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Abstract
In this paper, we establish the existence of multiple solutions to second-order
differential equations with φ-Laplacian satisfying periodic, Dirichlet or Neumann
boundary conditions. The right-hand side is a Carathéodory function satisfying a
growth condition of Wintner-Nagumo type. The existence of upper and lower
solutions is assumed. The proofs rely on the fixed point index theory.
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1 Introduction
In this paper, we consider boundary value problems for second-order nonlinear differen-
tial equations with φ-Laplacian of the form:

(
φ
(
u′(t)

))′ = f
(
t,u(t),u′(t)

)
a.e. t ∈ [,T],

u ∈ B,
(.)

where B denotes the Dirichlet, periodic, or Neumann boundary conditions:

u() = μ, u(T) = ν; (.)

u() = u(T), φ
(
u′()

)
= φ

(
u′(T)

)
; (.)

φ
(
u′()

)
= μ, φ

(
u′(T)

)
= ν. (.)

Here, f : [,T]×R
 →R is a Carathéodory function, and φ :R →R is a bijective increas-

ing homeomorphism.
Such problems have been studied by many authors. The method of upper and lower

solutions was widely used to obtain existence results; see, for instance, [–] and the
references therein.
Many multiplicity results were obtained with the method of strict lower and upper

solutions and for problems with the right member being a Carathéodory map not de-
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pending on the derivative, f (t,u). To our knowledge, De Coster [] was the first to obtain
multiplicity results for this problem with the Dirichlet boundary condition. Ben-Naoum
and De Coster [] considered the case where φ is the p-Laplacian with Sturm-Liouville
boundary condition. Bereanu and Mawhin [] established the existence of multiple pe-
riodic solutions in the case where f (t,u) = e(t) – g(u) + c and φ can have a bounded do-
main or a bounded range. Zhang et al. [] considered the periodic problemwith the right
member being a continuous map depending also on the derivative f (t,u,u′). A Nagumo
growth condition was imposed on f . The case where f (t,u,u′) is a Carathéodory map and
φ(u′) = u′ was studied by El Khattabi [] under a linear growth condition, and byGoudreau
[] under a Wintner-Nagumo growth condition.
Existence results were established for problem (.) under a growth condition of

Nagumo type of the form:

∣∣f (t,x, y)∣∣ ≤ θ
(|y|)k(t), (.)

with

min

{∫ ∞

φ(d)

φ–(s)(p–)/p

θ (φ–(s))
ds,

∫ φ(–d)

–∞
φ–(s)(p–)/p

θ (φ–(s))
ds

}
> c,

for c, d suitable constants. In particular, the existence of a solution was obtained by
O’Regan [] when the right member has the form q(t)f (t,u,u′) with f continuous, and
with either Dirichlet or mixed boundary conditions. His result was extended in [] and in
[] for a Carathéodory function f . Cabada and Pouso [] considered also a Carathéodory
map f , and they established the existence of a solution to the problem with Neumann or
periodic boundary conditions. More general boundary conditions or more general oper-
ators φ were considered in [–, , ]. All those results rely on the Schauder fixed point
theorem.
In this paper, we consider a Carathéodory map f satisfying a growth condition different

from (.). Namely, we impose the growth condition of Wintner-Nagumo type

∣∣f (t,x, y)∣∣ ≤ ψ
(|y|)(l(t) + c(t)|y|(p–)/p).

Using the method of upper and lower solutions and the fixed point index theory, we es-
tablish existence and multiplicity results for problem (.) with Dirichlet, Neumann or
periodic boundary value conditions. Our proofs rely on the fixed point index theory. This
theory is particularly convenient for the Neumann problem where we use the contraction
property of the fixed point index to reduce the computation of the fixed point index in an
affine space.

2 Preliminaries
In what follows, we denote I = [,T]. The space of continuous functions C(I), and the
space of continuously derivable functions C(I) are equipped with the usual norms ‖ · ‖
and ‖u‖ = max{‖u‖,‖u′‖}, respectively. We denote the usual norm in Lp(I) by ‖u‖Lp ,
where  ≤ p≤ ∞. We set

W (I) =
{
u ∈ C(I) : φ

(
u′) is absolutely continuous and (

φ
(
u′))′ ∈ L(I)

}
.
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Definition . A map f : I ×R
 →R is a Carathéodory function if

(i) f (t, ·, ·) is continuous for almost every t ∈ I ;
(ii) f (·,x, y) is measurable for all (x, y) ∈ R

;
(iii) for all R > , there exists hR ∈ L(I) such that |f (t,x, y)| ≤ hR(t) for all (x, y) ∈ R



such that |x| ≤ R, |y| ≤ R, and for almost every t ∈ I .

Definition . We say that α ∈W (I) is a lower solution of (.) if

(
φ
(
α′(t)

))′ ≥ f
(
t,α(t),α′(t)

)
, a.e. t ∈ I; (.)

and, in addition,
(i) if B denotes Dirichlet boundary condition (.), it satisfies

α()≤ μ and α(T)≤ ν;

(ii) if B denotes periodic boundary condition (.), it satisfies

α() = α(T) and φ
(
α′()

) ≥ φ
(
α′(T)

)
;

(iii) if B denotes Neumann boundary condition (.), it satisfies

φ
(
α′()

) ≥ μ and φ
(
α′(T)

) ≤ ν.

Similarly, we define an upper solution of (.) if the previous conditions are satisfied with
the reversed inequalities.

Definition . We say that α ∈W (I) is a strict lower solution of (.) if for any t ∈ ],T[,
there exist ε >  and Ut , a neighborhood of t in I , such that for almost every t ∈ Ut and
all (x, y) ∈ [α(t),α(t) + ε]× [α′(t) – ε,α′(t) + ε],

(
φ
(
α′(t)

))′ ≥ f (t,x, y); (.)

and, in addition,
(i) if B denotes Dirichlet boundary condition (.), it satisfies

α() < μ and α(T) < ν;

(ii) if B denotes periodic boundary condition (.), it satisfies

α() = α(T) and φ
(
α′()

)
> φ

(
α′(T)

)
;

(iii) if B denotes Neumann boundary condition (.), it satisfies

φ
(
α′()

)
> μ and φ

(
α′(T)

)
< ν.

