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Abstract
In this study we use a new spectral relaxation method to investigate heat transfer in a
nanofluid flow over an unsteady stretching sheet with thermal dispersion and
radiation. Three water-based nanofluids containing copper oxide CuO, aluminium
oxide Al2O3 and titanium dioxide TiO2 nanoparticles are considered in this study. The
transformed governing system of nonlinear differential equations was solved
numerically using the spectral relaxation method that has been proposed for the
solution of nonlinear boundary layer equations. Results were obtained for the skin
friction coefficient, the local Nusselt number as well as the velocity, temperature and
nanoparticle fraction profiles for some values of the governing physical and fluid
parameters. Validation of the results was achieved by comparison with limiting cases
from previous studies in the literature. We show that the proposed technique is an
efficient numerical algorithm with assured convergence that serves as an alternative
to common numerical methods for solving nonlinear boundary value problems. We
show that the convergence rate of the spectral relaxation method is significantly
improved by using the method in conjunction with the successive over-relaxation
method.
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1 Introduction
In recent years flow and heat transfer over a stretching surface has been extensively inves-
tigated due to its importance in industrial and engineering applications such as in the heat
treatment of materials manufactured in extrusion processes and the casting of materials.
Controlled cooling of stretching sheets is needed to assure quality products. Fiber tech-
nology, wire drawing, themanufacture of plastic and rubber sheets and polymer extrusion
are some of the important processes that take place subject to stretching and heat transfer.
The quality of the final product depends to a great extent on the heat controlling factors,
and the knowledge of radiative heat transfer in the system can perhaps lead to a desired
product with a sought characteristic.
The development of a boundary layer over a stretching sheet was first studied by

Crane [], who found an exact solution for the flow field. This problem was then extended
byGupta andGupta [] to a permeable surface. The flow problemdue to a linearly stretch-
ing sheet belongs to a class of exact solutions of the Navier-Stokes equations. Since the
pioneering work of Sakiadis [], various aspects of the stretching problem involving New-
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tonian and non-Newtonian fluids have been extensively studied by several authors (see
Cortell [], Hayat and Sajid [], Liao [], Xu []).
The study of radiation effects has important applications in engineering. Thermal radi-

ation effect plays a significant role in controlling heat transfer process in polymer process-
ing industry. Many studies have been reported on flow and heat transfer over a stretched
surface in the presence of radiation (see El-Aziz [, ], Raptis [],Mahmoud []). El-Aziz
[] studied the radiation effect on the flow and heat transfer over an unsteady stretching
sheet. He found that the heat transfer rate increases with increasing radiation and un-
steadiness parameters and the Prandtl number. The effect of the radiation parameter on
the heat transfer rate was found to be more noticeable at larger values of the unsteadiness
parameter and the Prandtl number. In addition to radiation, it is important to consider
the thermal dispersion effect on boundary layer flow since this has a direct impact on the
heat transfer rate. Several studies on hydrodynamic dispersion have been reported in the
literature. The double-dispersion phenomenon in a Darcian, free convection boundary
layer adjacent to a vertical wall, using multi-scale analysis arguments, was investigated by
Telles and Trevisan [].
In recent years tremendous effort has been given to the study of nanofluids. The word

nanofluid coined by Choi [] describes a liquid suspension containing ultra fine parti-
cles (diameter less than  nm). Experimental studies (e.g., Masuda et al. [], Das et al.
[], Xuan and Li []) showed that even with a small volumetric fraction of nanoparticles
(usually less than %), the thermal conductivity of the base liquid is enhanced by -%
with a remarkable improvement in the convective heat transfer coefficient. The litera-
ture on nanofluids was reviewed by Trisaksri and Wongwises [], Wang and Mujumdar
[] among several others. Nanofluids thus provide an alternative to many common fluids
for advanced thermal applications in micro and nano-heat transfer applications. Thermo-
physical properties of nanofluids such as thermal conductivity, diffusivity and viscosity
were studied by Kang et al. [], Velagapudi et al. [], Rudyak et al. []. Hady et al. []
studied the radiation effect on the viscous flow of a nanofluid and heat transfer over a
nonlinearly stretching sheet. They observed that the increase in the thermal radiation pa-
rameter and the nonlinear stretching sheet parameter yields a decrease in the nanofluid
temperature leading to an increase in the heat transfer rate. The boundary layer flow of
a nanofluid with radiation was studied by Olanrewaju et al. []. They observed that ra-
diation has a significant influence on both the thermal boundary layer thickness and the
nanoparticle volume fraction profiles.
Recently, Mahdy [] studied the effects of unsteady mixed convection boundary layer

