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Abstract
The existence of the nontrivial periodic solutions for nonautonomous second-order
delay differential equation

x′′(t) + λx(t) = –f (t, x(t), x(t – τ ))

is investigated, where λ > π 2/τ 2, τ > 0, f ∈ C1(R×R2,R). Multiple periodic solutions
are obtained by some recent critical point theorems.
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1 Introduction
It is well known that the critical point theory is a powerful tool to deal with themultiplicity
of periodic solutions to ordinary differential systems as well as partial differential equa-
tions (see [–]). In , Li and He [] first applied the critical point theory to study the
multiplicity of periodic solutions for delay differential equations. Especially, in , Guo
and Yu [] established a variational framework for delay differential autonomous systems.
In the past several years, some results on the existence of periodic solutions for the func-
tional differential equation have been obtained by the critical point theory (see [–]).
However, most of these functional differential equations are autonomous, the results on
the non-autonomous functional differential equations are relatively few (see [, ]).
Motivated by the work of [, ], we consider a class of nonautonomous second-order

delay differential equation

x′′(t) + λx(t) = –f
(
t,x(t),x(t – τ )

)
, (.)

where λ > π/τ , τ > , f ∈ C(R×R,R).
In this paper, we have the following conditions on f .

(f ) f (t + τ ,x) = f (t,x), f (t, –x, –y) = –f (t,x, y) and

∂f (t,x, y)
∂y

=
∂f (t, y,x)

∂x
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for all x, y ∈ R, t ∈ [, τ ];
(f ) there exist four τ -periodic and continuous functions a(t), b(t), c(t) and d(t) such that

f (t,x, y) = a(t)x + b(t)y + ◦(r) as r =
√
x + y → 

and

f (t,x, y) = c(t)x + d(t)y + ◦(r) as r =
√
x + y → ∞

uniformly for t ∈ [, τ ];
(f ±) |∇F(t, z) – B(t)z| is bounded for all z = (x, y) ∈ R, t ∈ [, τ ] and

F(t, z) –


(
B(t)z, z

) → ±∞ as |z| → ∞

uniformly for t ∈ [, τ ], where

F(t,x, y) =
∫ x


f (t, s, y)ds +

∫ y


f (t, s, )ds,

A(t) =

(
a(t) b(t)
b(t) a(t)

)
, B(t) =

(
c(t) d(t)
d(t) c(t)

)
.

Theorem . Assume that f satisfies (f )-(f –) with (A(t)z, z) ≤ , (B(t)z, z) > (λ –
π/τ )|z| >  for z ∈ R\{}, t ∈ [, τ ]. Then (.) possesses at least m pairs τ -periodic
solutions, where

m =max

{
j ∈ Z+ :

(
B(t)z, z

)
>

(
λ –

π

τ  j

)

|z| >  for z ∈ R\{}, t ∈ [, τ ]
}
,

Z+ is the set of all positive integers.

Theorem . Assume that f satisfies (f )-(f +) with (A(t)z, z) ≥ , (B(t)z, z) < (λ –
πm

/τ )|z| <  for z ∈ R\{}, m ∈ Z+, t ∈ [, τ ]. Then (.) possesses at least [m –
m + ] pairs τ -periodic solutions, where

m =max

{
j ∈ Z+ :

(
B(t)z, z

)
<

(
λ –

π

τ  j

)

|z| <  for z ∈ R\{}, t ∈ [, τ ]
}
.

In this paper, the main purpose is to study the multiplicity of periodic solutions for sys-
tems (.) via some recent critical point theorems for strongly indefinite functionals. In
order to achieve this, some preliminaries are necessary. Let X and Y be Banach spaces
with X being separable and reflexive, and set E = X ⊕Y . Let S ⊂ X* be a dense subset. For
each s ∈ S , there is a semi-norm on E defined by

ps : E → R, ps(u) =
∣∣s(x)∣∣ + ‖y‖ for u = x + y ∈ X ⊕ Y .