Similarly, we define a strict upper solution of (.) if the previous conditions are satisfied
with the reversed inequalities.
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We will use the following general assumptions.

(Hφ) The map φ :R →R is a bijective increasing homeomorphism.
(Hf ) The map f : I ×R

 →R is Carathéodory.
(HB) There exist α,β ∈ W (I), respectively lower and upper solutions of (.), such that

α(t)≤ β(t) for all t ∈ I .
(WN) There exist k > , p ∈ ],∞], c ∈ Lp(I, [,∞[), l ∈ L(I, [,∞[) and ψ : [,∞[→

[k,∞[ such that


ψ ◦ φ– ∈ Lloc(R),

∫ ∞

–∞
ds

ψ(|φ–(s)|) =∞,

and

∣∣f (t,x, y)∣∣ ≤ ψ
(|y|)(l(t) + c(t)|y|(p–)/p)

∀x ∈ [
α(t),β(t)

]
, y ∈R, and a.e. t ∈ I,

with (p – )/p =  if p =∞.

In what follows, (HB) will be replaced by (HD), (HN ) or (HP) if B denotes (.), (.) or
(.), the Dirichlet, periodic or Neumann boundary conditions, respectively.
We present some properties of operators that will be used later. Here is a particular case

of Lemmas . and . in [].

Lemma . Let f : I×R
 →R be a Carathéodory function and σ : I×R

 →R such that
(i) for any u ∈ C(I), the map t �→ σ (t,u(t),u′(t)) is measurable;
(ii) for any sequence {un} converging to u in C(I), there exists c >  such that

∥∥σ
(
t,un(t),u′

n(t)
)∥∥ ≤ c a.e. t ∈ I and ∀n≥ ;

and

σ
(
t,un(t),u′

n(t)
) → σ

(
t,u(t),u′

(t)
)

a.e. t ∈ I.

Then the operator Ng : C(I) → C(I) defined by

Ng(t) =
∫ t


g
(
s,u(s),u′(s)

)
ds,

with

g
(
t,u(t),u′(t)

)
= f

(
t,σ

(
t,u(t),u′(t)

))
,

is continuous and completely continuous.Moreover, for every u ∈ C(I), Ng(u) is absolutely
continuous and

d
dt

Ng(u)(t) = g
(
t,u(t),u′(t)

)
a.e. t ∈ I.
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Observe that the previous lemma holds with σ (t,x, y) = (x, y). In this case, Ng =Nf .
Now, we present some results related to the homeomorphism φ. The first one is a lemma

due to Manásevich and Mawhin [].

Lemma . Let φ :R →R satisfy (Hφ), and let G :R× C(I) →R be defined by

G(a,h) =
∫ T


φ–(a + h(t)

)
dt.

Then the following statements hold:
() For any c ∈R and any h ∈ C(I), the equation

G(a,h) = c

has a unique solution ac(h).
() For any c ∈R, the function ac : C(I) →R defined in () is continuous, and it sends

bounded sets into bounded sets.

It is easy to show the following result.

Lemma . Assume that φ :R→R satisfies (Hφ). Let 
 :R× C(I) → C(I) be defined by


(r,h)(t) = r +
∫ t


φ–(h(s))ds.

Then 
 is continuous.

We will use the following maximum principle type result.

Lemma . Assume that (Hφ) is satisfied. Let v,w ∈W (I) be such that

(
φ
(
v′(t)

))′ ≤ (
φ
(
w′(t)

))′ a.e. on
{
t ∈ I : v(t) < w(t)

}
.

Assume that one of the following conditions holds:
(i) v()≥ w(), v(T) ≥ w(T);
(ii) φ(v′())≤ φ(w′()), φ(v′(T))≥ φ(w′(T));
(iii) v() = v(T), w() = w(T), φ(v′()) – φ(v′(T)) ≤ φ(w′()) – φ(w′(T)).

Then v(t)≥ w(t) for all t ∈ I , or there exists c >  such that v(t) = w(t) – c for all t ∈ I .

Proof Assume that

A =
{
t ∈ I : v(t) < w(t)

} �= ∅.

Condition (i) (resp. (ii) or (iii)) implies that one of the following statements holds:

there exists [t, t] ⊂ A such that

v(t) –w(t) < v(t) –w(t) and φ
(
v′(t)

) ≤ φ
(
w′(t)

)
; (.)
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there exists [t, t] ⊂ A such that

v(t) –w(t) > v(t) –w(t) and φ
(
v′(t)

) ≥ φ
(
w′(t)

)
; (.)

or

there exists c >  such that v(t) = w(t) – c ∀t ∈ I. (.)

Indeed, if (.) does not hold, let τ ,ρ ∈ I be such that

v(τ ) –w(τ ) =min
{
v(t) –w(t) : t ∈ I

}
< v(ρ) –w(ρ),

and

v(t) –w(t) <  for all t between τ and ρ.

If τ ∈ ],T[, then φ(v′(τ )) = φ(w′(τ )) and (.) or (.) hold.
If τ ∈ {,T}, then (i) does not hold. If (ii) holds, then

φ
(
v′()

) ≤ φ
(
w′()

)
and φ

(
v′(T)

) ≥ φ
(
w′(T)

)
.

Similarly, if (iii) holds, since

v() –w() = v(T) –w(T) = v(τ ) –w(τ ),

one has v′()≥ w′() and v′(T)≤ w′(T). Using (iii) and the fact that φ is increasing, we get

φ
(
v′()

)
– φ

(
w′()

) ≥  ≥ φ
(
v′(T)

)
– φ

(
w′(T)

) ≥ φ
(
v′()

)
– φ

(
w′()

)
.

Hence, (.) or (.) are satisfied.
Therefore, by assumption,

(
φ
(
v′(t)

))′ ≤ (
φ
(
w′(t)

))′ a.e. t ∈ [t, t]. (.)

