�s, g

]
f
∥∥
L ≤ c

(‖∂xg‖L∞
∥∥�s–f

∥∥
L +

∥∥�sg
∥∥
L‖f ‖L∞

)
.

Here c is a constant depending only on s.

Lemma . [] Assume that F ∈ Cm+(R,R) with F() = . Then, for every 
 < s ≤ m, we

have that

∥∥F(u)∥∥s ≤ F̃
(‖u‖L∞

)‖u‖s, u ∈Hs,

where F̃ is a monotone increasing function depending only on F and s.

Lemma . [] Assume that s > . Then Hs ∩ L∞ is an algebra.Moreover,

‖fg‖s ≤ c
(‖f ‖L∞‖g‖s + ‖f ‖s‖g‖L∞

)
,

where c is a constant depending only on s.

Lemma . [] Let T >  and u ∈ C([,T);H). Then, for every t ∈ [,T), there exists at
least one pair of points ξ (t), ζ (t) ∈ R such that

m(t) = inf
x∈R

[
ux(t,x)

]
= ux

(
t, ξ (t)

)
, M(t) = sup

x∈R

[
ux(t,x)

]
= ux

(
t, ζ (t)

)
,

and m(t),M(t) are absolutely continuous in (,T).Moreover,

dm(t)
dt

= utx
(
t, ξ (t)

)
,

dM(t)
dt

= utx
(
t, ζ (t)

)
, a.e. on (,T).

Theorem . [] Assume that h, g ∈ Cm+(R,R), m ≥  and h() = g() = . Given
u ∈Hs,  < s ≤m, there exists a maximal T = T(u) >  and a unique solution u to Eq. ()
such that

u = u(·,u) ∈ C
(
[,T);Hs) ∩C([,T);Hs–).

Moreover, the solution depends continuously on the initial data, i.e., the mapping

u → u(·,u) :Hs → C
(
[,T);Hs) ∩C([,T);Hs–)

is continuous.

http://www.boundaryvalueproblems.com/content/2013/1/226
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Lemma . [] Let u(t,x) be a solution of Eq. (). Then the functionals

E(u) =



∫
R

(
u + αux

)
dx, F(u) =




∫
R

(
H(u) + αg(u)ux – γux

)
dx

are constant with respect to t, where H ′(s) = h(s).

3 Blow-up phenomena
In this section, we discuss the blow-up phenomena of Eq. () with g(u) = u. For Eq. (),
which describes shallow water waves, the blow-up occurs only in the form of wave-
breaking, i.e. the solution remains bounded but its slope becomes unbounded in finite
time.
Set p(x) = 

α e
–| xα |, x ∈ R, then ( – α∂

x )–f = p ∗ f for all f ∈ L(R). Using this identity,
we can rewrite Eq. () as follows:

⎧⎨
⎩ut + (u – γ

α
)ux + ∂xp ∗ k(u) = , t > ,x ∈ R,

u(,x) = u(x), x ∈ R,
()

or in the equivalent form:

⎧⎨
⎩ut + (u – γ

α
)ux = –∂x( – α∂

x )–k(u), t > ,x ∈ R,

u(,x) = u(x), x ∈ R,
()

where k(u) = (h(u) + α

 u

x –


u

 + γ

α
u).

We now prove the following result.

Theorem . Let h ∈ Cm+(R,R),m ≥ , and u ∈Hr , 
 < r ≤m. If T is the existence time

of the corresponding solution of initial data u, then the Hr-norm of u(t,x) to Eq. () (or ())
blows up on [,T) if and only if

lim
t→T

{∥∥u(t,x)∥∥L∞ +
∥∥ux(t,x)∥∥L∞

}
=∞.

Proof Let u(t,x) be the solution of Eq. () with the initial data u ∈ Hr , 
 < r ≤ m, which

is guaranteed by Theorem .. If

lim
t→T

{∥∥u(t,x)∥∥L∞ +
∥∥ux(t,x)∥∥L∞

}
=∞,

by Sobolev’s embedding theorem, we obtain that the solution u(t,x) will blow up in finite
time.
Next, applying the operator �r to Eq. (), multiplying by �ru, and integrating over R,

we obtain

d
dt

(u,u)r = –(uux,u)r + 
(
f (u),u

)
r . ()

http://www.boundaryvalueproblems.com/content/2013/1/226
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Here, f (u) = –∂x( –α∂
x )–(h(u) +

α

 u

x –


u

 + γ

α
u). Assume that there exists R >  such

that

lim
t→T

{∥∥u(t,x)∥∥L∞ +
∥∥ux(t,x)∥∥L∞

} ≤ R.