We denote by TS the topology on E induced by the semi-norm family {ps}, and let ω and
ω* denote the weak-topology and weak*-topology, respectively. Clearly, the TS topology
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contains the product topology on E = X ⊕Y produced by the weak topology on X and the
strong topology on Y .
For a functional � ∈ C(E,R), we write �a = {u ∈ E : �(u) ≥ a}. Recall that �′ is weakly

sequentially continuous if uk ⇀ u in E, one has limk→∞ �′(uk)v→ �′(uk)v for each v ∈ E,
i.e., �′ : (E,ω) → (E*,ω*) is sequentially continuous. For c ∈ R, we say that � satisfies the
(C)c condition if any sequence {uk} ⊂ E, such that �(uk) → c and ( + ‖uk‖)�′(uk)→  as
k → ∞, contains a convergent subsequence.
Suppose that

(�) � ∈ C(E,R), �c is TS -closed for every c ∈ R and �′ : (�c,TS ) → (E*,ω*) is continu-
ous;

(�) there exists ρ >  such that κ := inf�(Bρ ∩ Y ) >  = �(), where Bρ = {u ∈ E : ‖u‖ =
ρ};

(�) there exist a finite dimensional subspace Y ⊂ Y and R > ρ such that c := sup�(E) <
∞ and sup�(E\S) < inf�(Bρ ∩Y ), where E := X⊕Y, and S = {u ∈ E : ‖u‖ ≤ R}.

The following critical point theorem will be used later (see [, ]).

Theorem A Assume that � is even and (�)-(�) are satisfied. Then � has at least m =
dimY pairs of critical points with critical values less than or equal to c provided� satisfies
the (C)c condition for all c ∈ [κ , c].

2 Preliminaries
In this section, we establish a variational structure which enables us to reduce the exis-
tence of τ periodic solutions of (.) to a classic Hamiltonian system. First, we have the
following lemma by using similar arguments [].

Lemma . Suppose that f ∈ C(R×R,R) satisfies (f ), then the function

H(t,x, y) =
∫ x


f (t, s, y)ds +

∫ y


f (t, s, )ds (.)

satisfies

∂H(t,x, y)
∂x

= f (t,x, y),
∂H(t,x, y)

∂y
= f (t, y,x)

and H(t,x, y) ∈ C(R×R,R).

Proof It is obvious that ∂H
∂x = f (t,x, y). By (f ), ∂f (t,x,y)

∂y = ∂f (t,y,x)
∂x . Then we have

∂H(t,x, y)
∂y

=
∫ x



∂f (t, y, s)
∂s

ds + f (t, y, ) = f (t, y,x).

The proof of Lemma . is complete. �

Suppose that x is a periodic solution of (.) with τ , let y(t) = x(t – τ ), then

y′′(t) = –f
(
t – τ ,x(t – τ ),x(t)

)
= –f

(
t, y(t),x(t)

)
.
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We denote z = (x, y). Then

z′′(t) + λz(t) = –∇H
(
t, z(t)

)
, (.)

where H(t, z) is defined in (.) and ∇H(t, z) denotes the gradient of H(t, z) with respect
to the z variable. It is easy to obtain the following lemma.

Lemma . For any τ periodic solution of (.), let y(t) = x(t – τ ), then z = (x, y) is a τ
periodic solution of (.).Conversely, for any τ periodic solution z = (x, y) of (.) satisfying
y(t) = x(t – τ ), x is a τ periodic solution of (.).

For S = R/(τZ), let C∞(S,R) denote the space of τ periodic C∞ functions onRwith
values in R. For any z ∈ C∞(S,R), it has the following Fourier expansion in the sense
that it is convergent in the space L(S,R),

z(t) =
a√
τ

+
√
τ

∞∑
j=

[
aj cos

(
π

τ
jt
)
+ bj sin

(
π

τ
jt
)]

,

where a,aj,bj ∈ R, j = , , . . . .
Let z ∈ L(S,R). If there exists a function y ∈ L(S,R) such that, for every x ∈

C∞(S,R),

∫ τ



(
z(t),x′(t)

)
dt = –

∫ τ



(
y(t),x(t)

)
dt,

then y is called a weak derivative of z denoted by y = z′(t).
Let

H(S,R) = {
z ∈ L

(
S,R)∣∣∣ ∫ τ



(∣∣z(t)∣∣ + ∣∣z′(t)
∣∣)dt < +∞

}
.