If (.) holds, for every t ∈ ]t, t],

φ
(
v′(t)

)
– φ

(
v′(t)

)
=

∫ t

t

(
φ
(
v′(s)

))′ ds ≤
∫ t

t

(
φ
(
w′(s)

))′ ds

= φ
(
w′(t)

)
– φ

(
w′(t)

) ≤ φ
(
w′(t)

)
– φ

(
v′(t)

)
.

Since φ is increasing, we deduce that v –w is nonincreasing in [t, t]. This is a contradic-
tion. Similarly, we obtain a contradiction if (.) holds.
Therefore, v(t)≥ w(t) for all t ∈ I , or (.) is satisfied. �

Lemma . Assume (Hφ) and (Hf ). Let α,β ∈ W (I) be respectively strict lower and upper
solutions of (.) such that α(t) < β(t) for all t ∈ I . If u ∈ W (I) is a solution of (.) such that
α(t)≤ u(t) ≤ β(t) for all t ∈ I , then α(t) < u(t) < β(t) for all t ∈ I .

http://www.boundaryvalueproblems.com/content/2013/1/236
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Proof Let u ∈ W (I) be a solution of (.) such that α(t) ≤ u(t) ≤ β(t) for all t ∈ I . Assume
that

A =
{
t ∈ I : α(t) = u(t)

} �= ∅.

First, we claim that ,T /∈ A. This is obviously the case if B denotes Dirichlet boundary
condition (.). If B denotes periodic boundary condition (.), then u – α attains a mini-
mum at  and T . So, by (Hφ) and Definition .(ii),

φ
(
u′(T)

)
– φ

(
α′(T)

) ≤  ≤ φ
(
u′()

)
– φ

(
α′()

)
< φ

(
u′(T)

)
– φ

(
α′(T)

)
,

a contradiction. If B denotes Neumann boundary condition (.), then u – α attains a
minimum at  or at T . So, by (Hφ) and Definition .(iii),

 ≤ φ
(
u′()

)
– φ

(
α′()

)
< μ –μ or  ≥ φ

(
u′(T)

)
– φ

(
α′(T)

)
> ν – ν,

a contradiction.
Let t =maxA ∈ ],T[. So, φ(u′(t)) = φ(α′(t)). By Definition ., there exist ε >  and

Ut , a neighborhood of t, such that (φ(α′(t)))′ ≥ f (t,x, y) a.e. t ∈ Ut and all x, y such that
α(t) ≤ x ≤ α(t) + ε and |y – α′(t)| ≤ ε. Since u ∈ C(I), there exists t ∈ ]t,T[ such that
u(t) ∈ ]α(t),α(t) + ε] and |u′(t) – α′(t)| ≤ ε for all t ∈ ]t, t]. Since t =maxA, there exists
t ∈ ]t, t] such that u′(t) > α′(t). Using the fact that φ is increasing, we deduce that

φ
(
α′(t)

)
– φ

(
α′(t)

)
< φ

(
u′(t)

)
– φ

(
u′(t)

)
=

∫ t

t
f
(
s,u(s),u′(s)

)
ds

≤
∫ t

t

(
φ
(
α′(s)

))′ ds = φ
(
α′(t)

)
– φ

(
α′(t)

)
.

This is a contradiction. Therefore, α(t) < u(t) for all t ∈ I .
Similarly, we show that β(t) > u(t) for all t ∈ I . �

The following result establishes the existence of an a priori bound on the derivative of
functions satisfying a suitable inequality.

Lemma . Assume that (Hφ) is satisfied. Let k >  and ψ : [,∞[→ [k,∞[ be such that


ψ ◦ φ– ∈ Lloc(R) and

∫ ±∞



ds
ψ(|φ–(s)|) =±∞. (.)

Then, for every d ≥ , p ∈ ],∞], c ∈ Lp(I, [,∞[), l ∈ L(I, [,∞[), and B ⊂ C(I)
bounded, there exists M > d such that for every

u ∈ {
u ∈W (I) : u ∈ B,min

{∣∣u′(t)
∣∣ : t ∈ I

} ≤ d
}

satisfying

∣∣(φ(
u′(t)

))′∣∣ ≤ ψ
(∣∣u′(t)

∣∣)(l(t) + c(t)
∣∣u′(t)

∣∣(p–)/p) a.e. t ∈ I,

one has ‖u′‖ <M.

http://www.boundaryvalueproblems.com/content/2013/1/236
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Proof Let

m =max
{
u(t) – u(t) : t, t ∈ I,u ∈ B

}
.

Assumptions (Hφ) and (.) imply that there existsM > d such that

φ(M) > φ(d) ≥ φ(–d) > φ(–M),

and

max

{∫ φ(M)

φ(d)

ds
ψ(|φ–(s)|) ,

∫ φ(–d)

φ(–M)

ds
ψ(|φ–(s)|)

}

> ‖l‖L +m(p–)/p‖c‖Lp . (.)

Assume that there exists

u ∈ {
u ∈W (I) : u ∈ B,min

{∣∣u′(t)
∣∣ : t ∈ I

} ≤ d,

and
∣∣(φ(

u′(t)
))′∣∣ ≤ ψ

(∣∣u′(t)
∣∣)(l(t) + c(t)

∣∣u′(t)
∣∣(p–)/p) a.e. t ∈ I

}
such that ‖u′‖ ≥ M. If max{u′(t) : t ∈ I} ≥ M, there exist t, t ∈ I such that φ(u′(t)) =
φ(d), φ(u′(t)) = φ(M), φ(u′(t)) ∈ ]φ(d),φ(M)[ and u′(t) >  for all t between t and t.
Without loss of generality, we assume that t < t. Then, by assumption,

(φ(u′(t)))′

ψ(u′(t))
≤ l(t) + c(t)

(
u′(t)

)(p–)/p a.e. t ∈ [t, t].

Integrating from t to t and using theHölder inequality and the change of variable formula
in an integral give us

∫ φ(M)

φ(d)

ds
ψ(|φ–(s)|) =

∫ t

t

(φ(u′(t)))′

ψ(u′(t))
dt

≤
∫ t

t
l(t) + c(t)

(
u′(t)

)(p–)/p dt
≤ ‖l‖L + ‖c‖Lp

(
u(t) – u(t)

)(p–)/p
≤ ‖l‖L +m(p–)/p‖c‖Lp .