flow and heat transfer of nanofluids due to a stretching sheet. He found that the heat trans-
fer rate at the surface increasedwith themixed convection parameter and the solid volume
fraction of nanoparticles.Moreover, the skin friction increased with themixed convection
parameter and decreased with the unsteadiness parameter and the nanoparticle volume
fraction. Narayana and Sibanda [] studied the effects of laminar flow of a nanoliquid
film over an unsteady stretching sheet. They found that the unsteadiness parameter has
the effect of thickening themomentum boundary layer while thinning the thermal bound-
ary layer for Cu-water and AlO-water nanoliquids. Kameswaran et al. [] studied the
effects of hydromagnetic nanofluid flow due to a stretching or shrinking sheet with vis-
cous dissipation and chemical reaction effects. They observed that the velocity profile de-
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creased with an increase in the nanoparticle volume fraction, while the opposite was true
in the case of temperature and concentration profiles.
The objective of this study is to analyze the effects of fluid and physical parameters such

as thermal dispersion, nanoparticle volume fraction and radiation parameters on the flow
and heat transfer characteristics of three different water based nanofluids containing cop-
per oxide CuO, aluminium oxide AlO and titanium dioxide TiO nanoparticles. The
momentum and energy equations are coupled and nonlinear. By using suitable similar-
ity variables, we convert these equations into coupled ordinary differential equations and
solve them numerically via a novel iteration scheme called the spectral relaxation method
(SRM) (see Motsa and Makukula [], Mosta []). The SRM is an iterative algorithm for
the solution of nonlinear boundary layer problems which are characterized by flow prop-
erties that decay exponentially to constant levels far from the boundary surface. The key
features of the method are the decoupling of the governing nonlinear systems into a se-
quence of smaller sub-systemswhich are then discretized using spectral collocationmeth-
ods. The method is very efficient in solving boundary layer equations of the type under
investigation in this study. In cases where the SRM convergence is slow, it is demonstrated
that successive over-relaxation can be used to accelerate convergence and improve the ac-
curacy of the method. The current results were validated by comparison with published
results in the literature and results obtained using the Matlab bvp4c routine. We further
show that substantial improvement in the convergence rate of the SRM may be realized
by using this method in conjunction with the successive over relaxation method.

2 Mathematical formulation
Transient unsteady-state flow and heat transfer (t > 0)
This study is concerned with the laminar boundary layer flow of an incompressible
nanofluid over a stretching sheet. The origin of the system is located at the slit fromwhich
the sheet is drawn, with x and y denoting coordinates along and normal to the sheet. The
fluid is awater-based nanofluid containing either alumina, copper-oxide or titanium-oxide
nanoparticles. The base fluid and the nanoparticles are in thermal equilibrium and no slip
occurs between them. The sheet is stretched with velocity

Uw(x, t) =
bx

 – αt

along x-axis, where b and α are positive constants with dimensions (time)– and αt < .
The surface temperature distribution

Tw(x, t) = T∞ + T

[
bxr
νf

]
( – αt)–m

varies both along the sheet and with time where T is a reference temperature, T∞ is the
ambient temperature and νf is the kinematic viscosity of the fluid. Under these assump-
tions, the boundary layer equations governing the flow, heat and concentration fields can
be written in a dimensional form (see Tiwari and Das []) as follows:

∂u
∂x

+
∂v
∂y

= , ()
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∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
μnf

ρnf

∂u
∂y

, ()

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= αnf
∂T
∂y

–


(ρCp) nf

∂qr
∂y

+
∂

∂y

(
αy

∂T
∂y

)
. ()

The initial conditions are:

u(x, ) = u(x), v(x, ) = , T(x, ) = Tw(x). ()

The appropriate boundary conditions for equations ()-() have the form:

u(x, t) =Uw(x, t), v(x, t) = , T(x, t) = Tw(x, t) at y = ,

u(x, t) → , T(x, t)→ T∞ as y→ ∞,
()

where u, v are the velocity components in the x and y directions, respectively, T is the
fluid temperature, Cp is the specific heat at constant pressure, r andm are constants, the
expression for the effective thermal diffusivity taken as αy = αm + γdu, αm is the molec-
ular thermal diffusivity, γdu represent thermal diffusivity, γ is the mechanical thermal
dispersion coefficient and d is the pore diameter.
Following Rosseland’s approximation, T is expressed as a linear function of the tem-

perature T ≡ T∞T – T∞ and the radiative heat flux qr is modeled as

∂qr
∂y

= –
σ ∗T∞
k∗

∂T
∂y

, ()

where σ ∗ is the Stefan-Boltzman constant and k∗ is the mean absorption coefficient. The
effective dynamic viscosity of the nanofluid was given by Brinkman as

