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Abstract
The authors of this paper deal with the existence of weak solutions to the
homogenous boundary value problem for the equation –div(|∇u|p–2∇u) = f (x)

uα with

f ∈ Lm(�) and α ≥ 1. The authors prove the existence of solutions inW1,p
0 (�) for

suitablem and α.
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1 Introduction
In this paper, we study the existence of solutions for the following quasi-linear elliptic
problem:

⎧⎨
⎩
–div(|∇u|p–∇u) = f (x)

uα , x ∈ �,

u = , x ∈ ∂�,
(.)

where � is a bounded domain in RN (N ≥ ) with smooth boundary ∂�. f ≥ , f �≡ ,
p > , α ≥ .
Model (.) may describe many physical phenomena such as chemical heterogeneous

catalysts, nonlinear heat transfers, some biological experiments, etc. [–]. In the case
when p = , Lazer and Mckenna in [] studied the following problem:

⎧⎨
⎩
–�u = 

uα , in �,

u = , on ∂�.
(.)

They proved that the solution to problem (.) was inW ,
 (�) if and only if α < , while it

was not in C(�) if α > . Later the authors of [–] dealt with the existence of solutions
to

⎧⎨
⎩
–�u = ag(u), in �,

u = , on ∂�,
(.)
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where g(s) is singular at s = . They obtained similar results as that of []. Moreover, Boc-
cardo and Orsina in [] discussed how the summability of f and the values of α affected
the existence, regularity and nonexistence of solutions. For more results, the interested
readers may refer to [, ]. When p ∈ (,∞), p �= , Giacomoni, Schindler and Takáč in
[] applied lower and upper-solution method and the mountain pass theorem to prove
that the problem

⎧⎨
⎩
–div(|∇u|p–∇u) = λu–δ + uq, in �,

u = , on ∂�,
(.)

where δ ∈ (, ), q ∈ (p – ,p* – ), has multiple weak solutions. And then, the authors in
[] not only improved the results in [] but also obtained that the solution was not in
W ,p

 (�) if α > p–
p– . However, we need to point out that all the papersmentioned discussed

the existence of solutions by means of upper-lower solution techniques. In this paper, we
apply the method of regularization and Schauder’s fixed point theorem as well as a nec-
essary compactness argument to overcome some difficulties arising from the nonlinearity
of the differential operator, the singularity of nonlinear terms and the summability of the
weighted function f (x) and then prove the existence of positive solutions in W ,p

 (�) for
suitablem and α when f (x) ∈ Lm(�) and α ≥ , which implies that the summability of the
weighted function f (x) determines whether or not problem (.) has a solution inW ,p

 (�).

2 Main results
In this section, we apply the method of regularization and Schauder’s fixed point theorem
to prove the existence of solutions. In order to prove the main results of this section, we
consider the following auxiliary problem:

⎧⎨
⎩
–div(|∇un|p–∇un) = fn(x)

(un+ 
n )α

, x ∈ �,

un = , x ∈ ∂�,
(.)

where fn =min{f (x),n}.

Definition . A function u ∈W ,p
 (�) is called a solution of problem (.) if the following

identity holds:
∫

�

|∇u|p–∇u∇ϕ dx =
∫

�

f
uα

ϕ dx, ∀ϕ ∈ C∞
 (�).

Since the proof of the following lemmas are similar to that in [], we only give a sketch
of the proof.

Lemma . Problem (.) has a unique nonnegative solution un ∈ W ,p
 (�) ∩ L∞(�) for

any fixed n ∈N *, f ∈ L(�).

Proof Let n ∈ N be fixed. For any w ∈ Lp(�), we get that the following problem has a
unique solution v ∈ W ,p

 (�)∩ L∞(�) by applying the variational method to

⎧⎨
⎩
–div(|∇v|p–∇v) = fn(x)

(|w|+ 
n )α

, x ∈ �,

v = , x ∈ ∂�.
(.)
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Wemay refer to [, ] for the existence and uniqueness of the solution for problem (.).
So, for any w ∈ Lp(�), we may define the mapping 	 : Lp(�) → Lp(�) as 	(w) = v. In fact,
multiplying the first identity in (.) by v, and integrating over �, we have

∫
�

|∇v|p dx =
∫

�

fn
(|w| + 

n )α
vdx≤ nα+

∫
�

|v|dx.

