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Abstract
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1 Introduction
We consider the optimal control of solid-liquid phase transitions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut – γ�u + δ∂I[–,](u) + ϕ(u) – λ′(u)v �  in Q =� × (,T),

vt + (λ(u))t – k�v = Bw in Q =� × (,T),

u(x, ) = u(x), v(x, ) = v(x) in �,
∂u
∂ν

= ∂v
∂ν

=  on 
 = ∂� × (,T),

(.)

and

F(u) ⊂ S,

where � is a bounded domain in RN ( ≤ N ≤ ) with a smooth boundary ∂�, ϕ(u) =
u – u, δ,γ ,k >  denote given parameters, ∂I[–,](u) is the subdifferential of the indicator
function I[–,](u) on the closed interval [–, ], Bw is a given forcing term on Q, ∂

∂ν
is the

outward normal derivative on ∂� and u, v are given initial datums.
System (.) is a simplified model for a class of solid-liquid phase change problems. In

the context of solid-liquid phase transitions, v and u represent the absolute temperature
and the order parameter which indicates the physical situation of the system, respectively.
Therefore it is natural to assume that the range of u is bounded, say the closed interval
[–, ] in this paper, and ∂I[–,](u) denoting the range of the order parameter u is assumed
to be a compact interval [–, ], u(t,x) ≡ – and u(t,x) ≡  mean, respectively, that the
physical situation at (t,x) is of pure solid and pure liquid, while – < u(t,x) <  means that
the physical situation at (t,x) is mushy.
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A great deal of research has been done on the phase-field transition system, for which
we refer to the book by Temam [] and the references therein.Without the term ∂I[–,](u),
system (.) is the standard phase field model which was studied in [, ]. One of the most
important characteristics of our model is the nonlinear term ∂I[–,](u) (obstacle) which
allows the coexistence of pure phases in the dynamical phase transition process. The ex-
istence and uniqueness of solution for the phase field model with obstacle were discussed
in [–]. In particular, the asymptotic behavior of solutions to the non-isothermal phase-
field transition system with obstacle was considered in [] and []. Recently, the Caginalp
phase-field systemwith coupled dynamic boundary conditions, including the singular po-
tentials, was presented in [] and [].
Throughout this paper, the Hilbert space H = L(�) is equipped with the usual inner

product (·, ·) and the norm | · |. Define a closed subspaceH ofH byH = {z ∈H ;
∫
�
z dx =

}.We putV = V ∩H with ‖v‖V = |∇v|L(�) ≡ ‖v‖, whereV = {v ∈H(�), ∂v
∂ν

= }. If we
identify H∗ and H∗

 with their dual space, then we have V ⊂ H ⊂ V ∗ and V ⊂ H ⊂ V ∗
 ,

where V ∗
 is the duality space of V.

Throughout the paper, we suppose that the following assumptions hold.
LetU be a real Hilbert space, B :U →H be a linear continuous operator. Assuming that

Z is a Banach space with the dual Z∗ strictly convex, let S ⊂ Z be a closed convex subset
with finite co-dimensionality.

(H) F : L(,T ;H) → Z is in the class of C.
(H) g : [,T] × H → R+ is measurable in t and for every σ > , there exists Lσ >  inde-

pendent of t such that g(,u) ∈ L∞(,T) and

∣∣g(t, y) – g(t, z)
∣∣ ≤ Lσ |y – z| for any t ∈ [,T] with |y| + |z| ≤ λ.

(H) h :U → R̄ is lower semicontinuous and convex with the following growth property:

h(w) ≥ c|w|U + c for any w ∈U with c >  and c ∈ R.

(H) λ ∈ C and there exists a constant κ >  such that λ′′(s)≤ κ for any s ∈ R.

We consider the following optimal control problem:

minL(w) over all w ∈ L(,T ;U), (P)

where

L(w) =
∫ t



[
g
(
t,u(t)

)
+ h

(
w(t)

)]
dt

and

(u, v) is the solution of (.) corresponding to w, F(u) ⊂ S.