μnf =
μf

( – φ).
, ()

where φ is the solid volume fraction of spherical nanoparticles. The effective density of
each nanofluid is given as

ρnf = ( – φ)ρf + φρs. ()

The thermal diffusivity of the nanofluid is

αnf =
knf

(ρCp)nf
, ()

where the heat capacitance of the nanofluid is given by

(ρCp)nf = ( – φ)(ρCp)f + φ(ρCp)s. ()

The thermal conductivity of the nanofluids is approximated by theMaxwell-Garnett (MG)
model (Maxwell-Garnett [] and Guerin et al. []):

knf = kf
[
ks + kf – φ(kf – ks)
ks + kf + φ(kf – ks)

]
. ()
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The subscripts nf , f and s represent the thermophysical properties of the nanofluid, base
fluid andnanoparticles, respectively. The continuity equation () is satisfied by introducing
a stream function ψ(x, y, t), where

u =
∂ψ

∂y
and v = –

∂ψ

∂x
, ()

with

ψ(x, y, t) =
(

νf b
 – αt

) 

xf (η) and η =

[
b

νf ( – αt)

] 

y, ()

where f (η) is the dimensionless stream function. The velocity components are then given
by

u =
(

bx
 – αt

)
f ′(η) and v = –

(
νf b

 – αt

) 

f (η). ()

The temperature is represented as

T = T∞ + (Tw – T∞)g(η), ()

where g(η) is the dimensionless temperature. On using equations ()-(), equations (),
() and () transform into the following two-point boundary value problem:

f ′′′ + φ

[
ff ′′ – f ′ – S

(
η


f ′′ + f ′

)]
= , ()

g ′′
[
 +Df ′ +

kR
φ

(
knf
kf

)]
+Df ′′g ′ + Pr

[
fg ′ – rf ′g – S

(
η


g ′ +mg

)]
= , ()

f () = , f ′() = , f ′(∞) → , ()

g() = , g(∞)→ , ()

where

kR =  +


NR
. ()

The non-dimensional constants in equations () and () are the unsteadiness parame-
ter S, the thermal dispersion parameter D, the radiation parameter NR and the Prandtl
number Pr. They are respectively defined as

S =
α

b
, D =

γdUw

αm
, NR =

knf k∗

σ ∗T∞
, Pr =

νf (ρCp)f
kf

, ()

where

φ = ( – φ).
[
 – φ + φ

(
ρs

ρf

)]
and φ =  – φ + φ

(ρCp)s
(ρCp)f

. ()

The thermophysical properties of water and nanofluids used in this paper are given in
Table .
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Table 1 Thermophysical properties of water and nanoparticles, Oztop and Abu-Nada [33]

Properties → ρ (kg/m3) Cp (J/kgK) k (W/mK)

Pure water 997.1 4,179 0.613
CuO 3,620 531.8 76.5
Al2O3 3,970 765 40
TiO2 4,250 686.2 8.9538

3 Skin friction and heat transfer coefficients
In addition to velocity and temperature, the quantities of engineering interest in heat
transport problems are the skin friction coefficient Cf and the local Nusselt number Nux.
These parameters respectively characterize the surface drag and wall heat transfer rate.
The shear stress at the wall is given by

τw = –μnf

[
∂u
∂y

]
y=

= –


( – φ).
ρf ν



f

(
b

 – αt

) 

xf ′′(). ()

The skin friction coefficient is defined as

Cf =
τw

ρf U
w
, ()

and using equation () in equation (), we obtain

Cf ( – φ).Re


x = –f ′′(). ()

The heat transfer rate at the surface is given by

qw = –knf
[

∂T
∂y

]
y=

= –knf (Tw – T∞)
(

b
νf ( – αt)

) 

g ′(). ()

The Nusselt number is defined as

Nux =
x
kf

qw
Tw – T∞

. ()

Using equation () in equation (), we obtain the dimensionless wall heat transfer rate
as

Nux

Re


x

(
kf
knf

)
= –g ′(), ()

where Rex is the local Reynolds number defined by Rex = xUw/νf .