Similar to [], using Lemma . with s = r, we get

∣∣(uux,u)r
∣∣ ≤ c‖ux‖L∞‖u‖r ≤ cR‖u‖r . ()

On the other hand, we estimate the second term of the right-hand side of Eq. ()

(
f (u),u

)
r =

(
–∂x

(
 – α∂

x
)–(h(u) + α


ux –



u +

γ

α u
)
,u

)
r

≤ c‖u‖r
(∥∥h(u)∥∥r– +

∥∥ux∥∥r– +
∥∥u∥∥r– + ‖u‖r–

)
≤ c

(̃
h
(‖u‖L∞

)
+ ‖ux‖L∞ + ‖u‖L∞ + 

)‖u‖r
≤ c

(̃
h(R) + R + 

)‖u‖r . ()

Here, we applied Lemma . with F(u) = h(u) and s = r –, Lemma . with s = r –. From
()-(), we obtain

d
dt

‖u‖r ≤ c
(̃
h(R) + R + 

)‖u‖r .

Thus, by Gronwall’s inequality, we get

∥∥u(t)∥∥
r ≤ ‖u‖r exp

(̃
h(R) + R + 

)
t.

This completes the proof of Theorem .. �

We have the following blow-up scenario for Eq. ().

Theorem . Assume that h ∈ Cm+(R,R), m ≥ . Given u ∈ Hr ,  ≤ r ≤ m, the solution
u = u(u, ·) of Eq. () is uniformly bounded. Blow-up in finite time T < +∞ occurs if and
only if

lim inf
t→T

{
inf
x∈R

[
ux(t,x)

]}
= –∞.

Proof E(u) = 

∫
R(u

 + αux)dx is an invariant for Eq. (). According to the inequalities

∫
R

(
u + ux

)
dx ≤

∫
R

(
u + αux

)
dx = E(u) (α ≥ ),

∫
R

(
u + ux

)
dx ≤ 

α

∫
R

(
u + αux

)
dx =


α E(u) (α ≤ ),

the invariance of E(u) ensures that the solution u is uniformly bounded as long as they
exist.

http://www.boundaryvalueproblems.com/content/2013/1/226
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If the slope of the solution u(t,x) becomes unbounded from below in finite time, then by
Theorem . and Sobolev’s embedding theorem, we can see that the solution u(t,x) blows
up in finite time.
Next, if the slope of the solution is bounded from below in finite time, then we deduce

that the solution will not blow up in finite time. Differentiating Eq. () with respect to x,
in view of the identity ∂

x (p ∗ f ) = 
α
(p ∗ f – f ), we have

utx = –


ux – uuxx +

γ

α uxx +

α h(u) –


α u

 +
γ

α u

–

α p ∗

(
h(u) +

α


ux –



u +

γ

α u
)
. ()

Note that p ∗ ( u

x) ≥  and

‖u‖L∞ ≤ 

‖u‖ ≤max

(
,


α

)
E(u) ≤max

(
,


α

)
‖u‖ .

By Young’s inequality, we get

∥∥p ∗ h(u)
∥∥
L∞ ≤ ‖p‖L

∥∥h(u)∥∥L∞ ≤ ∥∥h(u)∥∥L∞ ≤ sup
|v|≤max(, 

α
)‖u‖

∣∣h(v)∣∣,
∥∥p ∗ u

∥∥
L∞ ≤ ‖p‖L

∥∥u∥∥L∞ ≤ ‖u‖L∞ ≤max

(
,


α

)
‖u‖ ,

and

‖p ∗ u‖L∞ ≤ ‖p‖L‖u‖L∞ ≤ ‖u‖L∞ ≤max

(
,


α

)
‖u‖.

Define M(t) = ux(t, ζ (t)) = supx∈R[ux(t,x)]. Since uxx(t, ζ (t)) =  for all t ∈ [,T), it follows
that a.e. on [,T)

M′(t) = –


M(t) +


α h

(
u
(
t, ζ (t)

))
–


α u

(t, ζ (t)) + γ

α u
(
t, ζ (t)

)
–


α p ∗

(
h(u) +

α


ux –



u +

γ

α u
)
.