For any

(u, v,w) ∈ Y × Y × L(,T ;U)

satisfying (.) is called a feasible pair, where Y =H,(Q)∩C(,T ;V ).
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The first question regarding problem (P) is if there is an admissible solution, i.e., if the
set Aad is nonempty. Taking into account [] similarly, we may assume in the sequel that
for (u, v,w) ∈ Y × Y × L(,T ;U), problem (P) admits at least one admissible solution.
Optimal control problems of the phase transition system have been studied by several

authors (for instance, see [–]). In particular, let λ(u) = l
 and δ =  in (.), the optimal

boundary controls for a phase field model and the state-constrained optimal control for
the phase-field transition system were considered in [] and [], respectively. In [],
based on the energy estimates and the compact method, Ryu and Yagi considered the
optimal control problems of the adsorbate-induced phase transition model. It is noted
that the optimal control without state constraint or without obstacle of the phase field
model was discussed in [, –].
To the best of our knowledge, there are few papers concerned with the optimal control

problems for the phase-field with obstacle although it is natural to have the obstacle in
the solid-liquid phase transitions and related physics models, since the obstacle ∂I[–,](u)
brings the essential difficulty in getting Pontryagin’s maximum principle for correspond-
ing models.
We state the maximum principle as follows.

Theorem . Suppose that (H), (H), (H) and (H) hold. Let (u∗, v∗,w∗) be optimal
for problem (P), then there exists a tetrad (μ,p,q, ζ) ∈ R × L(,T ;V ) ∩ L∞(,T ;H) ×
L(,T ;V )∩ L∞(,T ;H)× Z∗ with (μ, ζ) �=  and a measure η ∈ L∞(Q)∗ such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–pt – γ�p + η + ((u∗) – )p – λ′′(u∗)pv∗ – λ′(u∗)q

∈ –[∂F(u∗)]∗ζ –μ∂g(t,u∗),

–qt + λ′(u∗)pt – k�q + λ′′(u∗)pu∗
t = ,

p(T) = , q(T) = 

(.)

and
⎧⎨
⎩
B∗q(t) ∈ μ∂h(w∗(t)),

〈ζ, s – ∂F(u∗)〉Z∗ ,Z ≤  ∀s ∈ S.
(.)

Moreover, if F ′(u∗) is injective, then (μ,p,q) �= .

The rest of this paper is organized as follows. In Section , we provide existence results
and a priori estimates in the form that is required to obtain Pontryagin’s maximumprinci-
ple for problem (P). Besides the existence of an optimal control in problem (Pε), necessary
optimality conditions for this problem and for problem (P) are proved in Section .

2 The approximation problem
This section is to show the existence of the optimal control of the approximation problem
corresponding to the phase transition system. To this end, we first show some technical
lemmas, which are presented below for the sake of completeness.
In order to approximate ∂I[–,](·), we define a nondecreasing function βε [] on R by

βε(r) = sign(r)
∫ |r|


min

{

ε
,
[s – ]+

ε

}
ds ∀r ∈ R,

http://www.boundaryvalueproblems.com/content/2013/1/234
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where [·]+ denotes the positive part of functions. Then βε ∈ C, (βε)′ ∈W ,∞(R) and

 ≤ (
βε

)′(r)≤ 
ε
,

∣∣(βε
)
(r)

∣∣ ≥ 
ε

(
[r – ]+ + [– – r]+

)
–



for any r ∈ R. (.)

We fix a primitive β̂ε of βε such that

β̂ε() =  and β̂ε(r)≥  for any r ∈ R. (.)

Without loss of generality, we may assume δ = , therefore, the approximation of (.) is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut – γ�u + βε(u) + ϕ(u) – λ′(u)v =  in Q =� × (,T),

vt + λ′(u)ut – k�v = Bw in Q =� × (,T),

u(x, ) = u(x), v(x, ) = v(x) in �,
∂u
∂ν

= ∂v
∂ν

=  on 
 = ∂� × (,T).

(.)

Lemma . Suppose that βε(·) satisfies (.)-(.), wn ∈ L(,T ;U), wn → w̃ weakly in
L(,T ;U) and (ũ, ṽ), (un, vn) are the solutions of (.) corresponding to w̃ and wn, respec-
tively. Then there exists a subsequence of (un, vn), still denoted by itself, such that

(un, vn) → (ũ, ṽ) weakly in Y ,

βε(un) → η̃ weakly in L(,T ;H) as n→ ∞.
(.)