4 Initial steady state flow and heat transfer (t ≤ 0)
In the case of steady state solution, i.e., S → , equations () and () alongwith boundary
conditions () and () are replaced by

f ′′′ + φ
[
ff ′′ – f ′] = , ()
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g ′′
[
 +Df ′ +

kR
φ

(
knf
kf

)]
+Df ′′g ′ + Pr

[
fg ′ – rf ′g

]
= , ()

f () = , f ′() = , f ′(∞) → , ()

g() = , g(∞)→ . ()

The momentum boundary layer equation is partially decoupled from the energy equa-
tion. The solution is obtained by looking for an exponential function of the form f ′(η) =
e–sη that satisfies both the differential equation and governing boundary conditions over
the interval [,η], and the exact solution to () and () is

f (η) =
 – e–sη

s
, ()

where s is a parameter associated with the nanoparticle volume fraction. This satisfies the
equation

s =
√

φ. ()

We note that from equation () we obtain f ′′() = –s. In the case of a clear fluid, we have
s =  and solution () reduces to Crane’s solution for a stretching sheet problem given by

f (η) =  – e–η with f ′′() = –.

Here we presented the solution of a heat transfer equation in the absence of thermal dis-
persion as a particular case. Equation () is replaced by

g ′′ – Pr
(
kf
knf

)
φ

kR

[
rf ′g – fg ′] = . ()

Introducing a new variable

ξ = –
Pr
s

e–sη, ()

equation () and thermal boundary conditions () take the form:

ξgξξ +
[
 – λ

(
Pr∗ + ξ

)]
gξ + λrg = , ()

g
(
–Pr∗

)
= , g

(
–

) → , ()

where λ = ( kf
knf

) φ
kR

and Pr∗ = Pr/s is the modified Prandtl number.
The solution of equation () is obtained in terms of confluent hypergeometric functions

in the following form:

g(ξ ) = Cξ
αM[α – r,α + ,λξ ], ()

where

M[a,b, z] =
∞∑
r=

a(a + ) · · · (a + r – )
b(b + ) · · · (b + r – )

z
r!
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is Kummer’s function. Making use of boundary conditions () and rewriting the solution
in terms of the variable η, we get

g(η) =
e–sηαM[α – r,α + ,–αe–sη]

M[α – r,α + ,–α]
. ()

The surface heat transfer rate has the exact value

g ′() =
( α–r

α+ )M[α – r + ,α + ,–α] – SαM[α – r,α + ,–α]
M[α – r,α + ,–α]

, ()

where

α = λPr∗.

5 The spectral relaxationmethod
In this section we give a brief description of the spectral relaxation method (SRM) that is
employed to solve equations ()-(); see alsoMotsa andMakukula []. The SRM is pro-
posed for the solution of similarity boundary layer problems with exponentially decaying
profiles. For self-similar boundary layer problems, the SRMalgorithmmay be summarized
as follows:
. Reduce the order of the momentum equation for f (η) by introducing the

transformation f ′(η) = p(η) and express the original equation in terms of p(η).
. Assuming that f (η) is known from a previous iteration (denoted by fr), construct an

iteration scheme for p(η) by assuming that only linear terms in p(η) are to be
evaluated at the current iteration level (denoted by pr+) and all other terms (linear
and nonlinear) are assumed to be known from the previous iteration. In addition,
nonlinear terms in p are evaluated at the previous iteration.

. The iteration schemes for the other governing dependent variables are developed in
a similar manner but now using the updated solutions of the variables determined
in the previous equation.

The strategy described above is analogous to theGauss-Seidel idea of decoupling linear al-
gebraic system of equations. Using this algorithm leads to a sequence of linear differential
equations with variable coefficients which can easily be solved using standard numerical
techniques for solving linear differential equations. In this studywe discretize the differen-
tial equations using Chebyshev spectral collocation methods (see, for example, [, ]).
Spectral methods are preferred here because of their remarkably high accuracy and ease
of implementation in discretizing and the subsequent solution of variable-coefficient lin-
ear differential equations with smooth solutions over simple domains. In the context of
the SRM iteration scheme described above, equations ()-() become

p′′
r+ + φfrp′

r+ – φS
[
pr+ +

η


p′
r+

]
= φpr , ()

f ′
r+ = pr+, fr+() = , ()

g ′′
r+ +Dg ′′

r+pr+ +
(
knf
kf

)(
 +


NR

)(

φ

)
g ′′
r+

+Dp′
r+g

′
r+ + Pr

[
fr+g ′

r+ – rpr+gr+ – S
(
mgr+ +

η


g ′
r+

)]
= , ()
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subject to boundary conditions

pr+() = , pr+(∞)→ , ()

gr+() = , gr+(∞) → . ()