For any z, y ∈H(S,R), 〈·, ·〉 and ‖ · ‖ can be explicitly expressed by

〈z, y〉 =
∫ τ



[(
z(t), y(t)

)
+

(
z′(t), y′(t)

)]
dt

and

‖z‖ =
[
|a| +

∞∑
j=

(
 + j

)(|aj| + |bj|
)]/

.

We define an operator L :H(S,R) →H(S,R) by the Riesz representation theorem

〈Lz, y〉 =
∫ τ



(
ż(t), ẏ(t)

)
dt – λ

∫ τ



(
z(t), y(t)

)
dt.

By a direct computation, L is a bounded self-adjoint linear operator on H(S,R).
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By (f ) and (.) in Section , there exist two continuous functions α(t) >  and β(t) ≥ 
such that

H(t, z) ≤ α(t)|z| + β(t), ∀z ∈ R.

By using similar arguments as in [], we have that

ϕ(z) =


〈Lz, z〉 +ψ(z),

where

ψ(z) =
∫ τ


H

(
t, z(t)

)
dt.

Thus the critical points of ϕ(z) in H(S,R) are classical solutions of (.).
Denote E = {z = (x, y) ∈H(S,R) : y(t) = x(t – τ )}. By a direct computation, we have

E =

{
z ∈H(S,R)|z(t) = √

τ
a

(



)

+
√
τ

∞∑
j=

(
aj cos

(
π

τ
jt
)
+ bj sin

(
π

τ
jt
))(


(–)j

)⎫⎬⎭ ,

where a,aj,bj ∈ R, j = , , . . . .
Note that for any z = (x, y) ∈ E, y(t) = x(t – τ ) and ∇H(t, z) = (f (t,x, y), f (t, y,x)). Due to

the fact that f (t,x(t–τ ), y(t–τ )) = f (t, y(t),x(t)), we know that∇H(t, z) ∈ E whatever z ∈ E.
Therefore, we have the following lemma.

Lemma . If z(t) is a critical point of ϕ in E, then z(t) is a critical point of ϕ in H(S,R).

Moreover, we also denote byM+(·),M–(·) andM(·) the positive definite, negative defi-
nite and null subspaces of the self-adjoint linear operator defining it, respectively.
Then E has an orthogonal decomposition

E =M+(L)⊕M–(L)⊕M(L).

Let

zj(t) =
√
τ

(
aj cos

(
π

τ
jt
)
+ bj sin

(
π

τ
jt
))(


(–)j

)
, j = , , . . . ,

where aj,bj ∈ R. We have

〈Lzj, zj〉 = 
 + j

(
π

τ  j
 – λ

)
‖zj‖, j = , , . . . .

There exists σ >  such that

〈Lzj, zj〉 ≥ σ‖zj‖ for j ∈ J+,
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〈Lzj, zj〉 ≤ –σ‖zj‖ for j ∈ J–,

where J+ = {j ≥  : 
+j (

π

τ
j –λ) > }, J– = {j ≥  : 

+j (
π

τ
j –λ) < }, J = {j ≥  : 

+j (
π

τ
j –

λ) = }. Therefore, we get

〈Lz, z〉 ≥ σ‖z‖ for z ∈M+(L), (.)

〈Lz, z〉 ≤ –σ‖z‖ for z ∈ M–(L). (.)

Remark . The condition λ > π/τ  is to ensure J– �= ∅.

3 Proofs of theorems
In this section, ci stand for different positive constants for i ∈ Z+.
By a direct computation, (f ) and (f ) imply that H(t, z) is even and satisfies

∇H(t, z) = A(t)z + ◦(|z|) as |z| → , (.)

