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Abstract

We consider the linearized Euler and Maxwell equations and Ohm'’s law. We calculate
the fundamental matrix and give integral representations for the velocity, magnetic
induction and pressure. We use the boundary (slip) condition to obtain an integral
equation for the jump of the pressure. We give some graphic representations of the
velocity and magnetic induction for the case of the flat plate.
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Introduction

In papers dedicated to the motion of a wing in an electro-conductive fluid, the lift, drag
and moment coefficients were calculated. Recent technological advances claim also for the
study of the velocity and electromagnetic fields. We mention two examples: the plasma ac-
tuators for aircraft flow control (see [1]) and concealing aircrafts from radar using interac-
tion between ionized gas and electromagnetic radiation. In the present paper, we study the
steady two-dimensional flow of an ideal perfectly conducting incompressible fluid around
a thin insulating airfoil. We consider the linearized partial differential equations of mag-
netohydrodynamics (consisting of Euler’s and Maxwell’s equations and Ohm’s law) and
calculate the corresponding fundamental matrix. In order to obtain the integral represen-
tations for the velocity, the magnetic induction and the pressure fields (which represent
the original result of this work), we perform the convolution of the components of the
fundamental matrix with the simple layer distributions determined by the jump of the
functions we are looking for. We notice that every integral representation has an elliptic
as well as a hyperbolic part, this last one being determined by the presence of simple waves
bounded by straight characteristics (weak shocks). From the integral representation of the
velocity and the boundary conditions (linearized slipping condition and the continuity of
the magnetic induction), we rediscover the singular integral equation for the jump of the
pressure across the airfoil. We consider the particular case of the flat plate for which the
solution of the integral equation is known. Then we perform some numerical integrations
to calculate the velocity and the magnetic induction at the points of a two-dimensional
grid in order to provide graphic representations for the velocity and magnetic induction
fields.
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Fundamental matrix of the linearized equations for the two-dimensional
incompressible flow of perfectly conducting fluids

Let v, b and p designate the nondimensional perturbations of the velocity, magnetic in-
duction and pressure, respectively, determined by the presence of a thin insulating airfoil

whose equation is

y=hi(x), x€[0,1], ||kl  |K@| <KL @)

At infinity, we assume that the unperturbed motion is uniform and parallel to the

Ox-axis and that there exists a homogeneous magnetic field whose nondimensional ex-
pression is

By = (o0, @), ay = cos(a), ay =sin(a), o€ (-m/2,7/2). (2)

As it is shown in [2], Section 5.2, v = (v, ), b = (b4, by) and p satisfy the following sys-

tem of linear partial differential equations obtained by means of the small perturbations

technique:
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with A = ﬁ being Alfvén’s number (R% is the magnetic pressure number). We introduce

like in [3] the fundamental matrix of linear system (3)
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where §(x, ) is Dirac’s distribution and §;; = { o

Some components of the fundamental matrix

We shall use the Fourier transform
FIVene) - [ [ exolitss +56]f ) dxay
R

Taking into account that

F{gi@fﬁ=4ﬁﬂﬂ@fﬂ
X

F[8] =1,
and using the notation F[f] = f , we obtain from (5)
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Solving system (9), we get for j = 2
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with
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Using the inverse Fourier transforms ([4], Appendix 1)
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Integral representations

In thin airfoil theory, the linearized boundary conditions are usually imposed on the seg-
ment [—1,1] and the functions we are looking for are defined on R?\[-1,1]. Since v,, vy, by,
b, and p are integrable functions, they may be regarded as regular distributions. Taking

into account the boundary conditions ([2], Chapter 5)
[b](x) =0, vy(x, £0) = i, (x), x€[-L1], (19)

we obtain the following linearized system for the distributions vy, v, by, b, and p:

v, 0 ob, b,
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where [b](x) and [p](x) represent the jumps of b and p over the segment [-1,1] and
[p18(1,1), [7']8(-1,4 are simple layer distributions. We may easily verify that

4 4
vx=2v¥)*f, W:Zvy)*f»,
j=1 j=1

(21)

4 4
:Zbg)*j, p:Zp(l)*},
j=1 j=1

where * stands for the convolution product. We shall consider, for the sake of simplicity,

the case of zero thickness wing, i.e., i, (x) = h_(x). Hence fi = f3 = fo = 0 and

Vx—V *[p](S[ 1,1] Vy—V2 *[10]5[ 1,1

by =0« [ploy,  p=p? *[plr1y.
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We calculate the convolutions and obtain the following representation for v,:
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The integral equation for the jump of the pressure
Using the Plemelj formulas and linearized boundary conditions (19), we get from (23) the

integral equation

H (%) = vy(x, £0)
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which is equivalent to
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where k =A% +1-2a2, B =, (1 + A?)A™" and x =2(4a? + A2 — A?). As it is shown in [3,
5] and [2], Chapter 5, the solution of equation (27) is

- =Bx kx 1-x\° L1+ £\ HE)
lple) = ﬂ2+k2h () - (B2 +Kk2) (1 +x) p.v.‘/_1<§) é—xdé

2Csinfw
MRS

k
tanfw = E,0§9<1. (28)

We may take C = 0 if we impose Kutta-Joukovsky’s condition. Other choices of the con-
stant C were considered by Stewartson [6].

The flat plate

In this case, /(x) = —ex, i’ (x) = —¢. Taking into account that

1 0 0
p.v./ <1+§> 1 dé = .7r {1_(1+x) cos@n},
a\1-&/) &-x sinw 1-x

we get from (28)

ex 1-x\’
Pl = m(ﬁ) ‘

The lift is ([2], 5.2.6)

; 1 P (A* =1)* + 4A%a; o

= _[1@](x) x = gn—Az(AZ —1: 2%2) .

In order to obtain graphic representations for the velocity (Figure 1), magnetic induction
(Figure 2) and lift (Figure 3), we use the quadrature formulas

Lr1-g\’ x-¢ N X -t

I s = = Wi R
1) /1(1 +$> (x—&)* +)? k%: NEETATESY

=g\ y . y
I, = = Wi——————,
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where
~ ATIN+60+1)I'(N -6 +1)
[ +1)12PG D ) PG ()
Pﬁj’_em(tk), P;S’:le)(tk) are the Jacobi polynomials and #, k = 1,..., N, are the roots of

Pg\?’_e)(tk). We considered ¢ = 0.2.

Conclusions
We have calculated the velocity, the pressure and the magnetic induction for the steady

flow of an incompressible perfectly conducting fluid past a thin airfoil. The integral rep-
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Figure 1 Velocity field. The velocity is represented by arrows in the grid points.
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pressure and magnetic induction contain respectively an el-

Figure 2 Magnetic induction field. The magnetic induction is represented by arrows in the grid points.

we may observe the simple waves which are determined by the influence of the magnetic
field. In Figure 3 we represent the lift coefficient against Alfvén’s number A. We notice
that the lift coefficient increases when A decreases, i.e., when the value of the magnetic

liptic part and a hyperbolic one. Some calculations were performed for the flat plate. In
the graphic representation of the velocity and magnetic induction from Figures 1 and 2,

resentations of the velocity,
induction at infinity increases.
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Figure 3 Lift coefficient versus Alfvén’s number. The lift coefficient is calculated for various values of the
angle «.
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