We apply the Chebyshev spectral collocation method to solve the decoupled system
()-(). For details of spectral methods, we refer the interested reader to [, ]. Be-
fore applying the spectral method, it is convenient to transform the domain on which the
governing equation is defined to the interval [–, ] on which the spectral method can be
implemented.We use the transformation η = L(τ +)/ tomap the interval [,L] to [–, ],
where L is chosen to be large enough to numerically approximate the conditions at infinity.
The basic idea behind the spectral collocation method is the introduction of a differenti-
ation matrix D which is used to approximate the derivatives of the unknown variables at
the collocation points as the matrix vector product of the form

dfr
dη

=
N∑
k=

Dlk fr(τk) =Dfr , l = , , . . . ,N , ()

where N +  is the number of collocation points (grid points), D = D/L, and f =
[f (τ), f (τ), . . . , f (τN )]T is the vector function at the collocation points. Higher-order
derivatives are obtained as powers of D, that is,

f (p)r =Dpfr , ()

where p is the order of the derivative.
Applying the spectral method to equations ()-(), we obtain

Apr+ = B, pr+(τN̄ ) = , pr+(τ) =  ()

Afr+ = B, fr+(τN̄ ) = , ()

Agr+ = B, gr+(τN̄ ) = , gr+(τ) = , ()

where

A =D + diag

[
φfr – φS

η



]
D – φSI, B = φpr , ()

A =D, B = pr+, ()

A = diag

[
 +Dpr+ +


φ

(
knf
kf

)(
 +


NR

)]
D

+ diag

[
Dp′

r+ + Pr
(
fr+ – S

η



)]
D – rPr diag[pr+] – PrSmI, B =O. ()

In equations ()-(), I is an identity matrix. The size of the matrix O is (N + )×  and
diag[ ] is a diagonal matrix, all of size (N̄ + ) × (N̄ + ) where N̄ is the number of grid
points, f , g and p are the values of the functions f , g and p, respectively, when evaluated
at the grid points and the subscript r denotes the iteration number.
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The initial guesses to start the SRM scheme for equations ()-() are chosen as func-
tions that satisfy the boundary conditions. From physical considerations, the velocity and
temperature profiles for the boundary layer problem discussed in this work decay expo-
nentially at η = ∞. For this reason, it is convenient to choose the following exponential
functions as initial guesses:

f(η) =  – e–η, p(η) = e–η, g(η) = e–η. ()

The convergence rate of the SRM algorithm can be significantly improved by applying
the successive over-relaxation (SOR) technique to equations ()-(). Under the SOR
framework, a convergence controlling relaxation parameter ω is introduced and the SRM
scheme for finding, say X, is modified to

AXr+ = ( –ω)AXr +ωB. ()

The results in the next section show that for ω < , applying the SOR method improves
the efficiency and accuracy of the SRM.

6 Results and discussion
We have studied heat transfer in a nanofluid flow due to an unsteady stretching sheet. We
considered three different nanoparticles, copper oxide (CuO), aluminium oxide (AlO)
and titanium oxide (TiO), with water as the base fluid.
The spectral relaxationmethod algorithm ()-() has been used to solve the nonlinear

coupled boundary value problem due to flow over a steady stretching sheet in a nanofluid.
We established the accuracy of the spectral relaxation method by comparing the SRM
results with those obtained using the Matlab bvpc solver. The comparison in Tables -
shows a good agrement between the twomethods. This comparison provides a benchmark
to measure the accuracy and efficiency of the method.
The heat transfer coefficients are shown in Table  for different values of the unsteadi-

ness parameter and the Prandtl number. The smaller Prandtl numbers in Table  suggest
a greater rate of thermal diffusion compared to momentum diffusion so that heat conduc-
tion is more significant than convection, while Pr =  (for example, water at  bar and
 K) is indicative of processes where convection is more effective than conduction. It is
clear that the heat transfer coefficient increases with an increase in the Prandtl numbers.

Table 2 Effect of the unsteadiness parameter and a comparison of wall temperature gradient
–g′(0) for different values of the Prandtl number

Pr S –g′(0)
El-Aziz [12] bvp4c SRM

0.1 0.8 0.4517 0.45148717 0.45148717
1.0 1.6728 1.67284531 1.67284531
10 5.70503 5.70597574 5.70597574

0.1 1.2 0.5087 0.50850265 0.50850265
1.0 1.818 1.81800501 1.81800501
10 6.12067 6.12102434 6.12102434

0.1 2 0.604013 0.60351763 0.60351763
1.0 2.07841 2.07841323 2.07841323
10 6.88506 6.88615127 6.88615127
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Table 3 Effect of fluid unsteadiness on the skin friction and a comparison of bvp4c with SRM
when Pr = 2, D = 1, φ = 0, r1 = 2,m = 1.5, ω = 0.75 and NR = 1