∇H(t, z) = B(t)z + ◦(|z|) as |z| → ∞ (.)

uniformly for t ∈ [, τ ].
(f ±) implies that

∣∣∇H(t, z) – B(t)z
∣∣ is bounded and

H(t, z) –


(
B(t)z, z

) → ±∞ as |z| → ∞
(.±)

uniformly for t ∈ [, τ ].

Lemma . Suppose that f satisfies (f )-(f ±). Then the function ϕ satisfies the (C)c con-
dition for any c ∈ R.

Proof First we define an operator

〈Bz, y〉 =
∫ τ



(
B(t)z(t), y(t)

)
dt

for any z, y ∈ E. By a direct computation, B is a bounded self-adjoint linear operator on E.
Thus L+B is also a self-adjoint linear operator on E. Then E has an orthogonal decompo-
sition

E =M+(L + B)⊕M–(L + B)⊕M(L + B).

Also there exists σ >  such that

〈
(L + B)z, z

〉 ≥ σ‖z‖ for z ∈M+(L + B), (.)〈
(L + B)z, z

〉 ≤ –σ‖z‖ for z ∈M–(L + B). (.)
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So, set

�(z) = –ϕ(z) = –


〈
(L + B)z, z

〉
–

∫ τ



[
H(t, z) –



(
B(t)z, z

)]
dt

and

〈
�′(z), y

〉
= –

〈
(L + B)z, y

〉
–

∫ τ



(∇H(t, z) – B(t)z, y
)
dt

for any z, y ∈ E, ϕ(z) is defined in Section .
Let {zk} ⊂ E be any sequence such that

�(zk)→ c,
(
 + ‖zk‖

)
�′(zk) →  as k → ∞.

Wefirst prove that {zk} is bounded. For any ε > , (.) implies that there exists a constant
Cε >  such that

∣∣∇H(t, z) – B(t)z
∣∣ < ε|z| +Cε (.)

for all z ∈ R and t ∈ [, τ ]. Since zk ∈ E, we have

zk = z+k + z–k + zk ,

where z+k ∈ M+(L + B), z–k ∈ M–(L + B), zk ∈ M(L + B). By (.±), there exists a constant
d >  such that

∣∣∇H(t, z) – B(t)z
∣∣ ≤ d.

Therefore we have

( + c)
∥∥z+k∥∥ ≥ 〈

–�′(zk), z+k
〉

=
〈
(L + B)z+k , z

+
k
〉
+

∫ τ



(∇H(t, zk) – B(t)zk , z+k
)
dt

≥ σ
∥∥z+k∥∥ – d

∥∥z+k∥∥.
Thus we have that {‖z+k‖} is bounded. Using similar arguments, we can prove that {‖z–k ‖}
is bounded. Consider {‖zk‖}. Arguing indirectly, we suppose {‖zk‖} is unbounded, then
we have ‖zk‖ → ∞. According to the definition of M(L + B), this implies that there are
constants d,d >  such that

d
∣∣zk ∣∣ ≤ ∥∥zk∥∥ ≤ d

∣∣zk ∣∣. (.)

By (.), we have

|zk| ≥
∣∣zk ∣∣ → +∞ as

∥∥zk∥∥ → ∞. (.)

http://www.boundaryvalueproblems.com/content/2013/1/244
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Then

c = lim
k→∞

[
�(zk) –�′(zk)zk

]
= lim

k→∞

{∫ τ



(∇H(t, zk) – B(t)zk , zk
)
dt

– 
∫ τ



[
H(t, zk) –



(
B(t)zk , zk

)]
dt

}
. (.)

By (.) and (.±), (.) is a contradiction. Hence {‖zk‖} is bounded. Therefore there
exists a constant d >  such that

‖zk‖ =
∥∥z+k∥∥ +

∥∥z–k∥∥ +
∥∥zk∥∥ ≤ d.