Proof Replacing (u, v) and w by (un, vn) and wn in (.), respectively, we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un,t – γ�un + βε(un) + ϕ(un) – λ′(un)vn =  in Q =� × (,T),

vn,t + λ′(un)un,t – k�vn = Bwn in Q =� × (,T),

un(x, ) = u(x), vn(x, ) = v(x) in �,
∂un
∂ν

= ∂vn
∂ν

=  on 
 = ∂� × (,T).

(.)

Multiplying (.) and (.) by un,t and vn, respectively, integrating over� and adding the
resulting equations, we end up with

d
dt

(
γ


|∇un| + |vn|

)
+ |un,t| + k|∇vn| +

∫
�

(
βε(un) + ϕ(un)

)
un,t dx

≤ –
∫

�

Bwnvn dx. (.)

Therefore, we conclude with the help of Young’s inequality and the properties of βε that

d
dt

(
γ


|∇un| + |vn| +




|un|L +
∣∣β̂ε

∣∣
L

)
+ k|∇vn| + |un,t|

≤ 


|Bwn| + |vn| +


|un,t| +



|un|

≤ 


|Bwn| + |vn| +


|un,t| + |un|L +C. (.)

http://www.boundaryvalueproblems.com/content/2013/1/234
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Here and throughout the proof of Lemma ., we shall denote by C several positive con-
stants independent of n. Applying Gronwall’s inequality to (.), we derive

|un|L∞(,T ;V∩L) + |vn|L∞(,T ;H) + |vn|L(,T ;V ) + |un|H(,T ;H) +
∣∣β̂ε

∣∣
L∞(,T ;L) ≤ C. (.)

Now, testing (.) by –�un, we derive



d
dt

|∇un| + γ |�un| +
∫

�

(
βε

)′|∇un| + un|∇un| dx

= –
∫

�

λ′(un)vn�un dx

≤ γ


|�un| +C

(
|vn|L +

∫
�

∣∣λ′(un)
∣∣ dx

)
, (.)

which togetherwith λ′′(t) ≤ κ , (.), (.), Nirenberg’s inequality andGronwall’s inequality
implies that

|un|L∞(,T ;V ) + |un|L(,T ;H) ≤ C. (.)

Next, multiplying (.) by βε , integrating over [,T] and invoking Young’s inequality, we
derive

d
dt

∣∣β̂ε
∣∣
L + |βε|

=
∫

�

(
γ�un – ϕ(un) + λ′(un)vn

)
βε(un)dx

≤ 

∣∣βε

∣∣
 +C

(
|un|L + |un| + γ |�un| +

∫
�

∣∣λ′(un)
∣∣ dx + |vn|L

)
. (.)

Thanks to (.), λ′′(t) ≤ κ and Gronwall’s inequality, we derive

∣∣β̂ε
∣∣
L∞(,T ;L) +

∣∣βε
∣∣
L(,T ;H) ≤ C. (.)

Inserting (.) and (.) into (.), we have

|un,t|L(,T ;H) ≤ C. (.)

Now, differentiating (.) with respect to t and multiplying the result by un,t , then multi-
plying (.) by vt , adding the resulting equations and integrating over � leads to

d
dt

(


∣∣un,t(t)∣∣ + k


∣∣∇vn(t)

∣∣


)
+ γ |∇un,t| +

∫
�

(
βε

)′un,t(x, t)dx + |vn,t|

≤ ∣∣un,t(t)∣∣ +
∫

�

κvn(t)un,t(t)dx +
∫

�

Bwnvn,t dx

≤ ∣∣un,t(t)∣∣ +
∫

�

∣∣κvn(t)un,t(t)∣∣dx + 

∣∣vn,t(t)∣∣ + 


|Bwn|. (.)

http://www.boundaryvalueproblems.com/content/2013/1/234
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On the other hand, with the help of (.), (.), Hölder’s inequality and Nirenberg’s in-
equality, we get

∣∣∣∣
∫ t



∫
�

κvn(t)un,t dx
∣∣∣∣

≤ |κ|
∫ t



∣∣vn(s)∣∣L
∣∣un,t(s)∣∣

L


ds

≤ |κ|
(∫ t



∣∣vn(s)∣∣L ds
) 


(∫ t



∣∣un,t(s)∣∣
L


ds

) 


≤ C

(∫ t



∣∣vn(s)∣∣H ds
) 

 ×
(∫ t



(∣∣∇un,t(s)
∣∣∣∣un,t(s)∣∣ + ∣∣un,t(s)∣∣)ds

) 