S Basic SRM SRMwith SOR bvp4c

Iter –f ′′(0) Iter –f ′′(0)
0.5 38 1.16721152 14 1.16721152 1.16721152
1 23 1.32052206 14 1.32052206 1.32052206
1.5 18 1.45966589 13 1.45966589 1.45966589

Table 4 Effect of S, Pr, D and NR on the heat transfer coefficient and a comparison of bvp4c
with SRM for fixed values of φ = 0, r1 = 2,m = 1.5

S Pr D NR –g′(0)
bvp4c SRM

0 7 1 1 1.73404471 1.73404471
0.5 1.98512673 1.98512673
1 2.21161765 2.21161765
1.5 2.41898107 2.41898107

1.5 3 1 1 1.52380810 1.52380810
4 1.78458969 1.78458969
5 2.01570707 2.01570707
6 2.22549552 2.22549552
7 2.41898107 2.41898107

1.5 2 0 1 1.45831884 1.45831884
1 1.21745970 1.21745970
5 0.77377295 0.77377295

1.5 2 1 1 1.21745970 1.21745970
5 1.40695145 1.40695145
10 1.43699000 1.43699000

Table  also gives a comparison between the spectral relaxation method and the estab-
lished Matlab bvpc solver. The present results are in good agreement with the earlier
findings by El-Aziz []. The numerical methods give results that are consistent to nine
significant digits after  iterations of the spectral relaxation method.
Tables - show the skin friction and the heat transfer coefficients (which are respec-

tively proportional to –f ′′() and –g ′()) for different levels of unsteadiness within the
problem. Table  gives a comparison of the SRM results in the absence of the nanopar-
ticle volume fraction (i.e., φ = ). Firstly, we observe that both the skin friction and the
heat transfer coefficients increase with unsteadiness. The skin friction increases as the
unsteadiness parameter increases. This is a consequence of the inverted boundary layer
that is formed. The negative values of f ′′() are an indication that the solid surface exerts a
drag force on the fluid. This is due to the fact that the development of the boundary layer
is caused solely by the stretching sheet. Secondly, we note that the number of iterations
required for the two methods to give a consistent solution decreases as the unsteadiness
parameter increases. We further note that the number of iterations to convergence of the
SRM decreases by more than a factor of  if the SRM is used in conjunction with the SOR
method. The fact that the SRM solutions are in good agreement with the bvpc results is
indicative of the accuracy and robustness of the spectral relaxation method.
Table  shows the effect of flow unsteadiness, the Prandtl number, thermal dispersion

and the radiation parameter on the heat transfer coefficient in the absence of nanoparti-
cles. The heat transfer coefficient decreases with an increase in thermal dispersion and
increases with thermal radiation. The results show that the rate of unsteady heat transfer
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Table 5 Effect of unsteadiness and the solid volume fraction on the skin friction coefficient
and a comparison of bvp4c with SRM for different values of nanoparticle volume fraction with
CuO-water nanofluid for fixed values of Pr = 6.7850, D = 1, r1 = 2,m = 1.5, NR = 1 and ω = 0.75

S φ Basic SRM SRMwith SOR bvp4c

Iter –f ′′(0) Iter –f ′′(0)
0.5 0.05 38 1.16449176 14 1.16449176 1.16449176

0.1 37 1.14990897 14 1.14990897 1.14990897
0.15 38 1.12498006 13 1.12498006 1.12498006
0.2 35 1.09094877 13 1.09094877 1.09094877

1 0.05 23 1.31744508 14 1.31744508 1.31744508
0.1 23 1.30094687 13 1.30094687 1.30094687
0.15 23 1.27274360 14 1.27274360 1.27274360
0.2 23 1.23424238 14 1.23424238 1.23424238

1.5 0.05 18 1.45626469 13 1.45626469 1.45626469
0.1 18 1.43802806 13 1.43802806 1.43802806
0.15 18 1.40685300 13 1.40685300 1.40685300
0.2 18 1.36429489 14 1.36429489 1.36429489

Table 6 Comparison of –g′(0) obtained by bvp4c and SRM for different values of nanoparticle
volume fraction with CuO-water nanofluid for fixed values of Pr = 6.7850, D = 1, r1 = 2,
m = 1.5, ω = 0.75 and NR = 1

S φ Basic SRM SRMwith SOR bvp4c

Iter –g′(0) Iter –g′(0)
0.5 0.05 38 1.85367196 14 1.85367196 1.85367196

0.1 37 1.75916556 14 1.75916556 1.75916556
0.15 37 1.66693860 13 1.66693860 1.66693860
0.2 35 1.57677868 13 1.57677868 1.57677868