So, we get {zk} is bounded, and going if necessary to a subsequence, we can assume that
zk ⇀ z in E and zk → z in C(S,RN ). Write zk = z+k + z–k + zk and z = z+ + z– + z, then
z±
k ⇀ z± in E, zk → z in E and z±

k → z± in C(S,RN ).
In view of (.) and z–k → z– in C(S,R), it is easy to verify∫ τ



(∇H(t, zk) – B(t)zk , z–k – z–
)
dt → 

and ∫ τ



(∇H(t, z) – B(t)z, z–k – z–
)
dt → .

But then 〈�′(zk) –�′(z), z–k – z–〉 →  as k → ∞, and

〈
�′(zk) –�′(z), z–k – z–

〉
= –

〈
(L + B)

(
z–k – z–

)
, z–k – z–

〉
–

∫ τ



(∇H(t, zk) – B(t)zk , z–k – z–
)
dt

+
∫ τ



(∇H(t, z) – B(t)z, z–k – z–
)
dt

≥ σ
∥∥z–k – z–

∥∥ –
∫ τ



(∇H(t, zk) – B(t)zk , z–k – z–
)
dt

+
∫ τ



(∇H(t, z) – B(t)z, z–k – z–
)
dt.

This yields z–k → z– in E. Similarly, z+k → z+ in E and hence zk → z in E, that is, � sat-
isfies the (C)c condition. Thus ϕ satisfies the (C)c condition. The proof of Lemma . is
complete. �

Proof of Theorem . For z ∈ E, let X =M+(L)⊕M(L), Y =M–(L), E = X ⊕ Y , and

�(z) = –ϕ(z), �(z) = ψ(z), (.)

where ϕ(z) and ψ(z) are from Section .

http://www.boundaryvalueproblems.com/content/2013/1/244
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In order to obtain this theorem, we apply Theorem A to the functional �(z). The proof
of this theorem is divided into the following three steps.
Step . � satisfies (�).
We first check that �c is TS -closed for any c ∈ R. Let {zk} be any sequence TS -

converging to some z ∈ E. Write zk = z+k + zk + z–k and z = z+ + z + z–, then z–k → u– in
E and hence {z–} is bounded in the norm topology. Note that (B(t)z, z) > λ – π/τ  >  for
z ∈ R\{} and for t ∈ [, τ ], then for any z ∈ E and small ε > , we have by (.) and (.)

�(z) =
∫ τ


H(t, z)dt

=
∫ τ



∫ 



(∇H(t, sz), z
)
dsdt

≥
∫ τ



∫ 



(
B(t)sz, z

)
dsdt –

∫ τ



∫ 



∣∣∇H(t, z) –
(
B(t)sz, z

)∣∣|z|dsdt
≥ 



∫ τ



(
B(t)z, z

)
dt –

∫ τ



∫ 



(
ε|sz| +Cε

)|z|dsdt
≥ 



(
λ –

π

τ  – ε

)
‖z‖L –Cε‖z‖L ≥ c‖z‖L – c‖z‖L ,

which implies that � is bounded from below on E. Consequently, combining zk ∈ �c and

 〈Lz+k , z+k 〉 = – 

 〈Lz–k , z–k 〉–�(zk)–�(zk) shows that {z+k } is bounded in E by (.) and hence

�(zk) = –


〈
Lz+k , z

+
k
〉
–


〈
Lz–k , z

–
k
〉
–�(zk)

≤ –


〈
Lz+k , z

+
k
〉
–


〈
Lz–k ,u

–
k
〉
– c≤ c. (.)

Moreover, since ‖zk‖L = ‖z+k‖L + ‖zk‖L + ‖z–k ‖L , we have

�(zk) ≥ c‖zk‖L – c‖zk‖L ≥ ‖zk‖L – c ≥ ∥∥zk∥∥L – c.