≤ C sup
≤s≤t

∣∣un,t(s)∣∣ ×
(∫ t



(∣∣∇un,t(s)
∣∣∣∣un,t(s)∣∣ + ∣∣un,t(s)∣∣)ds

) 


≤ C sup
≤s≤t

∣∣un,t(s)∣∣
[
 +

(∫ t



∣∣∇un,t(s)
∣∣ ds

) 

]

≤ μ sup
≤s≤t

∣∣un,t(s)∣∣ +μ

∫ t



∣∣∇un,t(s)
∣∣ ds +C, (.)

where μ is a small positive constant and Ci (i = , , , ) are independent of n. Inserting
(.) into (.), we derive



∣∣un,t(t)∣∣ + k


∣∣∇vn(t)

∣∣


+ (γ –μ)
∣∣∇un,t(t)

∣∣
 +

∫ t



∫
�

(
βε

)′(un(t))un,t(t)dxds

≤
∫ t



∣∣un,s(s)∣∣ ds +μ sup
≤s≤t

∣∣un,t(s)∣∣ + 


∫ t



∣∣Bwn(s)
∣∣
 ds +C. (.)

Taking the supremum with respect to t in (.), choosing μ >  sufficiently small and
applying Gronwall’s inequality, we end up with

sup
≤s≤t

∣∣un,t(t)∣∣ + sup
≤s≤t

∣∣∇vn(t)
∣∣
 +

∣∣∇un,t(t)
∣∣
 ≤ CT , (.)

which combinedwith (.) implies that λ′(un)un,t ∈ L(,T ;H). Therefore, employing the
standard parabolic theory to (.) leads to

|vn,t|L(,T ;H) + |vn|L∞(,T ;V ) + |vn|L(,T ;H) ≤ C. (.)

Now we may combine the estimates (.), (.), (.), (.) and (.) to conclude the
results. This completes the proof. �

Lemma . Suppose that βε(·) satisfies (.)-(.), let wε ∈ L(,T ;U) with wε → w∗

weakly in L(,T ;U) as ε → , (uε , vε) be the solution of (.) corresponding to wε . Then,
on some subsequence (uεn , vεn ) of (uε , vε), there exists a quad (u, v,η) ∈ Y ×Y × L(,T ;H)

http://www.boundaryvalueproblems.com/content/2013/1/234
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such that

η ∈ ∂I[–,](u) a.e. L(,T ;H), (.)

while

(uεn , vεn ) → (u, v) weakly in
(
L∞(,T ;V )∩ L

(
,T ;H(�)

)), (.)

(uεn , vεn ) → (u, v) strongly in
(
L(,T ;V )∩C(,T ;H)

), (.)
(
u′

εn , v
′
εn

) → (
u′, v′) weakly in

(
L(,T ;H)

), (.)

βε(uεn ) → η weakly in L(,T ;H) (.)

as εn →  and (u, v,η) is a solution of (.) satisfying the following estimates:

|u|Y + |v|Y + |η|L(QT )
≤ C, (.)

where C >  is independent of ε, n.

Proof Rewrite (.) as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uε,t – γ�uε + βε(uε) + ϕ(uε) – λ′(uε)vε =  in Q =� × (,T),

vε,t + λ′(uε)uε,t – k�vε = Bwε in Q =� × (,T),

uε(x, ) = u(x), vε(x, ) = v(x) in �,
∂uε

∂ν
= ∂vε

∂ν
=  on 
 = ∂� × (,T).

(.)

Employing almost exactly the same arguments as in the proof of Lemma ., we conclude
the results (.)-(.). Furthermore, by a standard argument in [], we get η ∈ ∂I[–,](u)
a.e. in L(,T ;H). This completes the proof. �

Now, we assume that (u∗, v∗,w∗) is optimal for problem (P). For each ε > , let (u∗
ε , v∗

ε ,w∗
ε )

be the solution to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut – γ�u + βε(u) + ϕ(u) – λ′(u)v =  in Q =� × (,T),

vt + λ′(u)ut – k�v = Bw∗ in Q =� × (,T),

u(x, ) = u∗
(x), v(x, ) = v∗

(x) in �,
∂u
∂ν

= ∂v
∂ν

=  on 
 = ∂� × (,T).

(.)