This contradicts (.).
Similarly, if min{u′(t) : t ∈ I} ≤ –M, there exist t, t ∈ I such that φ(u′(t)) = φ(–d),

φ(u′(t)) = φ(–M), φ(u′(t)) ∈ ]φ(–M),φ(–d)[ and u′(t) <  for all t between t and t.
Arguing as above leads to a contradiction. �

3 The Dirichlet problem
In this section, we consider problem (.) with the Dirichlet boundary condition. In order
to establish the existence of a solution to (.), (.), we consider the following family of

http://www.boundaryvalueproblems.com/content/2013/1/236
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problems defined for λ ∈ [, ]:

(
φ
(
u′(t)

))′ = λ̂f
(
t,u(t),u′(t)

)
, a.e. t ∈ I,

u() = μ, u(T) = ν,
(.λ)

where f̂ : [, ]×R
 →R is defined by

f̂ (t,x, y) =

⎧⎪⎪⎨
⎪⎪⎩
f (t,β(t),β ′(t)) – ĥ(t)(x – β(t)) if x > β(t),

f (t,x, y) if α(t)≤ x≤ β(t),

f (t,α(t),α′(t)) + ĝ(t)(x – α(t)) if x < α(t);

(.)

with ĝ, ĥ ∈ L(I) chosen such that

ĝ(t) >max
{
, f

(
t,α(t),α′(t)

)}
and ĥ(t) <min

{
, f

(
t,β(t),β ′(t)

)}
. (.)

We show that the solutions to these problems are a priori bounded.

Proposition . Assume that (Hφ), (Hf ), (HD) and (WN) hold. Then there exists M >
max{‖α‖,‖β‖} such that any solution u of (.λ) satisfies ‖u‖ <M.

Proof FixM >  such that

–M ≤min
t∈I α(t) –  and M ≥max

t∈I
β(t) + .

We claim that any solution u of (.λ) is such that ‖u‖ ≤M. Indeed, by (HD),

–M < u() = μ <M and –M < u(T) = ν <M.

From the definition of f̂ , one has, almost everywhere on {t ∈ I : u(t) < –M},
(
φ
(
u′(t)

))′ = λ
(
f
(
t,α(t),α′(t)

)
+ ĝ(t)

(
u(t) – α(t)

))
≤ λ

(
f
(
t,α(t),α′(t)

)
– ĝ(t)

)
≤ .

Similarly,

(
φ
(
u′(t)

))′ ≥  a.e. on
{
t ∈ I : u(t) >M

}
.

It follows from Lemma . that –M ≤ u(t) ≤M for all t ∈ I .
We look for an a priori bound on the derivative of any solution u of (.λ). Let

l(t) =max
{∣∣f (t,α(t),α′(t)

)∣∣ + M
∣∣̂g(t)∣∣, ∣∣f (t,β(t),β ′(t)

)∣∣ + M
∣∣̂h(t)∣∣}.

http://www.boundaryvalueproblems.com/content/2013/1/236
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Observe that, by (WN),

∣∣(φ(
u′(t)

))′∣∣ ≤max
{
l(t),ψ

(∣∣u′(t)
∣∣)(l(t) + c(t)

∣∣u′(t)
∣∣(p–)/p)}

≤ ψ
(∣∣u′(t)

∣∣)(l(t) + c(t)
∣∣u′(t)

∣∣(p–)/p) a.e. t ∈ I,

with

l(t) =max

{
l(t),

l(t)
k

}
. (.)

It follows from Lemma . applied with d = (ν –μ)/T that there existsM such that any
solution u of (.λ) satisfies ‖u′‖ <M.
Finally, setM =max{M,  +M}. We have that ‖u‖ <M for any solution u of (.λ). �

Proposition . Assume that (Hφ), (Hf ), (HD) and (WN) hold. Then, for every λ ∈ [, ],
problem (.λ) has at least one solution.

Proof Let us define Nf̂ : C(I)→ C(I) and SD : [, ]× C(I)→R× C(I) by

Nf̂ (u)(t) =
∫ t


f̂
(
s,u(s),u′(s)

)
ds, (.)

and

SD(λ,u) =
(
μ,aν–μ

(
λNf̂ (u)

)
+ λNf̂ (u)

)
, (.)

where aν–μ is obtained in Lemma .. Now, we define D : [, ]× C(I)→ C(I) by

D =
 ◦ SD, (.)

where 
 is defined in Lemma .. We deduce that SD is continuous and completely con-
tinuous from Lemma . and from Lemma . applied with

σ (t,x, y) =

⎧⎪⎪⎨
⎪⎪⎩
(β(t),β ′(t)) if x > β(t),

(x, y) if α(t)≤ x≤ β(t),

(α(t),α′(t)) if x < α(t).

This combined with Lemma . implies thatD is continuous and completely continuous.
Now, we study the fixed points ofD. Let u ∈ C(I) and λ ∈ [, ] be such that u =D(λ,u).

One has, by Lemma .,

u() = μ, u(T) = μ + G
(
aν–μ

(
λNf̂ (u)

)
,λNf̂ (u)

)
= μ + (ν –μ) = ν.

Also, φ(u′) = aν–μ(λNf̂ (u)) +λNf̂ (u). Hence, by Lemma ., it is absolutely continuous and

(
φ
(
u′(t)

))′ = λ̂f
(
t,u(t),u′(t)

)
a.e. t ∈ I.

So, fixed points of D are solutions of (.λ).

http://www.boundaryvalueproblems.com/content/2013/1/236
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Let M > max{‖α‖,‖β‖} ≥ max{μ,ν} be the constant obtained in Proposition . and
set

U =
{
u ∈ C(I) : ‖u‖ <M

}
. (.)

Proposition . implies that u �=D(λ,u) for all (λ,u) ∈ [, ]× ∂U . Observe that D(,u) =

(μ,aν–μ()) = u with u(t) = μ + (ν – μ)t/T . One has u ∈ U . By the properties of the
fixed point index (see [] for more details),

index
(
D(λ, ·),U)

= index
(
D(, ·),U)

= index(u,U ) =  ∀λ ∈ [, ]. (.)

