
Nandkeolyar et al. Boundary Value Problems 2013, 2013:247
http://www.boundaryvalueproblems.com/content/2013/1/247

RESEARCH Open Access

Exact solutions of unsteady MHD free
convection in a heat absorbing fluid flow past
a flat plate with ramped wall temperature
Raj Nandkeolyar1, Mrutyunjay Das2 and Precious Sibanda1*

*Correspondence:
sibandap@ukzn.ac.za
1School of Mathematics, Statistics
and Computer Science, University
of KwaZulu-Natal, Scottsville,
Pietermaritzburg, 3209, South Africa
Full list of author information is
available at the end of the article

Abstract
Unsteady MHD free convection and mass transfer from a viscous, incompressible,
electrically conducting and heat absorbing fluid flow past a vertical infinite flat plate
is investigated. The flow is induced by a general time-dependent movement of the
vertical plate, and the cases of ramped temperature and isothermal plates are studied.
Exact solutions of the governing equations are obtained. The Sherwood number,
Nusselt number and skin friction coefficients are obtained for both ramped
temperature and isothermal plates. Some applications of practical interest are
discussed for different types of plate motions. The numerical values of species
concentration, fluid temperature and fluid velocity are displayed graphically whereas
the numerical values of Sherwood number, the Nusselt number and skin friction are
presented in tabular form, for different parameter values for both ramped and
isothermal plates.

1 Introduction
The investigation of the effects of a magnetic field on the flow of a viscous, incompressible
and electrically conducting fluid is important in many practical applications, such as in
MHD power generators and boundary layer flow control. Due to this fact, a large number
of researchers have contributed to the literature on the flow of fluids in the presence of a
magnetic field. Hayat et al. [] investigated the flow of a third-grade fluid on an oscillating
porous plate in the presence of a transverse magnetic field. They obtained an analytic so-
lution of the governing nonlinear boundary layer equations. Hayat et al. [] also obtained
the exact solution of an oscillatory boundary layer flow bounded by two horizontal flat
plates, one of which was oscillating in its own plate and the other was at rest. Seth et al.
[] obtained the exact solution for the effects of Hall current on the rotating Hartmann
flow in the presence of an inclined magnetic field.
Magnetohydrodynamic free convection finds applications in fluid engineering prob-

lems such as MHD pumps, accelerators and flow meters, plasma studies, nuclear reac-
tors, geothermal energy extraction, etc. Free convective flow past a vertical plate in the
presence of a transverse magnetic field has been studied by several researchers. Kim []
studied the magnetohydrodynamic convective heat transfer past a semi-infinite vertical
porous moving plate with variable suction. The combined effects of thermal and mass
diffusion on the unsteady free convection flow of a viscous incompressible fluid over an
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infinite vertical porous plate was investigated by Takhar et al. []. Ahmed et al. [] consid-
ered the effects of thermal diffusion on a three-dimensional MHD free convection flow of
a viscous incompressible fluid over a vertical plate embedded in a porous medium.
The combined effects of convective heat and mass transfer on the flow of a viscous,

incompressible and electrically conducting fluid has many engineering and geophysical
applications such as in geothermal reservoirs, drying of porous solids, thermal insulation,
enhanced oil recovery, cooling of nuclear reactor and underground energy transports. The
hydromagnetic free convection flowwithmass transfer effect has been studied extensively
by many researchers. Hossain and Mandal [] discussed the mass transfer effects on the
unsteady hydromagnetic free convection flow past an accelerated vertical porous plate.
Jha [] investigated the hydromagnetic free convection flow through a porous medium
with mass transfer. Elbashbeshy [] studied the heat and mass transfer along a vertical
plate with variable surface tension and concentration in the presence of a magnetic field.
Chamkha and Khaled [] investigated the hydromagnetic combined heat andmass trans-
fer by natural convection from a permeable surface embedded in a fluid saturated porous
medium. Chen [] studied the combined heat and mass transfer inMHD free convection
from a vertical surface with Ohmic heating and viscous dissipation. Afify [] discussed
the MHD free convective heat and mass transfer flow over a stretching sheet in the pres-
ence of suction/injection with thermal diffusion and diffusion thermo effects. Eldabe et al.
[] studied the unsteady motion of an MHD viscous incompressible fluid with heat and
mass transfer through porous medium near a moving vertical plate.
Heat absorption/generation effects have significant impact on the heat andmass transfer