It follows from (.) and the above inequality that {zk } is also bounded in E since all
norms are equivalent in a finite dimensional space. Then ‖zk‖ (= ‖z+k‖ + ‖zk‖ + ‖z–k ‖)
is bounded, and hence we can assume that {zk} converges weakly to z = z+ + z + z– in E.
Thus we have�(zk)→ �(z). Note that 〈Ly, y〉/ is an equivalent norm onH+. By the lower
semi-continuity of the norm, we get

c ≤ lim sup
k→∞

�(zk) = lim sup
k→∞

(
–


〈
Lz+k , z

+
k
〉
–


〈
Lz–k , z

–
k
〉
–�(zk)

)
= – lim inf

k→∞


〈
Lz+k , z

+
k
〉
–


〈
Lz–, z–

〉
–�(z) ≤ �(z),

that is, z ∈ �c and hence �c is TS -closed.
Next, we prove that �′ : (�c,TS ) → (E*,ω*) is continuous. To achieve this, it is sufficient

to demonstrate that � ′ has the same property. Suppose zk ⇀ u in E, then {zk} converges
uniformly to z on [, τ ]. Hence, for every given y ∈ E, we see that (∇H(t, zk(t)), y(t)) con-

http://www.boundaryvalueproblems.com/content/2013/1/244
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verges to (∇H(t, z(t)), y(t)) in measure on [, τ ]. Moreover, by (.), one has

∣∣∇H
(
t, zk(t)

)
, y(t))

∣∣ ≤ (
ε‖zk‖∞ + b̄‖zk‖∞ +Cε

)‖y‖∞ ≤ c

for all k and t ∈ [, τ ], where b̄ =maxt∈[,τ ]{|B(t)|} and ‖ · ‖∞ denotes the natural norm of
C(S,R). Thus, the Vitali theorem is applicable and

〈
� ′(zk), y

〉
=

∫ τ



(∇H(t, zk), y
)
dt →

∫ τ



(∇H(t, z), y
)
dt =

〈
� ′(z), y

〉
for any y ∈ E. So, � satisfies (�).
Step . � satisfies (�).
By (.), there exist  < ε < σ /, ρ >  such that

H(t, z) ≤ ε|z| + 

(
A(t)z, z

)
for all |z| < ρ, t ∈ [, τ ]. (.)

By Proposition . in [], there is a positive constant ξ such that ‖z‖∞ ≤ ξ‖z‖. Set small
ρ < ρ/ξ , then for each z ∈ Y with ‖z‖ ≤ ρ , one has ‖z‖∞ ≤ ρ, and hence by (.)

�(z) = –


〈Lz, z〉 –

∫ τ


H(t, z)dt

≥ σ


‖z‖ –

∫ τ



[
ε|z| + 


(
A(t)z, z

)]
dt ≥

(
σ


– ε

)
‖z‖.

Therefore,

κ := inf�(Bρ ∩ Y ) ≥
(

σ


– ε

)
ρ > ,

and hence (�) holds.
Step . � satisfies (�).
Let

Y = span

{
cos

(
π

τ
jt
)(


(–)j

)
, sin

(
π

τ
jt
)(


(–)j

)
: j ∈ Z+, j ≤m

}
.

Obviously, Y ⊂ Y and dimY = m. In order to obtain the desired conclusion, it is suffi-
cient to prove that �(z)→ –∞ as ‖z‖ → ∞ on E := X ⊕ Y.
Let � = λ – π

τ
. By the definition ofm, there exists a constant  < δ < σ such that

B(t)≥ � + δ (.)

for t ∈ [, τ ]. Clearly, for any y ∈ Y,

〈Ly, y〉 ≥ –�‖y‖L . (.)