Therefore, for every λ ∈ [, ], D(λ, ·) has a fixed point, and hence (.λ) has a solution.
�

Now, we can establish the existence of a solution to (.), (.).

Theorem . Assume that (Hφ), (Hf ), (HD) and (WN) hold. Then Dirichlet problem (.),
(.) has a solution u ∈W (I) such that α(t)≤ u(t)≤ β(t) for every t ∈ I .

Proof Proposition . insures the existence of u ∈ W (I), a solution of (.λ) for λ = . To
conclude, we have to show that α(t) ≤ u(t) ≤ β(t) for all t ∈ I since f̂ (t,x, y) = f (t,x, y) for
x ∈ [α(t),β(t)].
By (HD),

(
φ
(
u′(t)

))′ = f
(
t,α(t),α′(t)

)
+ ĝ(t)

(
x(t) – α(t)

) ≤ f
(
t,α(t),α′(t)

)
≤ (

φ
(
α′(t)

))′ a.e. t ∈ {
t ∈ I : u(t) < α(t)

}
,

u() = μ ≥ α() and u(T) = ν ≥ α(T).

It follows from Lemma . that u(t) ≥ α(t) for all t ∈ I .
A similar argument yields u(t) ≤ β(t) for all t ∈ I . �

Remark . The hypothesis (WN) can be generalized by

min

{∫ ∞

φ(d)

ds
ψ(|φ–(s)|) ,

∫ φ(–d)

–∞
ds

ψ(|φ–(s)|)
}
> c,

with d = (ν – μ)/T and c, a suitable constant which can be deduced from the proof of
Lemma ..

Example . Let us consider the following problem:

(
φ
(
u′(t)

))′ =
((
u′(t)

) + 
)(
h(t)

(
u(t) + a(t)

)
+ g

(
u(t)

)
u′(t)

)
a.e. t ∈ [,T],

u() = , u(T) = ,
(.)

where φ(s) = s, a ∈ C[,T], g ∈ C(R) and h ∈ L[,T] with h(t) ≥  a.e. t ∈ [,T]. Let
m >  be such that |a(t)| ≤ m for all t ∈ T . Then α = –m and β =m are respectively lower

http://www.boundaryvalueproblems.com/content/2013/1/236
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and upper solutions of (.). Let ψ(s) = (|s| + ), c ≥ max{|g(x)| : |x| ≤ m} and l = mh.
One has

∣∣f (t,x, y)∣∣ ≤ ψ
(|y|)(l(t) + c|y|) ∀x ∈ [–m,m], y ∈R, and a.e. t ∈ [,T],

and ∫ ∞

–∞
ds

ψ(|φ–(s)|) =
∫ ∞

–∞
ds

|s| + 
=∞.

By Theorem ., (.) has a solution u such that |u(t)| ≤ m for all t ∈ [,T]. Notice that f
does not satisfy a growth condition of Nagumo type.

4 The periodic problem
In this section, we consider problem (.) with the periodic boundary condition. In order
to establish the existence of a solution to (.), (.), we consider the following family of
problems defined for λ ∈ [, ]:

(
φ
(
u′(t)

))′ = λ̂f
(
t,u(t),u′(t)

)
+
( – λ)
T

∫ T


f̂
(
t,u(t),u′(t)

)
dt a.e. t ∈ I,

u() = u(T), φ
(
u′()

)
= φ

(
u′(T)

)
,

(.λ)

where f̂ is defined in (.).
We show that the solutions to these problems are a priori bounded.

Proposition . Assume that (Hφ), (Hf ), (HP) and (WN) hold. Then there exists M >
max{‖α‖,‖β‖} such that any solution u of (.λ) satisfies ‖u‖ <M.

Proof FixM >  such that

–M ≤min
t∈I α(t) –  and M ≥max

t∈I
β(t) + .

We claim that any solution u of (.λ) is such that ‖u‖ ≤ M. Observe that a solution of
(.λ) satisfies

 = φ
(
u′(T)

)
– φ

(
u′()

)
= λ

∫ T


f̂
(
t,u(t),u′(t)

)
dt + ( – λ)

∫ T


f̂
(
t,u(t),u′(t)

)
dt

=
∫ T


f̂
(
t,u(t),u′(t)

)
dt.

So, it satisfies

(
φ
(
u′(t)

))′ = λ̂f
(
t,u(t),u′(t)

)
a.e. t ∈ I,

with periodic boundary condition (.). Arguing as in the proof of Proposition ., we
obtain that

(
φ
(
u′(t)

))′ ≤  a.e. on
{
t ∈ I : u(t) < –M

}
,(

φ
(
u′(t)

))′ ≥  a.e. on
{
t ∈ I : u(t) >M

}
.

http://www.boundaryvalueproblems.com/content/2013/1/236
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It follows from Lemma . that ‖u‖ ≤ M, or there exists c >  such that |u(t)| =M + c
for all t ∈ I . If u ≡M + c,

 =
∫ T


f̂
(
t,u(t),u′(t)

)
dt =

∫ T


f
(
t,β(t),β ′(t)

)
– ĥ(t)

(
M + c – β(t)

)
dt > ,

a contradiction. Similarly, one cannot have u≡ –(M + c). Hence, ‖u‖ ≤M.
As in the proof of Proposition ., one has that any solution u of (.λ) satisfies

∣∣(φ(
u′(t)

))′∣∣ ≤ ψ
(∣∣u′(t)

∣∣)(l(t) + c(t)
∣∣u′(t)

∣∣(p–)/p) a.e. t ∈ I,

where l is defined in (.). It follows from Lemma . applied with d =  that there exists
M such that any solution u of (.λ) satisfies ‖u′‖ <M.
Finally, set M = max{M,  +M}. We have that ‖u‖ < M for any solution u of (.λ).

�

Proposition . Assume that (Hφ), (Hf ), (HP) and (WN) hold. Then, for every λ ∈ [, ],
problem (.λ) has at least one solution.