1 0.05 23 2.06861805 14 2.06861805 2.06861805
0.1 23 1.96536212 13 1.96536212 1.96536212
0.15 23 1.86412754 14 1.86412754 1.86412754
0.2 23 1.76472535 14 1.76472535 1.76472535

1.5 0.05 18 2.26481693 13 2.26481693 2.26481693
0.1 18 2.15317826 13 2.15317826 2.15317826
0.15 18 2.04340762 13 2.04340762 2.04340762
0.2 18 1.93533542 14 1.93533542 1.93533542

can be accelerated by the thermal dispersion. The thermal dispersion may be regarded
as the effect of mixing to enhance heat transfer in the medium. Table  further gives a
comparison of the SRM and the bvpc results in the case φ = . The spectral relaxation
method converges to the numerical solutions for all parameter values matching the bvpc
results up to nine significant digits.
Tables  and  show the skin friction coefficient and heat transfer rate for various physi-

cal parameters in the case of a CuO-water nanofluid. The skin friction coefficient and the
local Nusselt number are more influenced by the nanoparticle volume fraction than the
type of nanoparticles. This observation is in agreement with Oztop and Abu-Nada [].
In addition, water has the lowest skin friction coefficient and the local Nusselt number
compared with CuO, AlO, TiO nanofluids. We observe that the skin friction coeffi-
cient decreases with increasing nanoparticle volume fraction, and the same trend is ob-
served in the case of the heat transfer coefficient. Table  further shows that for a partic-
ular nanoparticle volume fraction, the skin friction coefficient increases with an increase
in the unsteadiness parameter. A similar trend is observed in the case of the heat transfer
coefficient.
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Table 7 Comparison of –f ′′(0) obtained by bvp4c and SRM for different values of nanoparticle
volume fraction with Al2O3-water nanofluid for fixed values of Pr = 6.7850, r1 = 2,m = 1.5 and
ω = 0.75

Quantity φ Basic SRM SRMwith SOR bvp4c

Iter –f ′′(0) Iter –f ′′(0)
NR = 1
S = 1
D = 1

0.05 23 1.32762309 14 1.32762309 1.32762309
0.1 23 1.31890045 14 1.31890045 1.31890045
0.15 23 1.29654739 13 1.29654739 1.29654739
0.2 23 1.26231187 14 1.26231187 1.26231187

NR = 5
S = 1
D = 2

0.05 23 1.32762309 14 1.32762309 1.32762309
0.1 23 1.31890045 14 1.31890045 1.31890045
0.15 23 1.29654739 14 1.29654739 1.29654739
0.2 23 1.26231187 13 1.26231187 1.26231187

NR = 10
S = 0.5
D = 5

0.05 38 1.17348812 14 1.17348812 1.17348812
0.1 38 1.16577817 14 1.16577817 1.16577817
0.15 37 1.14602026 14 1.14602026 1.14602026
0.2 37 1.11575944 13 1.11575944 1.11575944

Table 8 Comparison of –g′(0) obtained by bvp4c and SRM for different values of nanoparticle
volume fraction with Al2O3-water nanofluid for fixed values of Pr = 6.7850, r1 = 2,m = 1.5 and
ω = 0.75

Quantity φ Basic SRM SRMwith SOR bvp4c

Iter –g′(0) Iter –g′(0)
NR = 1
S = 1
D = 1

0.05 23 2.07754148 14 2.07754148 2.07754148
0.1 23 1.98429513 14 1.98429513 1.98429513
0.15 23 1.89386696 13 1.89386696 1.89386696
0.2 23 1.80581775 14 1.80581775 1.80581775

NR = 5
S = 1
D = 1

0.05 23 2.43674192 14 2.43674192 2.43674192
0.1 23 2.35621359 14 2.35621359 2.35621359
0.15 23 2.27587972 14 2.27587972 2.27587972
0.2 23 2.19532143 13 2.19532143 2.19532143

NR = 10
S = 1
D = 1

0.05 23 2.49509121 13 2.49509121 2.49509121
0.1 23 2.41787850 14 2.41787850 2.41787850
0.15 23 2.34049758 13 2.34049758 2.34049758
0.2 23 2.26250267 14 2.26250267 2.26250267