Let F̃(t, z) =H(t, z) – 
 (B(t)z, z). We claim that

‖z‖–
∫ τ


F̃(t, z)dt →  as ‖z‖ → ∞. (.)
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Indeed, for  �= z ∈ E, by (.), one has

‖z‖–
∣∣∣∣∫ τ


F̃(t, z)dt

∣∣∣∣
= ‖z‖–

∣∣∣∣∫ τ



∫ 



(∇H(t, sz) – B(t)sz, z
)
dsdt

∣∣∣∣
≤ ‖z‖–

∫ τ



(
ε|z| +Cε

)|z|dt
≤ ‖z‖–(ε‖z‖L +Cε‖z‖L

)
≤ ε +

Cε

‖z‖ ,

which implies that (.) is true by the arbitrariness of ε. Then, for z = z+ + z + z– ∈ E, by
(.), (.) and (.), one has

�(z) = –


〈
Lz–, z–

〉
–


〈
Lz+, z+

〉
–

∫ τ


F(t, z)dt

≤ �


∥∥z–∥∥

L –
δ


∥∥z+∥∥ –




∫ τ



(
B(t)z, z

)
dt –

∫ τ


F̃(t, z)dt

≤ �


∥∥z–∥∥

L –
δ


∥∥z+∥∥ –



(� + δ)‖z‖L –

∫ τ


F̃(t, z)dt

≤ �


∥∥z–∥∥

L –
δ


∥∥z+∥∥ –



(� + δ)

(∥∥z–∥∥
L +

∥∥z∥∥
L

)
–

∫ τ


F̃(t, z)dt

≤ –
δ


(∥∥z–∥∥

L +
∥∥z+∥∥ +

∥∥z∥∥
L

)
–

∫ τ


F̃(t, z)dt.

SinceM and Y are finitely dimensional, (.) and the above estimate imply that�(z) →
–∞ as ‖z‖ → ∞, z ∈ E := X ⊕ Y. Hence (�) holds.
The proof of Theorem . is complete. �

Proof of Theorem . For z ∈ E, let X =M–(L)⊕M(L), Y =M+(L), E = X ⊕ Y , and

�(z) = ϕ(z), �(z) = –ψ(z)

and

Y = span

{
cos

(
π

τ
jt
)(


(–)j

)
, sin

(
π

τ
jt
)(


(–)j

)
: j =m,m + , . . . ,m

}
.

Then the conclusion is obtained by the same argument as in the proof of Theorem .. The
proof of Theorem .. is complete. �

Example . Consider the following equation:

x′′(t) + λx(t) = –α(t)x(t) – β(t)x(t – π ) –
x(t)

x(t) + x(t – π ) + γ (t)
, (.)
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where x(t)≥ . Let

f (t,x, y) = α(t)x + β(t)y +
x

x + y + γ (t)
.

Then

∂f (t,x, y)
∂y

= β(t) –
xy

(x + y + γ (t))
=

∂f (t, y,x)
∂x

.

Let

H(t,x, y) =


α(t)x + β(t)xy +



α(t)y +



ln

x + y + γ (t)
γ (t)

.

Then

∂H
∂x

= f (t,x, y),
∂H
∂y

= f (t, y,x).

By a straightforward computation, we have

f (t,x, y) =
(


γ (t)

+ α(t)
)
x + β(t)y + ◦(r) as r =

√
x + y → 

and

f (t,x, y) = α(t)x + β(t)y + ◦(r) as r =
√
x + y → ∞

uniformly for t ∈ [,π ].

Take λ = , α(t) = –+ sinπ t, β(t) = – sinπ t, γ (t) = 
 . By Theorem ., we have a(t) =


γ (t) + α(t) ≥ , b(t) = d(t) =  – sinπ t ≥ , c(t) = – + sinπ t for t ∈ [,π ], z = (x, y), x ≥ ,
y≥ ,

(
A(t)z, z

)
=

((
a(t) b(t)
b(t) a(t)

)(
x
y

)
,

(
x
y

))
≥ ,

(
B(t)z, z

)
=

((
c(t) d(t)
d(t) c(t)

)(
x
y

)
,

(
x
y

))

= c(t)
(
x + y

)
+ d(t)xy≤ [

c(t) + d(t)
](
x + y

)
= –

(
x + y

)
<

(
 – 

)(
x + y

)
< .

Thenwe havem =m = . By Theorem ., (.) possesses at least two pairs π-periodic
solutions.
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