Applying the embedding theoremW ,p(�) ↪→ L(�), we obtain

‖v‖pW ,p ≤ Cnα+‖v‖W ,p ,

which implies that

‖v‖W ,p ≤ Cn
α+
p– .

Due to the embedding W ,p(�)
compact
↪→ Lp(�), we get that 	 is a compact operator. More-

over, if u = λ	u for some  < λ ≤ , then 	u = u
λ
and hence ‖u‖Lp(�) ≤ ‖u‖W ,p(�) ≤ C for

a constant C independent of λ. Then by Schauder’s fixed point theorem, we know that
there exists un ∈ W ,p

 (�) such that un = 	(un), i.e., problem (.) has a solution. Not-
ing that fn

(|un|+ 
n )α

≥ , the maximum principle in [, ] shows that un ≥ , un ∈ L∞(�).
�

Lemma. The sequence {un} is increasingwith respect to n. un >  in�′ for any�′ ⊂⊂ �,
and there exists a positive constant C�′ (independent of n) such that for all n ∈N *,

un ≥ C�′ >  for every x ∈ �′. (.)

Proof Choosing (un – un+)+ =max{un – un+, } as a test function, observing that
(|∇un|p–∇un – |∇un+|p–∇un+

)∇(un – un+)+ ≥ ,
[(

un+ +


n + 

)α

–
(
un +


n

)α]
(un – un+)+ ≤ , for every α > ,

 ≤ fn ≤ fn+,

we get

 ≤
∫

�

(|∇un|p–∇un – |∇un+|p–∇un+
)∇(un – un+)+ dx ≤ .

This inequality yields (un – un+)+ =  a.e. in �, that is, un ≤ un+ for every n ∈ N *. Since
the sequence un is increasing with respect to n, we only need to prove that u satisfies
inequality (.). According to Lemma ., we know that there exists a positive constant C
(only depending on |�|, N , p) such that ‖u‖L∞(�) ≤ C‖f‖L∞(�) ≤ C, then

–div
(|∇u|p–∇u

)
=

f
(u + )α

≥ f
(C + )α

.
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Noting that f
(C+)α ≥ , f

(C+)α �≡ , the strong maximum principle implies that u >  in �,
i.e., inequality (.) holds. �

Theorem . Suppose that f is a nonnegative function in L(�) and α = , then problem
(.) has a solution in W ,p

 (�).

Proof We consider the existence of solutions in the case when f (x) ∈ L(�). Multiplying
the first identity in problem (.) by un and integrating over �, we get

∫
�

|∇un|p dx =
∫

�

fnun
un + 

n
dx ≤

∫
�

|fn|dx ≤
∫

�

|f |dx,

i.e., ‖un‖W ,p
 (�) ≤ ‖f ‖


p
L(�).

Then we know that there exist u ∈W ,p(�) and �V ∈ L
p

p– (�,RN ) such that

⎧⎪⎪⎨
⎪⎪⎩
un ⇀ u weakly inW ,p(�) and strongly in Lp(�),

un → u a.e. in �,

|∇un|p–∇un ⇀ �V weakly in L
p

p– (�,RN ).

(.)

For every ϕ ∈ C∞
 (�), we get from inequality (.) that

 ≤
∣∣∣∣ fnϕ
un + 

n

∣∣∣∣ ≤ ‖ϕ‖L∞

C�′
f (x),

where �′ = {x : ϕ �= }. Then applying Lebesgue’s dominated convergence theorem, one
has that

lim
n→+∞

∫
�

fnϕ
un + 

n
dx =

∫
�

f ϕ
u

dx (.)

as un satisfies the following identity:

∫
�

|∇un|p–∇un∇ϕ dx =
∫

�

fnϕ
un + 

n
dx, ∀ϕ ∈ C∞

 (�). (.)

Combining with (.)-(.), we have that

∫
�

�V∇ϕ dx =
∫

�

f ϕ
u

dx, ∀ϕ ∈ C∞
 (�). (.)