It follows from Lemma . that

δ(ε) ≡ ∣∣u∗
ε – u∗∣∣

L(,T ;H) → . (.)

Now, the approximating optimal control problems (Pε) are as follows:

Minimize Lε(w) over w ∈ L(,T ;U),

http://www.boundaryvalueproblems.com/content/2013/1/234


Zheng et al. Boundary Value Problems 2013, 2013:234 Page 8 of 13
http://www.boundaryvalueproblems.com/content/2013/1/234

where Lε : L(,T ;U)→ R, by

Lε(w) =
∫ T



[
gε(t,uε) + h(w)

]
dt +



∣∣w –w∗∣∣

L(,T ;U) +


δ(ε)
[
dS

(
F(uε)

)
+ δ(ε)

] (.)

and (u, v) is the solution of (.). Here, dS(F(u)) denotes the distance of F(u) to S,

gε(t, y) =
∫
Rn
g(t,Pny – ε�nτ )ρn(τ )dτ (.)

is the approximations of g [], where n = [ 
ε
], ρn is a mollifier in Rn, Pn : H → Xn is the

projection of H on Xn, which is the finite dimensional space generated by {ei}ni=, {ei}∞i=
is an orthonormal basis in H , �n : Rn → Xn is the operator defined by �n(τ ) =

∑n
i= τiei,

τ = (τ, τ, . . . , τn).
First of all, we show the existence of optimal solutions for (Pε).

Lemma . (Pε) has at least one optimal solution.

Proof Let ε >  be fixed. It is clear that infLε(w) > –∞. Let dε = inf{Lε(w) : w ∈ L(,T ;U)}
and wn be a minimizing sequence such that

dε ≤ Lε(wn) ≤ dε +

n
, (.)

which together with (H), (H) and (.) implies that wn is bounded in L(,T ;U). With-
out loss of generality, we may assume that wn → w̃ in L(,T ;U). Let (un, vn) and (ũ, ṽ) be
the solutions of (.) corresponding to wn and w̃, respectively. It follows from Lemma .
that on some subsequence of (un, vn), still denoted by itself,

(un, vn)→ (ũ, ṽ) weakly in Y × Y and

strongly in
(
C

(
,T ;H(�)

) ∩ L(,T ;H)
). (.)

With the help of (H), (.) and (.), we also obtain

∫ T



∣∣gε(t,un) – gε(t, ũ)
∣∣
L dt ≤ C

∫ T


|un – ũ|L dt →  as n→ ∞. (.)

On the other hand, due to (.) and (H), we have that

lim
n→∞F(un) = F(ũ) (.)

and therefore

lim
n→∞


δ(ε)

[
dS

(
F(un)

)
+ δ(ε)

] = 
δ(ε)

[
dS

(
F(ũ)

)
+ δ(ε)

]. (.)

Finally, (.) and (.)-(.) imply that (ũ, ṽ, w̃) is the optimal pair for problem (Pε).
This concludes the proof of Lemma .. �

http://www.boundaryvalueproblems.com/content/2013/1/234
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Lemma . Let wε be optimal for problem (Pε) and (uε , vε) be the solution of (.) corre-
sponding to wε . Then, on some subsequence εn,

(uεn , vεn ) →
(
u∗, v∗) strongly in

(
L(,T ;V )∩C(,T ;H)

), (.)

wεn → w∗ strongly in L(,T ;U). (.)

Proof Since wε is a solution to (Pε), we have

Lε(wε) ≤
∫ T



[
gε

(
t,u∗

ε

)
+ h

(
w∗)]dt + 

δ(ε)
[
dS

(
F
(
u∗

ε

))
+ δ(ε)

], (.)

which together with (.) implies that


δ(ε)

[
dS

(
F
(
u∗

ε

))
+ δ(ε)

] ≤ 
δ(ε)

[∣∣F(
u∗

ε

)
– F

(
u∗)∣∣

Z + δ(ε)
]

≤ 
δ(ε)

[
C

∣∣u∗
ε – u∗∣∣

L(,T ;H) + δ(ε)
]

≤ ( +C)


δ(ε) →  as ε → , (.)

which combined with (.) implies that

lim sup
ε→

L(wε) ≤
∫ T



[
g
(
t,u∗) + h

(
w∗)]dt, (.)

which implies that (.), that wε is bounded in L(,T ;U). Without loss generality, we
may assume that wε → w̃ weakly in L(,T ;U), which together with Lemma . implies
that there exists a sequence of εn such that

(uεn , vεn ) → (ũ, ṽ) strongly in
(
L(,T ;V )∩C(,T ;H)

). (.)