Then

M′(t)≤ –


M(t) +A

,

where

A =
(
γ
α max

(
,


α

)
‖u‖ + 

α max

(
,


α

)
‖u‖ +


αG

) 


by

G = sup
|v|≤max(, 

α
)‖u‖

∣∣h(v)∣∣.

http://www.boundaryvalueproblems.com/content/2013/1/226
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IfM(t) >
√
A, thenM′(t) <  andM(t) is decreasing. Otherwise,M(t) ≤ √

A. Thus we
get

m(t)≤M(t) ≤max
{
M(),

√
A

}
, t ∈ [,T).

By Theorem . and the above inequality, we have that if the slope of the solution is
bounded from below in finite time, then the solution will not blow up in finite time. �

Next, we present the following blow-up result.

Theorem. Assume that h ∈ Cm+(R,R),m ≥ .Given α > , u ∈Hr , ≤ r ≤m, assume
that we can find x ∈ R with

u′
(x) < –

(
γ

α max

(
,


α

)
‖u‖ + 

α max

(
,


α

)
‖u‖ +


αG

) 


= –
√
B,

where

G = sup
|v|≤max(, 

α
)‖u‖

∣∣h(v)∣∣.
Then the corresponding solution to Eq. () for g(u) = u blows up in finite time. Moreover,
the maximal time of existence T satisfies the inequality

T ≤ c
(
c – B

)–, where c = –u′
(x).

Proof Now define m(t) = infx∈R[ux(t,x)] = ux(t, ξ (t)) by Lemma ., and let ξ (t) ∈ R be a
point where this infimum is attained. From Eq. (), we have

m′(t) = –


m(t) +


α h

(
u
(
t, ξ (t)

))
–


α u

(t, ξ (t)) + γ

α u
(
t, ξ (t)

)
–


α p ∗

(
h(u) +

α


ux –



u +

γ

α u
)
.

For x = ξ (t), since uxx(t, ξ (t)) = , we arrive at

m′(t) ≤ –


m(t) +K (u) a.e. on (,T),

where

K (u) =
γ

α ‖u‖L∞ +

α

(
sup

|v|≤‖u‖L∞

∣∣h(v)∣∣) +
∥∥∥∥ 
α p ∗

(
h(u) +



u +

γ

α u
)∥∥∥∥

L∞
.

Note that

‖u‖L∞ ≤ 

‖u‖ ≤max

(
,


α

)
E(u) ≤max

(
,


α

)
‖u‖ .

http://www.boundaryvalueproblems.com/content/2013/1/226
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By Young’s inequality, we get

∥∥p ∗ h(u)
∥∥
L∞ ≤ sup

|v|≤max(, 
α

)‖u‖

∣∣h(v)∣∣,
∥∥p ∗ u

∥∥
L∞ ≤max

(
,


α

)
‖u‖

and

‖p ∗ u‖L∞ ≤max

(
,


α

)
‖u‖.

So, it follows that

m′(t) ≤ –


m(t) +K, ()

where (note that A
 = K)

G = sup
|v|≤max(, 

α
)‖u‖

∣∣h(v)∣∣,
K =

γ
α max

(
,


α

)
‖u‖ + 

α max

(
,


α

)
‖u‖ +


αG.

The absolute continuity of the locally Lipschitz function m(t) allows us to perform an
integration over [, t] and to have

m(t)≤m() –



∫ t


m(τ )dτ +Kt, t ∈ [,T).

We claim now thatm(t) < –c for all t ∈ (,T), where c >
√
K is fixed arbitrarily provided

that m() < –c. In fact, assuming the contrary, in view of m(t) being continuous, ensure
the existence of t ∈ (,T) such thatm(t) < –c in (, t) andm(t) = c. Then we deduce that

m(t)≤m() –
∫ t


K dτ +Kt =m() < –c, t ∈ [, t],

and a contradiction appears as we take t = t. Using (), we get

m′(t) ≤ –


m(t) +K ≤ –



m(t) +

(


– ε

)
c

≤ –


m(t) +

(


– ε

)
m(t)

≤ –εm(t) a.e. on (,T),

where ε ∈ (,  –
K
c ). Since m(t) < –c, and m(t) is locally Lipschitz, it follows that 

m(t) is
locally Lipschitz as well. This gives

d
dt

(


m(t)

)
= –

m′(t)
m(t)

≥ ε a.e. on (,T).

http://www.boundaryvalueproblems.com/content/2013/1/226
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Integration of this inequality yields

–


m(t)
+


m()

≤ –εt.