Next, we shall prove that �V = |∇u|p–∇u a.e. in �. It is easy to see that both (.) and (.)
hold for all ϕ ∈ W ,p(�) with compact support. Thus in (.) we choose ϕ = (un – ξ )ζ ,
where ζ ∈ C∞

 (�), ζ ≥ , and ξ ∈W ,p(�), to obtain

∫
�

|∇un|p–∇un∇ζ (un – ξ )dx +
∫

�

ζ |∇un|p–∇un∇(un – ξ )dx

=
∫

�

ζ fn(un – ξ )
un + 

n
dx. (.)
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Noting that ζ (|∇un|p–∇un – |∇ξ |p–∇ξ )(∇un –∇ξ ) ≥ , we obtain that
∫

�

ζ |∇ξ |p–∇ξ∇(un – ξ )dx +
∫

�

|∇un|p–∇un∇ζ (un – ξ )dx

≤
∫

�

ζ |∇un|p–∇un∇(un – ξ )dx +
∫

�

|∇un|p–∇un∇ζ (un – ξ )dx

=
∫

�

ζ fn(un – ξ )
un + 

n
dx. (.)

Letting n → ∞ in (.) and using identity (.), we get
∫

�

ζ |∇ξ |p–∇ξ∇(u – ξ )dx +
∫

�

�V∇ζ (u – ξ )dx

≤
∫

�

ζ f (u – ξ )
u

dx =
∫

�

�V∇(
ζ (u – ξ )

)
dx =

∫
�

ζ �V∇(u – ξ )dx +
∫

�

�V∇ζ (u – ξ )dx,

which implies that
∫

�

ζ
(|∇ξ |p–∇ξ – �V )∇(u – ξ )dx ≤ . (.)

Let u–ξ = εψ in (.), whereψ is an arbitrary function inW ,p(�) and ε >  is a constant,
we get that

∫
�

ζε
(|∇u – ε∇ψ |p–(∇u – ε∇ψ) – �V )∇ψ dx ≤ ,

i.e.,
∫

�

ζ
(|∇u – ε∇ψ |p–(∇u – ε∇ψ) – �V )∇ψ dx≤ .

Let ε → +, we have that
∫

�

ζ
(|∇u|p–∇u – �V )∇ψ dx ≤ . (.)

Since ψ is an arbitrary function, we obtain that
∫

�

ζ
(|∇u|p–∇u – �V )∇ψ dx = .

We choose ψ = px, where p ∈ RN is a constant, and we have that
∫

�

ζp
(|∇u|p–∇u – �V )

dx = ,

which yields that �V = |∇u|p–∇u a.e. in�. This proves that u is a weak solution of problem
(.) when f (x) ∈ L(�). �

The first question is what happens to the solution if the inhomogeneous function f (x)
is not in L(�) but a nonnegative bounded Radon measure μ. Since a nonnegative Radon
measure μ may always be approximated by a sequence fn of L∞(�) functions, we want to

http://www.boundaryvalueproblems.com/content/2013/1/229
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knowwhether the approximate solutionsmay converge to a nontrivial function inW ,p
 (�)

or whether the approximate solutions converge. The existence of solutions in this case is
still unknown, but we have the following result.

Theorem . Suppose that μ is a nonnegative Radon measure concentrated on a Borel
set E of zero p-capacity, and that gn is a bounded sequence of nonnegative L(�) functions
which converges to μ in the narrow topology of measures. Let un be the solution of problem
(.) with the non-homogeneous function fn = gn(x). Then

lim
n→∞

∫
�

|un|p dx = .

Proof By the conclusion of Theorem ., we get that the solution un of problem (.) with
fn = gn is bounded in W ,p

 (�). Since the set E has zero p-capacity, by [, Lemma .], for
any real number σ > , there exists a function �σ ∈ C∞

 (�) satisfying

 ≤ �σ ≤ ,  ≤
∫

�

( –�σ )dμ ≤ σ ,
∫

�

|∇�σ |p dx ≤ σ . (.)

Noting that gn converges to μ in the narrow topology of measure, one has from (.) that

lim
n→∞

∫
�

gn( –�σ )dx =
∫

�

( –�σ )dμ ≤ σ . (.)

Define T(un) =min{un, }. Choosing T(un)( –�σ ) as a test function in (.) with a non-
homogeneous function gn, we obtain that

∫
�

∣∣∇T(un)
∣∣p( –�σ )dx –

∫
�

T(un)|∇un|p–∇un∇�σ dx

=
∫

�

gnT(un)( –�σ )
un + 

n
dx ≤

∫
�

gn( –�σ )un
un

dx =
∫

�

gn( –�σ )dx. (.)