On the other hand, (.) and (.) imply that

lim
εn→

dS
(
F(uεn )

)
= , (.)

and therefore

lim
εn→

dS
(
F(ũ)

)
= . (.)

Thus, we conclude from (.), (.) and (.) that

lim inf
εn→

Lεn (wεn ) ≥
∫ T



[
g(t, ũ) + h(w̃)

]
dt. (.)

Finally, it follows from (.), (.) and Lemma . that

(uεn , vεn ,wεn ) →
(
u∗, v∗,w∗)

strongly in
(
L(,T ;V )∩C(,T ;H)

) × L(,T ;U). (.)

This completes the proof. �
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3 The optimality condition for (Pε) and (P)
In the following we derive the optimality condition for problem (P) by showing the rela-
tion between approximation problem (Pε) and problem (P). We start this section with the
necessary conditions for wε to be optimal for (Pε).

Lemma . Suppose that (H), (H), (H) and (H) hold. Let wε be optimal for problem
(Pε) and (uε , vε) be the solution of (.) corresponding to wε . Then there exists a tetrad
(με ,pε ,qε , ζε) ∈ R× L(,T ;V )∩C(,T ;H)× L(,T ;V )∩C(,T ;H)× Z∗ such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–pε,t – γ�pε + β ′(uε)pε + (uε – )pε – λ′′(uε)pεvε – λ′(uε)qε

= –[∂F(u∗)]∗ζ –μ∂g(t,u∗),

–qε,t + λ′(uε)pε,t – k�qε + λ′′(uε)pεuε,t = ,

p(T) = , q(T) = 

(.)

B∗qε = με

[∇h(wε) +wε –w∗] a.e. t ∈ [,T] (.)

and

ζε ∈ ∂dS
(
F(uε)

)
, (.)

where ∂dS is the sub-differential of dS .

Proof Letw ∈ L(,T ;U),wχ
ε = wε+χw and (uχ

ε , vχ
ε ) be the solution of (.) corresponding

to wχ
ε . Then it is clear that

(
uχ

ε , v
χ
ε

) → (uε , vε) strongly in C(,T ;H)∩ L(,T ;V ) as χ → . (.)

Now, owing to the fact that wε is optimal for problem (Pε), we have Lε (w
χ
ε )–Lε(wε)

χ
≥  (for

all χ > ), hence

 ≤ με

∫ T



〈∇gε(t,uε), yε

〉
+

〈∇h(wε) +wε –w∗,w
〉
U dt +

〈(
F ′(uε)

)∗
ζε , yε

〉
, (.)

where (yε , ȳε) is the solution to

⎧⎪⎪⎨
⎪⎪⎩
yε,t – γ�yε + β ′(uε)yε + (uε – )yε – λ′′(uε)yεvε – λ′(uε)ȳε = ,

ȳε,t + λ′(uε)yε,t – k�ȳε + λ′′(uε)yεuε,t = ,

yε() = , ȳε() = .

(.)

Next, employing the same arguments as in the proof of [], we conclude that

lim
χ→


χ

∫ T


gε

(
t,uχ

ε

)
– gε(t,uε)dt =

∫ T



〈∇gε(t,uε), y
〉
dt, (.)

lim
χ→


χ

∫ T



[(
h
(
wχ

ε

)
– h(wε)

)
+


(∣∣wχ

ε –w∗∣∣
U –

∣∣wε –w∗∣∣
U

)]
dt

=
∫ T



〈∇h(wε) +wε –w∗,w
〉
dt (.)
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and

lim
χ→

([
dSF

(
uχ

ε

)
+ ε

] – [
dSF(uε) + ε

]) = F(uε) + ε

ε

〈
ζε ,F ′(uε)y

〉
Z∗ ,Z , (.)

where∇gε(t,uε) denotes the gradient of gε to the second variable at uε and∇h(wε) denotes
the gradient of h at wε . Here, ζε ∈ ∂dS(F(uε)) and ∂dS is the sub-differential of dS , which
implies (.). Thanks to S being convex, closed and Z∗ being strictly convex, we may also
infer that

|ζε|Z∗ =

⎧⎨
⎩
 if F(uε) /∈ S,

 if F(uε) ∈ S.
(.)