Proof Let Nf̂ : C(I) → C(I) be defined in (.). Let us consider the operators L̂ : C(I) →
C(I) and SP : [, ]× C(I) →R× C(I) defined by

L̂(u)(t) =
t
T
Nf̂ (u)(T), (.)

and

SP(λ,u) =
(
u() +


T
Nf̂ (u)(T),a

(
λ
(
Nf̂ (u) – L̂(u)

))
+ λ

(
Nf̂ (u) – L̂(u)

))
, (.)

where a is obtained in Lemma .. Now, we define P : [, ]× C(I) → C(I) by

P =
 ◦ SP. (.)

Again, we deduce from Lemmas ., . and . that SP and P are continuous and com-
pletely continuous.
Now, we study the fixed points of P . Let u ∈ C(I) and λ ∈ [, ] be such that u =P(λ,u).

One has, by Lemma .,

u() = u() +

T
Nf̂ (u)(T),

u(T) = u() +

T
Nf̂ (u)(T) + G

(
a

(
λ
(
Nf̂ (u) – L̂(u)

))
,λ

(
Nf̂ (u) – L̂(u)

))
= u().

Notice that (Nf̂ (u)(T))/T = . Also,

φ
(
u′) = a

(
λ
(
Nf̂ (u) – L̂(u)

))
+ λ

(
Nf̂ (u) – L̂(u)

)
.
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Hence, by Lemma ., it is absolutely continuous and

(
φ
(
u′(t)

))′ = λ

(̂
f
(
t,u(t),u′(t)

)
–


T
Nf̂ (u)(T)

)

= λ̂f
(
t,u(t),u′(t)

)
+
( – λ)
T

∫ T


f̂
(
t,u(t),u′(t)

)
dt a.e. t ∈ I.

Moreover,

φ
(
u′()

)
= a

(
λ
(
Nf̂ (u) – L̂(u)

))
+ λ

(
Nf̂ (u)() – L̂(u)()

)
,

φ
(
u′(T)

)
= a

(
λ
(
Nf̂ (u) – L̂(u)

))
+ λ

(
Nf̂ (u)(T) – L̂(u)(T)

)
= φ

(
u′()

)
.

So, fixed points of P are solutions of (.λ).
LetM >max{‖α‖,‖β‖} be the constant obtained in Proposition . and set

U =
{
u ∈ C(I) : ‖u‖ <M

}
. (.)

Proposition . implies that u �=P(λ,u) for all (λ,u) ∈ [, ]× ∂U . By the homotopy prop-
erty of the fixed point index,

index
(
P(λ, ·),U)

= index
(
P(, ·),U) ∀λ ∈ [, ].

Observe that

P(,u) =


(
u() +


T
Nf̂ (u)(T),a()

)
= u() +


T
Nf̂ (u)(T) ∈ R.

One has ∂(U ∩R) = {–M,M}, and

P(,M) =M +

T

∫ T


f̂ (t,M, )dt

=M +

T

∫ T


f
(
t,β(t),β ′(t)

)
– ĥ(t)

(
M – β(t)

)
dt

>M,

sinceM > ‖β‖ and ĥ(t) <min{, f (t,β(t),β ′(t))}. Similarly,

P(,–M) < –M.

By the contraction property of the fixed point index (see [, Chapter , Section , The-
orem .]),

index
(
P(, ·),U)

= index
(
P(, ·), (U ∩R)

)
= –.

http://www.boundaryvalueproblems.com/content/2013/1/236
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Therefore, for every λ ∈ [, ],

index
(
P(λ, ·),U)

= –. (.)

Thus, P(λ, ·) has a fixed point, and hence (.λ) has a solution. �

Now, we can establish the existence of a solution to (.), (.).

Theorem . Assume that (Hφ), (Hf ), (HP) and (WN) hold. Then periodic problem (.),
(.) has a solution u ∈W (I) such that α(t)≤ u(t) ≤ β(t) for every t ∈ I .

Proof Proposition . insures the existence of u ∈ W (I), a solution of (.λ) for λ = . To
conclude, we have to show that α(t) ≤ u(t) ≤ β(t) for every t ∈ I , since f̂ (t,x, y) = f (t,x, y)
for x ∈ [α(t),β(t)].
Using (HP), we obtain that

(
φ
(
u′(t)

))′ <
(
φ
(
α′(t)

))′ a.e. t ∈ {
t ∈ I : u(t) < α(t)

}
,(

φ
(
u′(t)

))′ >
(
φ
(
β ′(t)

))′ a.e. t ∈ {
t ∈ I : u(t) > β(t)

}
.

It follows from Lemma . that α(t)≤ u(t) ≤ β(t) for all t ∈ I . �

5 The Neumann problem
In this section, we consider problem (.) with theNeumann boundary condition. In order
to establish the existence of a solution to (.), (.), we consider the following family of
problems defined for λ ∈ [, ]:

(
φ
(
u′(t)

))′ = λ̃f
(
t,u(t),u′(t)

)
+
( – λ)
T

∫ T


f̃
(
t,u(t),u′(t)

)
dt a.e. t ∈ I,

φ
(
u′()

)
= μ, φ

(
u′(T)

)
= ν,

(.λ)

where f̃ : [, ]×R
 →R is defined by

f̃ (t,x, y) =

⎧⎪⎪⎨
⎪⎪⎩
f (t,β(t),β ′(t)) – h̃(t)(x – β(t)) if x > β(t),

f (t,x, y) if α(t)≤ x≤ β(t),

f (t,α(t),α′(t)) + g̃(t)(x – α(t)) if x < α(t);

(.)

with g̃, h̃ ∈ L(I) chosen such that

g̃(t) >max

{
, f

(
t,α(t),α′(t)

)
–


T
(ν –μ)

}
,

h̃(t) <min

{
, f

(
t,β(t),β ′(t)

)
–


T
(ν –μ)

}
.

(.)

We show that the solutions to these problems are a priori bounded. Let w ∈ C(I) and
v ∈W (I) be defined by

w(t) = μ +
t
T
(ν –μ) and v =
(,w). (.)

http://www.boundaryvalueproblems.com/content/2013/1/236
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Observe that

φ
(
v′) = w.