Tables  and  show the skin friction and heat transfer coefficients for various values of
nanoparticle volume fraction and physical parameters. We note that the physical parame-
tersNR andD have no direct effect on the skin friction coefficient, but that the skin friction
decreases with an increase in the unsteadiness parameter. From Table  we observe that
an increase in the thermal radiation parameter produces significant increases in the heat
transfer coefficient. The skin friction and heat transfer rates decrease with an increase in
the nanoparticle volume fraction.
The effects of the unsteadiness parameter, various nanoparticles, thermal dispersion and

radiation parameters on various fluid dynamic quantities are shown in Figures -.
Figure  shows the effect of the unsteadiness parameter on the velocity and temperature

profiles, respectively, in the case of a CuO-water nanofluid. It is observed that velocity
and temperature in the case of a clear fluid are less than those of a CuO-water nanofluid.
Increasing the unsteadiness parameter results in a decrease in the thermal boundary layer
thickness.We also observe that the temperature distribution decreases with an increase in
the unsteadiness parameter in the case of both a clear fluid and the CuO-water nanofluid.
These results are consistent with the findings of, among others, Singh et al. [].
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Figure 1 (a) Velocity and (b) temperature profiles for Pr = 6.7850, NR = 1, D = 1, r1 = 2,m = 1.5.

Figure 2 (a) Velocity and (b) temperature profiles for Pr = 6.7850, NR = 1, D = 1, r1 = 2,m = 1.5, S = 0.5,
φ = 0.2.

Figure  shows the velocity and temperature distributions for different nanofluids. It
can be observed that the velocity and temperature distributions for different nanoparti-
cles increase gradually far from the surface of the stretching sheet. The fluid velocity and
temperatures in the case of a CuO-water nanofluid are less than those in TiO-water and
AlO-water nanofluids.
The effect of thermal dispersion and radiation on the temperature profiles is shown

in Figure (a). The temperature distribution along the boundary layer increases with in-
creasing thermal dispersion parameter. In Figure (b) we observe that the temperature
decreases throughout the boundary layer with increasing values of the radiation param-
eter. At a particular value of NR, the temperature increases with the nanoparticle volume
fraction. These result can be explained by the fact that a decrease inNR leads to a decrease
in the Rosseland radiation absorptivity which in turn increases the rate of radiative heat
transferred to the fluid and hence the fluid temperature increases. These results are similar
to those reported by El-Aziz [] in the case of clear fluids.
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Figure 3 Temperature profiles for (a) Pr = 6.7850, S = 0.5, NR = 1, r1 = 2,m = 1.5 and (b) Pr = 6.7850,
S = 0.5, D = 1, r1 = 2,m = 1.5.

Figure 4 (a) Skin friction and (b) heat transfer coefficients as a function of nanoparticle volume
fraction, when Pr = 6.7850, S = 0.5, D = 1, NR = 1, r1 = 2,m = 1.5.

Figure  shows the skin friction coefficient as a function of the nanoparticle volume frac-
tion. The skin friction coefficient increases with increasing nanoparticle volume fraction.
The maximum value of the skin friction in the case of a TiO-water nanofluid is attained
at higher values of φ in comparison with CuO-water and AlO nanofluids. Further, we
observe that a CuO-water nanofluid gives a higher drag force in opposition to the flow as
compared to the other nanofluids. From Figure (b) we observe that the wall heat transfer
rates for the nanofluids are increasing functions of φ. A TiO-water nanofluid has higher
wall heat transfer rate as compared to the other nanofluids.
The variation of the skin friction and heat transfer rates with the fluid unsteadiness is

shown in Figures - respectively. It is seen that increasing the solid volume fraction leads
to decreases of skin friction and to an increase in the rate of heat transfer. An increase in
the unsteadiness parameter tends to increase the local Nusselt number.
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Figure 5 (a) Skin friction and (b) heat transfer coefficients as a function of NR , when Pr = 6.7850, D = 1,
r1 = 2,m = 1.5.

Figure 6 (a) Skin friction and (b) heat transfer coefficients as a function of D, when Pr = 6.7850, NR = 1,
r1 = 2,m = 1.5.

7 Conclusions
The unsteady boundary layer flow in a nanofluid due to a stretching sheet with thermal
dispersion and radiation was studied. The governing equations were transformed into a
set of coupled nonlinear differential equations and solved by bvpc and a novel spectral
relaxation method. To determine the convergence, accuracy and general validity of the
SRM, the results were compared with the Matlab bvpc results for selected values of the
governing physical parameters. We found that velocity and temperature in the case of a
clear fluid are less than those of CuO-water nanofluid. We observe that the temperature
decreases throughout the boundary layer with increasing values of the radiation param-
eter. The convergence rate of the SRM is significantly improved by using the method in
conjunction with the SORmethod with ω < . Our findings show that the SRM is accurate
and sufficiently robust for use in solving fluid flow problems and as an alternative to the
Runge-Kutta and Keller-box schemes in finding solutions of boundary layer equations.
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