Sincem(t) < , we obtain

 ≤ t <


ε(–m())
, t ∈ [,T).

In fact, as a consequence of these considerations, we obtain that the maximal existence
time

T ≤ 
ε(–m())

for all ε ∈
(
,



–
K

c

)
.

An estimation from the above for T is obtained immediately, namely

T ≤ c

(–m())(c – K)
.

The conclusion is reached by letting c→ –m(). �

4 Stability of solitary waves
In this section, we discuss the stability of solitary wave solutions of Eq. () with h(u) =
ωu + p+

 up+ and g(u) = up. In this case, Eq. () turns into the following equation:

⎧⎨
⎩ut – αuxxt + (ωu + p+

 up+)x + γuxxx = α( pu
p–ux + upuxx)x,

u(,x) = u(x),
()

where p > . When h(u) = ωu + p+
 up+ and g(u) = up, the conservation law F(u) takes

the form

F(u) =
∫
R

(
ωu +

up+


+

αup


ux –

γ


ux

)
dx.

The appropriate notion of stability for the solitary waves here is orbital stability: a wave
starting close to a solitary wave should stay close, as long as it exists, to some translate of
the solitary wave. The orbit of a solitary wave is the set of all its translates [].
We define the orbit ϕ(·–η) = {τ (η)ϕ(·) : η ∈ R}, where τ is a one-parameter group of uni-

tary operators on H defined by τ (s)u(·) = u(· – s), s ∈ R, u ∈ H. They may be interpreted
physically as ‘solitary waves’ or ‘bound states.’

Definition The ϕ-orbit is stable if for all ε > , there exists δ >  with the following prop-
erty. If ‖u(, ·) – ϕ(·)‖H < δ and u is a solution of Eq. () in some interval [,T) with
u(, ·) = u, then u can be continued to a solution in  ≤ t <∞ and

sup
t
inf
η

∥∥u(t, ·) – ϕ(· – η)
∥∥
H < ε.

Otherwise, the ϕ-orbit is called unstable.

http://www.boundaryvalueproblems.com/content/2013/1/226
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Definition can be seen in reference [].
Substituting u(x, t) = ϕ(x–ct) = ϕ(σ ) into Eq. () and integrating oncewith respect to σ ,

we obtain

cϕ – cαϕ′′ – ωϕ –
p + 


ϕp+ – γ ϕ′′ + α
(
p

ϕp–ϕ′ + ϕpϕ′′

)
= . ()

In terms of the functionals E and F ,

E′(ϕ) = ϕ – αϕ′′,

F ′(ϕ) = ωϕ +
p + 


ϕp+ + γ ϕ′′ – α
(
p

ϕp–ϕ′ + ϕpϕ′′

)
,

and according to Eq. (), we can obtain that cE′(ϕ) – F ′(ϕ) = , where E′ and F ′ are the
Fréchet derivatives of E and F , respectively. To study the orbital stability of the solitary
waves of Eq. (), we need the operator Hc and the function d(c) = cE(ϕ) – F(ϕ). The lin-
earized operator Hc around ϕ is defined by

Hc = cE′′(ϕ) – F ′′(ϕ)

= α∂x

[(
ϕp –

(
c +

γ

α

))
∂x

]
+ α

(
pϕp–ϕ′′ +

p(p – )


ϕp–ϕ′
)

–
(p + )(p + )


ϕp + c – ω. ()

Lemma . For each c ∈ (ω,∞),Hc = cE′′(ϕ) – F ′′(ϕ) has a unique simple negative eigen-
value, zero is a simple eigenvalue, and the rest of its spectrum is bounded away from zero.

Proof For any u, v ∈H, we have
∫
R uxxvdx =

∫
R uvxx dx and∫

R
ϕpuxxvdx =

∫
R
pϕp–ϕxvxudx +

∫
R
ϕpvxxudx –

∫
R
pϕp–ϕxuxvdx.

Therefore,

〈
∂x

(
ϕp –

(
c +

γ

α

))
∂xu, v

〉
=

〈
∂x

(
ϕp –

(
c +

γ

α

))
∂xv,u

〉
.