Proposition . Assume that (Hφ), (Hf ), (HN ) and (WN) hold. Then there exists M >
‖v′‖ such that any solution u of (.λ) satisfies ‖u – v‖ <M and ‖u′‖ <M.Moreover,

{
u ∈ C(I) : α(t)≤ u(t) ≤ β(t) ∀t ∈ I

} ⊂ {
u ∈ C(I) : ‖u – v‖ <M

}
.

Proof FixM >  such that

–M + v(t)≤min
t∈I α(t) –  and M + v(t)≥max

t∈I
β(t) +  ∀t ∈ I.

We claim that any solution u of (.λ) is such that ‖u – v‖ ≤M. For every u ∈W (I), one
has almost everywhere on {t ∈ I : u(t) < –M + v(t)},

f̃
(
t,u(t),u′(t)

)
= f

(
t,α(t),α′(t)

)
+ g̃(t)

(
u(t) – α(t)

)
< f

(
t,α(t),α′(t)

)
– g̃(t)

≤ 
T
(ν –μ). (.)

Similarly,

f̃
(
t,u(t),u′(t)

)
>


T
(ν –μ) a.e. on

{
t ∈ I : u(t) >M + v(t)

}
. (.)

Let u be a solution of (.λ). One has

ν –μ =
∫ T



(
φ
(
u′(t)

))′ dt =
∫ T


f̃
(
t,u(t),u′(t)

)
dt. (.)

Combining (.), (.) and (.), we deduce that almost everywhere on {t ∈ I : u(t) < –M +
v(t)},

(
φ
(
u′(t)

))′ = λ̃f
(
t,u(t),u′(t)

)
+
( – λ)
T

(ν –μ)

≤ 
T
(ν –μ)

=
(
φ
(
v′(t)

))′.

Similarly,

(
φ
(
u′(t)

))′ ≥ (
φ
(
v′(t)

))′ a.e. on
{
t ∈ I : u(t) >M + v(t)

}
.

Moreover,

φ
(
u′()

)
= μ = φ

(
v′()

)
and φ

(
u′(T)

)
= ν = φ

(
v′(T)

)
.
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It follows from Lemma . that ‖u– v‖ ≤M, or there exists c >  such that |u(t) – v(t)| =
M + c for all t ∈ I . If u(t) = v(t) +M + c for all t ∈ I , then

ν –μ =
∫ T


f̃
(
t,u(t),u′(t)

)
dt

=
∫ T


f
(
t,β(t),β ′(t)

)
– h̃(t)

(
v(t) +M + c – β(t)

)
dt

>
∫ T



(
φ
(
β ′(t)

))′ dt

= φ
(
β ′(T)

)
– φ

(
β ′()

)
≥ ν –μ,

a contradiction. Similarly, one cannot have u(t) = v(t) –M – c for all t ∈ I . Hence, ‖u –
v‖ ≤M.
Let

l̃(t) =max
{∣∣f (t,α(t),α′(t)

)∣∣ + M
∣∣̃g(t)∣∣, ∣∣f (t,β(t),β ′(t)

)∣∣ + M
∣∣̃h(t)∣∣}.

Observe that, by (WN), one has that for any u solution of (.λ),

∣∣(φ(
u′(t)

))′∣∣ ≤max
{̃
l(t),ψ

(∣∣u′(t)
∣∣)(l(t) + c(t)

∣∣u′(t)
∣∣(p–)/p)}

≤ ψ
(∣∣u′(t)

∣∣)(̃l(t) + c(t)
∣∣u′(t)

∣∣(p–)/p) a.e. t ∈ I,

with

l̃(t) =max

{
l(t),

l̃(t)
k

}
. (.)

It follows from Lemma . applied with d = φ–(μ) that there exists M such that any
solution u of (.λ) satisfies ‖u′‖ <M.
Finally, setM =max{M,  +M,  + ‖v′‖}, we get the conclusion. �

Proposition . Assume that (Hφ), (Hf ), (HN ) and (WN) hold. Then, for every λ ∈ [, ],
problem (.λ) has at least one solution.

Proof Let Nf̃ : C(I) → C(I), L̃ : C(I) → C(I) and SN : [, ]× C(I) → R× C(I) be defined
respectively by

Nf̃ (u)(t) =
∫ t


f̃
(
s,u(s),u′(s)

)
ds,

L̃(u)(t) =
t
T
Nf̃ (u)(T),

SN (λ,u) =
(
u() +


T

(
μ – ν +Nf̃ (u)(T)

)
,w + λ

(
Nf̃ (u) – L̃(u)

))
,
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with w ∈ C(I) defined in (.). Now, we defineN : [, ]× C(I)→ C(I) by

N =
 ◦ SN . (.)

Again, we deduce from Lemmas ., . and . that SN andN are continuous and com-
pletely continuous.
Now, we study the fixed points ofN . Let u ∈ C(I) and λ ∈ [, ] be such that u =N (λ,u).

One has

u() = u() +

T

(
μ – ν +Nf̃ (u)(T)

)
.

So,

ν –μ =Nf̃ (u)(T).

Also, φ(u′) = w + λ(Nf̃ (u) – L̃(u)). Hence, by Lemma ., it is absolutely continuous and

(
φ
(
u′(t)

))′ = λ

(̃
f
(
t,u(t),u′(t)

)
–


T
Nf̃ (u)(T)

)
+


T
(ν –μ)

= λ̃f
(
t,u(t),u′(t)

)
+
( – λ)
T

∫ T


f̃
(
t,u(t),u′(t)

)
dt a.e. t ∈ I.

Moreover,

φ
(
u′()

)
= w() + λ

(
Nf̃ (u)() – L̃(u)()

)
= μ,

φ
(
u′(T)

)
= w(T) + λ

(
Nf̃ (u)(T) – L̃(u)(T)

)
= ν.

So, fixed points ofN are solutions of (.λ).
LetM >  be the constant obtained in Proposition . and v =
(,w). We set

U =
{
u ∈ C(I) : ‖u – v‖ <M,

∥∥u′∥∥
 <M

}
. (.)