Let

με =
δ(ε)

δ(ε) + dS(F(uε))
(.)

and (pε ,qε) be the solution of (.). It follows from (.), (.) and (.) that

 ≤
∫ T


–
〈
B∗qε ,w

〉
+με

〈∇h(wε) +wε –w∗,w
〉
U dt, (.)

which implies (.). This completes the proof. �

The proof of Theorem . By using the properties of αε and βε and Lemma ., we have
that, on a sequence of ε still denoted by ε,

(uε , vε) → (u, v) weakly in
(
L∞(,T ;V )∩ L

(
,T ;H)), (.)

(uε , vε) → (u, v) strongly in
(
C(,T ;H)∩ L(,T ;V )

), (.)
(
u′

ε , v
′
ε

) → (
u′, v′) weakly in

(
L(,T ;H)

), (.)

β ′(uε)yε → η weakly star in
(
L∞(QT )

)∗. (.)

It follows from (.) and (.) that

≤ με + |ζε|Z∗ ≤  for any ε > . (.)

Therefore, there exist generalized subsequences of με and ζε such that

με → μ as ε →  (.)

and

ζε → ζ weakly star in Z∗ as ε → . (.)

Using Lemma ., we may pass to the limit in (.) and derive (.).

http://www.boundaryvalueproblems.com/content/2013/1/234
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On the other hand, due to Lemma . and the same argument as in [], we can conclude
that

∇gε(t,uε) → ρ(t) weakly in L(,T ;H) as ε → , (.)

where ρ(t) ∈ ∂g(t,u∗) for all most t ∈ (,T). Thanks to (H) and Lemma ., we also infer

[
F ′(uε)

]∗
ζε → [

F ′(u∗)]∗
ζ weakly in L(,T ;H) as ε → . (.)

Now we claim that

(
uε – 

)
pε → (


(
u∗) – 

)
p weakly star in L

(
,T ;V ∗) as ε → . (.)

Indeed, letw ∈ L(,T ;V ) and ν =max{|p|L(,T ;V ) + , |u∗|L(,T ;V ) + , |w|L(,T ;V )}, then we
derive

∫ T



∣∣(uε – 
)
pε –

(

(
u∗) – 

)
p,w〉∣∣dt

≤
∫ T



∣∣〈(uε – (
u∗))p + [

(uε) – 
]
(pε – p),w

〉∣∣dt

≤
∫ T



∣∣〈(uε + u∗)(uε – u∗)pε +
[
(uε) – 

]
(pε – p),w

〉∣∣dt

≤ 
(
ν + 

)[
max
≤s≤T

∣∣uε – u∗∣∣
 +

∫ T


|pε – p| dt

]
→  as ε → . (.)

With the help of (.), (.), (.)-(.), we can pass to the limit in (.) to derive that
(p,q) ∈ (L(,T ;V ) ∩ C(,T ;H)) and satisfies (.). On the other hand, observing that
ζε ∈ ∂dS(F(uε)), we derive

〈
ζε ,w – F

(
u∗)〉

Z∗ ,Z ≤ 〈
ζε ,F

(
u∗) – F(uε)

〉
Z∗ ,Z , (.)

which together with (.) and Lemma . implies (.) (the second inequality of (.)).
Finally, we are in a position to prove that (μ, ζ) �= . To this end, we suppose thatμ = .

It follows from (.), (.) and (.) that there exist ε >  and δ >  such that

δ ≤ |ζε|Z∗ ≤  for any ε < ε (.)

and

〈
ζε ,w – F

(
u∗)〉

Z∗ ,Z ≤ 〈
ζε ,F

(
u∗) – F(uε)

〉
Z∗ ,Z →  uniformly in w ∈ S. (.)

Since S ⊂ X is a closed convex subset with finite co-dimensionality, so is S – F(u∗), which
together with (.) and (.) implies that (μ, ζ) �=  [].
Assuming that F ′(u∗) is injective and (μ,p,q) = , thanks to (.), we derive (F ′(u∗))∗ζ =

, which yields ζ =  and (μ, ζ) = . This is a contradiction with (μ, ζ) �= . Thus, if
F ′(u∗) is injective, then (μ,p) �= . We complete the proof. �
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