By (), we know that Hc is a self-adjoint operator and

Hcϕ
′ = α

[(
ϕp –

(
c +

γ

α

))
ϕ′′′

]
+ α

(
pϕp–ϕ′ϕ′′ +

p(p – )


ϕp–ϕ′
)

–
(p + )(p + )


ϕpϕ′ + (c – ω)ϕ′. ()

Differentiating () with respect to σ , we find that the right-hand side of Eq. () equals
zero, that is, Hcϕ

′ = . The behavior of the function ϕ tells us that ϕ′ has exactly one zero.
So, the zero eigenvalue of the operatorHc is simple, and by using the Sturm-Liouville the-
orem, we have that Hc only has a negative eigenvalue. UsingWeyl’s theorem, the essential
spectrum of Hc belongs to [ c–ω

α
, +∞). That completes the proof. �
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As for the above results, it is known [] that stability would be ensured by the convexity
of the scalar function d(c) = cE(ϕ) – F(ϕ), c > ω. So, we obtain the following theorem
under the condition ωα + γ = .

Theorem . Suppose that ϕ(· – η) is a solitary wave solution for c > ω, if d′′(c) > , then
ϕ(· – η) is stable.

Define the functionals

I(u) = I(u;ω, c) =
∫
R

[
(c – ω)u + α(c – ω)ux

]
dx

and

K (u) =
∫
R

(
up+ + αupux

)
dx.

For λ > , we consider the following constrained minimization problem on H:

Mλ =
{
inf I(u) : u ∈H,K (u) = λ

}
. ()

Then if ψ ∈H achieves the minimum of problem (), for some λ > , then there exists a
Lagrange multiplier ϑ such that

(c – ω)ψ – α(c – ω)ψ ′′ = ϑ
[
(p + )ψp+ – α(pψp–ϕ′ + ϕpϕ′′)].

Hence ϕ = ϑ

p ψ is a solution of solitary wave equation (). By homogeneity of I(u) and

K (u), ϕ satisfies

m =m(ω, c) = inf

{
I(u)

K (u)


p+
: u ∈H,K (u) > 

}
,

and it follows that

Mλ =mλ


p+ .

Multiplying solitary wave equation () by ϕ and integrating the resulting equation gives
I(ϕ) = (p+)

 K (ϕ).
We say that ψk is a minimizing sequence if for some λ > , limk→∞ I(ψk) = Mλ and

limk→∞K (ψk) = λ.

Theorem . Let {ψk} be a minimizing sequence for some λ > . If c > ω, then there exists
a subsequence {ψkj}, scalars yj ∈ R and ψ ∈ H such that ψkj → ψ in H. The function ψ

achieves the minimum I(ψ) =Mλ subject to the constraint K (ψ) = λ.

Proof The result is an application of the concentration compactness lemma of Lions [,
]. Proof is similar to [–] according to the definition of I(u) and K (u).
In this section, we show that the stability of solitary wave solutions is determined by the

convexity of the function d(c).

http://www.boundaryvalueproblems.com/content/2013/1/226
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We state the basic properties of the function d.
A simple calculation gives

d(c) = cE(u) – F(u) =


(
I(u) –K (u)

)
. ()

By using I(ϕ) = (p+)
 K (ϕ), we obtain

d(c) =
p

(p + )
I(ϕ) =

p

K (ϕ) =

p


(


p + 
m

) p+
p
. ()

Therefore, d is well defined, and we may deduce its properties by examining the function
m(ω, c). �

Lemma . For fixed ω ∈ R,m(ω, c) is monotonically increasing in c.

Proof We assume that ϕc , ϕcare solutions of Eq. () corresponding to c = c, c = c, re-
spectively. Without loss of generality, let be c < c, then we have

m(ω, c) ≤ Ic(ϕc ;ω, c)

K (ϕc )


p+
=

∫
R[(c – ω)ϕ

c + α(c – ω)(ϕ′
c )

]dx

K (ϕc )


p+

=
∫
R[(c – ω)ϕ

c + α(c – ω)(ϕ′
c )

]dx

K (ϕc )


p+

+
–c

∫
R[ϕ


c + α(ϕ′

c )
]dx + c

∫
R[ϕ


c + α(ϕ′

c )
]dx

K (ϕc )


p+

= m(ω, c) + (c – c)
∫
R[ϕ


c + α(ϕ′

c )
]dx

K (ϕc )


p+

≤ m(ω, c).