Proposition . implies that u �=N (λ,u) for all (λ,u) ∈ [, ]× ∂U . By the homotopy prop-
erty of the fixed point index,

index
(
N (λ, ·),U)

= index
(
N (, ·),U) ∀λ ∈ [, ]. (.)

Observe that

N (,u) = u() +

T

(
μ – ν +Nf̃ (u)(T)

)
+
(,w) ∈R + v.

Let X = {u = r + v : r ∈ R} ⊂ C(I). Notice that X is not a normed vectorial space if v �= .
Nevertheless, if v �= , X is an affine space and hence it is an ANR. By the contraction
property of the fixed point index (see [, Chapter , Section , Theorem .]),

index
(
N (, ·),U)

= index
(
N (, ·),U ∩X

)
. (.)
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One has ∂(U ∩X) = {–M + v,M + v}. Consider H : [–M,M] →R defined by

H(r) =N (, r + v) – v.

By (.),

H(M) =N (,M + v) – v =M +

T

(
μ – ν +

∫ T


f̃
(
t,M + v(t), v′(t)

)
dt

)
>M,

sinceM + v(t) > β(t) for every t ∈ I . Similarly,

H(–M) < –M.

By the commutativity property of the fixed point index (see [, Chapter , Section ,
Theorem .]),

index
(
N (, ·),U ∩X

)
= index

(
H , ]–M,M[

)
= –. (.)

Combining (.), (.) and (.), we deduce that for every λ ∈ [, ],

index
(
N (λ, ·),U)

= –. (.)

Thus,N (λ, ·) has a fixed point, and hence (.λ) has a solution. �

Now, we can establish the existence of a solution to (.), (.).

Theorem . Assume that (Hφ), (Hf ), (HN ) and (WN) hold. Then Neumann problem
(.), (.) has a solution u ∈W (I) such that α(t)≤ u(t)≤ β(t) for every t ∈ I .

Proof Proposition . insures the existence of u ∈ W (I), a solution of (.λ) for λ = . To
conclude, we have to show that α(t) ≤ u(t) ≤ β(t) for every t ∈ I , since f̃ (t,x, y) = f (t,x, y)
for x ∈ [α(t),β(t)].
Using (HN ), we obtain that

(
φ
(
u′(t)

))′ <
(
φ
(
α′(t)

))′ a.e. t ∈ {
t ∈ I : u(t) < α(t)

}
,(

φ
(
u′(t)

))′ >
(
φ
(
β ′(t)

))′ a.e. t ∈ {
t ∈ I : u(t) > β(t)

}
.

It follows from Lemma . that α(t)≤ u(t) ≤ β(t) for all t ∈ I . �

6 Multiplicity result
In this section, we establish the existence of at least three solutions to problem (.).

Theorem . Assume that (Hφ), (Hf ) and the following conditions are satisfied:

(HB)′ For i = , , there exist αi,βi ∈ W (I), respectively strict lower and upper solutions of
(.), such that αi(t) < βi(t), α(t) ≤ α(t), β(t) ≤ β(t) for all t ∈ I , and {t ∈ I : α(t) >
β(t)} �= ∅.
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(WN)′ There exist k > , p ∈ ],∞], c ∈ Lp(I, [,∞[), l ∈ L(I, [,∞[) and ψ : [,∞[→
[k,∞[ such that


ψ ◦ φ– ∈ Lloc(R),

∫ ±∞



ds
ψ(|φ–(s)|) =±∞,

and

∣∣f (t,x, y)∣∣ ≤ ψ
(|y|)(l(t) + c(t)|y|(p–)/p)

∀x ∈ [
α(t),β(t)

]
, y ∈R, and a.e. t ∈ I,

with (p – )/p =  if p =∞.

Then problem (.) has at least three solutions u, u, u such that

α(t) < u(t) < β(t), αi(t) < ui(t) < βi(t) ∀t ∈ I, and i = , ,

and {t ∈ I : β(t)≤ u(t) ≤ α(t)} �= ∅.

Proof Let B denote Dirichlet boundary condition (.). Consider D, D and D, the op-
erators defined as in (.) and associated to the pairs of lower and upper solutions (α,β),
(α,β) and (α,β), respectively. Let Ui ⊂ C(I) be the open set defined as in (.) and
associated to the operator Di for i = , , . From equation (.), one has

index
(
Di(, ·),Ui

)
=  for i = , , .

From the proof of Theorem ., we deduce that any fixed point u ofDi(, ·) is a solution of
(.), (.) and is such that αi(t) ≤ u(t) ≤ βi(t) for all t ∈ I if i = , , and such that α(t) ≤
u(t) ≤ β(t) for all t ∈ I if i = . Using the fact that αi and βi are respectively strict lower
and upper solutions of (.), it follows from Lemma . that Di(, ·) has no fixed points in
Ui\Vi, with

Vi =
{
u ∈ C(I) : αi(t) < u(t) < βi(t) ∀t ∈ I

}
for i = , ,

V =
{
u ∈ C(I) : α(t) < u(t) < β(t) ∀t ∈ I

}
.

Hence, by the excision property of the fixed point index,

index
(
Di(, ·),Vi

)
=  for i = , , .

Since α(t) ≤ β(t) ≤ β(t), α(t) ≤ α(t) ≤ β(t) for all t ∈ I and {t ∈ I : α(t) > β(t)} �= ∅,
one has

V ∪ V ⊂ V, and V\(V ∪ V) �= ∅,

and

Di(,u) =D(,u) ∀u ∈ Vi, i = , .
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This combined with the additivity of the fixed point index implies that

index
(
D(, ·),V\(V ∪ V)

)
= index

(
D(, ·),V

)
– index

(
D(, ·),V

)
– index

(
D(, ·),V

)
= –.

Therefore, problem (.) has at least three solutions u ∈ V, u ∈ V and u ∈ V\(V ∪ V).
We argue similarly if B denotes periodic boundary condition (.) (resp. Neumann

boundary condition (.)) by using the results of Section  (resp. Section ). �
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