Using ‖un‖W ,p
 (�) ≤ C, we assume that un is any subsequence such that un ⇀ u inW ,p(�)

and un → u in Lp(�). We show that the two limits in the theorem hold for any such sub-
sequence. This completes the proof. Note that

∣∣∣∣
∫

�

T(un)|∇un|p–∇un∇�σ dx
∣∣∣∣

≤
∣∣∣∣
∫

�

|∇un|p–∇un∇�σ dx
∣∣∣∣ ≤ ‖∇un‖p–Lp ‖∇�σ ‖Lp ≤ C‖∇�σ ‖Lp . (.)

By (.)-(.) and weak lower semi-continuity, we have
∫

�

∣∣∇T(u)
∣∣p( –�σ )dx ≤ σ + σ


p . (.)

Letting σ → +, we have

 ≤
∫

�

∣∣∇T(u)
∣∣p dx ≤ ,

which implies u =  a.e. in �. This completes the proof of the theorem. �
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The above theorem shows that problem (.) has a solution in W ,p
 (�) when f ∈ L(�)

and α = . But if f is only a Radonmeasure, the solutionmay not exist. At least, the solution
can not be approximated by the solution of problem (.). The second question we are
interested in is whether this problem has a solution in W ,p

 (�) when f ∈ Lm(�) (m > )
and α > . We have the following.

Theorem . Let f be a nonnegative function in Lm(�) (f �≡ ) (m > ). If  < α <  – 
m ,

then problem (.) has a solution u ∈W ,p
 (�) satisfying

∫
�

|∇u|p–∇u∇ϕ dx =
∫

�

f ϕ
uα

dx, ∀ϕ ∈ C∞
 (�).

In order to prove this theorem, we need the following lemma.

Lemma . The solution u to problem (.) with n =  satisfies

∫
�

u–r dx <∞, ∀r < . (.)

Proof By min{f (x),}
(u+)α

≤ , and Lemma . in [], we know that there exists  < β <  such
that u ∈ C,β (�) and ‖u‖C,β ≤ C, which implies that the gradient of u exists everywhere,
then theHopf lemma in [] shows that ∂u(x)

∂ν
> , in�, where ν is the outward unit normal

vector of ∂� at x. Moreover, following the lines of proof of the lemma in [], we get

∫
�

ur dx < ∞ if and only if r > –. �

Proof of Theorem . Multiplying the first identity in problem (.) by un, integrating over
�, and applying Hölder’s inequality and Lemma ., we get

∫
�

|∇un|p dx =
∫

�

fnun
(un + 

n )α
dx ≤

∫
�

fn
uα–
n

dx ≤
∫

�

f (x)
uα–


dx

≤ ‖f ‖Lm
∥∥u–α


∥∥
Lm′ ≤ c‖f ‖Lm , (.)

as ( – α)m′ = ( – α) m
m– > – by the assumption  < α <  – 

m ; hence

‖un‖W ,p


≤ c‖f ‖

p
Lm(�).

From (.), we know that there exist u ∈W ,p
 (�) and �V ∈ L

p
p– (�,RN ) such that

⎧⎪⎪⎨
⎪⎪⎩
un ⇀ u weakly inW ,p

 (�) and strongly in Lp(�),

un → u a.e. in �,

|∇un|p–∇un ⇀ �V weakly in L
p

p– (�,RN ).

(.)

For every ϕ ∈ C∞
 (�), from Lemma ., we get that

 ≤
∣∣∣∣ fnϕ
(un + 

n )α

∣∣∣∣ ≤ ‖ϕ‖L∞

C′
�

f (x).
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Then applying Lebesgue’s dominated convergence theorem, we have

lim
n→+∞

∫
�

fnϕ
(un + 

n )α
dx =

∫
�

f ϕ
uα

dx (.)

since un satisfies the following identity:

∫
�

|∇un|p–∇un∇ϕ dx =
∫

�

fnϕ
(un + 

n )α
dx, ∀ϕ ∈ C∞

 (�). (.)

In (.), letting n→ ∞ and using (.) and (.), we have

∫
�

�V∇ϕ dx =
∫

�

f ϕ
uα

dx, ∀ϕ ∈ C∞
 (�).

Following the lines of proof of Theorem ., we get that problem (.) has a solution in
W ,p

 (�). �
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