This shows that m is monotonically increasing in c, so that by (), d must be monotoni-
cally increasing as well.
A tubular neighborhood around the orbital ϕ(· – η) is defined by

Uω,c;ε =
{
u ∈H : inf

η∈R
∥∥u – ϕ(· – η)

∥∥
H < ε

}
.

It follows from () and the fact that d(c) is monotonically increasing in c that

c(u) = d–
(
p

K (u)

)
. ()

�

The following lemma is helpful in order to prove the stability of solitary waves.

Lemma . If d′′(c) > , then there exists ε >  such that for any u ∈ Uω,c;ε , we have

c(u)
[
E(u) – E(ϕ)

]
–

[
F(u) – F(ϕ)

] ≥ 

d′′(c)

∣∣c(u) – c
∣∣.

http://www.boundaryvalueproblems.com/content/2013/1/226
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Proof By using d′(c) = E(ϕ) and Taylor’s formula, we have the expansion

d(̃c) = d(c) + E(ϕ)(̃c – c) +


d′′(c)(̃c – c) + o

(|̃c – c|)
for c̃ near c. Using the continuity of c(u) and choosing ε sufficiently small, we get that

d
(
c(u)

) ≥ d(c) + E(ϕ)
(
c(u) – c

)
+


d′′(c)

(
c(u) – c

)
= c(u)E(ϕ) – F(ϕ) +



d′′(c)

(
c(u) – c

).
It follows from () and () that K (ϕc(u)) = 

pd(c) = K (u). Since ϕc(u) is a minimizer of
I(u;ω, c(u)) subject to the constraint K (u) = K(ϕc(u)), we then have

c(u)E(u) – F(u) =


(
I
(
u;ω, c(u)

)
–K (u)

)
≥ 


(
I
(
ϕc(u);ω, c(u)

)
–K (ϕc(u))

)
= d

(
c(u)

)
and

c(u)E(u) – F(u)≥ c(u)E(ϕ) – F(ϕ) +


d′′(c)

(
c(u) – c

). �

Proof of Theorem . Suppose that ϕ(·–η) is unstable. Then there exists ε and a sequence
of initial data uk() satisfying

inf
η

∥∥uk() – ϕ(·)∥∥H → ;

however,

sup
t
inf
η

∥∥uk(t) – ϕ(· – η)
∥∥
H ≥ ε,

where uk(t) is a solution of Eq. () with initial datum uk(). Then, by Theorem ., uk is
continuous in t, and there exist times tk such that

inf
η

∥∥uk(tk) – ϕ(· – η)
∥∥
H = ε. ()

When tk → , ‖uk() – ϕ(·)‖H → , E and F are invariants of () so that

E
(
uk(tk)

)
= E

(
uk()

) → E(ϕ), F
(
uk(tk)

)
= F

(
uk()

) → F(ϕ), ()

by Lemma ., we have

c
(
uk(tk)

)[
E
(
uk(tk)

)
– E(ϕ)

]
–

[
F
(
uk(tk)

)
– F(ϕ)

]
≥ 


d′′(c)

∣∣c(uk(tk)) – c
∣∣.

This implies that c(uk(tk)) → c, as k → ∞, since uk(tk) is uniformly bounded for k.

http://www.boundaryvalueproblems.com/content/2013/1/226
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The continuity of d implies that

lim
k→∞

K
(
uk(tk)

)
= lim

k→∞

(

p
d
(
c
(
uk(tk)

)))
=

p
d(c). ()

Using () and the fact that d(c) = cE(ϕ) – F(ϕ), we have



I
(
uk(tk)

)
= cE

(
uk(tk)

)
– F

(
uk(tk)

)
+


K

(
uk(tk)

)
= d(c) – F

(
uk(tk)

)
+ F(ϕ) – c

(
E(ϕ) – E

(
uk(tk)

))
+


K

(
uk(tk)

)
,

so it follows from () and () that

lim
k→∞

I
(
uk(tk)

)
=
(p + )

p
d(c). ()

From () and (), uk(tk) is a minimizing sequence for the pair I , K and thus by Theo-
rem . has a subsequence, named ukj (tkj ), that converges in H to some ϕ. This contra-
dicts (). The proof is completed. �
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