flow of a viscous, incompressible and electrically conducting fluid. Chamkha and Khaled
[] investigated heat generation/absorption effects on hydromagnetic combined heat and
mass transfer flow from an inclined plate. The effects of a heat source/sink on unsteady
MHD convection through porous medium with combined heat and mass transfer was
studied by Kamel []. Chamkha [] solved the problem of unsteady MHD convective
heat and mass transfer past a semi-infinite vertical permeable moving plate with heat ab-
sorption. Makinde [] discussed the hydromagnetic boundary layer flow andmass trans-
fer past a vertical plate in a porous medium with constant heat flux.
In most of the above investigations, the solutions were obtained by assuming the veloc-

ity and temperature at the interface to be continuous andwell defined. There are, however,
several problems of physical interest that may require non-uniform or arbitrary wall con-
ditions. Several researchers (e.g., [–]) have investigated problems of free convection
from a vertical plate with step-discontinuities in the surface temperature. Chandran et al.
[] studied the unsteady natural convection flow in a viscous incompressible fluid near
a vertical plate with ramped wall temperature. The MHD natural convection flow past an
impulsively moving vertical plate with ramped wall temperature in the presence of ther-
mal diffusion with heat absorption was studied by Seth and Ansari []. Recently, Seth
et al. [] studied the unsteady natural convection flow of a viscous incompressible elec-
trically conducting fluid past an impulsively moving vertical plate in a porous medium
with ramped wall temperature taking into account the effects of thermal radiation. They
compared the results of natural convection near a ramped temperature plate with those
of natural convection near an isothermal plate.
The aim of the present paper is to study the hydromagnetic free convective heat and

mass transfer flow of a viscous, incompressible, electrically conducting and heat absorbing
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fluid past a vertical infinite flat plate. The fluid flow is induced by a general time-dependent
movement of the infinite plate. The governing equations are solved analytically, and a gen-
eral solution valid for any time-dependent movement of the plate is obtained. Some par-
ticular cases that highlight the applications of the general solution are discussed.

2 Formulation of the problem
Consider the unsteady MHD free convection heat and mass transfer flow of a viscous,
incompressible, electrically conducting and heat absorbing fluid along an infinite non-
conducting vertical flat plate. The x-axis is along the plate in the upward direction, the
y-axis normal to it and the z-axis normal to xy-plane. The fluid is permeated by a uni-
form transverse magnetic field of strength B applied along the y-axis. For time t′ < ,
the stationary plate and the fluid are at the same constant temperature T ′∞ and species
concentration C′∞. At time t′ = , the plate begins to move with a time-dependent veloc-
ity Uf (t′) in its own plane along the x-axis and the temperature of the plate is raised or
lowered to T ′∞ + (T ′

w – T ′∞)t′/t when t′ < t and thereafter, for t′ > t, it is maintained
at a uniform temperature T ′

w. Also, for time t′ > , species concentration is raised to C′
w.

The geometry of the problem is presented in Figure . Since the plate is of infinite extent
in x and z directions, and is electrically non-conducting, all physical quantities, except
pressure, are functions of y and t′ only.
The fluid under consideration is a metallic liquid, such as mercury, whose magnetic

Reynolds number is small, and hence the induced magnetic field produced by the fluid
motion is negligible in comparison to the applied magnetic field B ≡ (,B, ), Cramer
and Pai []. Also, no external electric field is applied, so the effect of polarization of the
magnetic field is negligible, Meyer []. With these assumptions, the governing equations
for the unsteadyMHD free convection flow andmass transfer of a viscous, incompressible,
electrically conducting and heat absorbing fluid are as follows:

∂u′

∂t′
= ν

∂u′

∂y
–

σB


ρ
u′ + gβ∗(T ′ – T ′

∞
)
+ gβ ′(C′ –C′

∞
)
, ()

∂T ′

∂t′
=

k
ρcp

∂T ′

∂y
–

Q

ρcp

(
T ′ – T ′

∞
)
, ()

∂C′

∂t′
=D

∂C′

∂y
, ()

where u′, ρ , g , β∗, β ′, T ′, C′, cp, k, ν , σ , D and Q are, respectively, the fluid velocity in the
x-direction, the fluid density, acceleration due to gravity, the volumetric coefficient of ther-
mal expansion, the volumetric coefficient of expansion for concentration, the temperature
of the fluid, species concentration, specific heat at constant pressure, thermal conductivity,

Figure 1 Geometry of the problem.
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the kinematic coefficient of viscosity, electrical conductivity, chemical molecular diffusiv-
ity and the heat absorption coefficient. Assuming no slip between the plate and the fluid,
the initial and boundary conditions are

u′ = , T ′ = T ′
∞, C′ = C′

∞ for y ≥  and t′ ≤ , (a)

u′ =Uf
(
t′
)
, C′ = C′

w at y =  for t′ > , (b)

T ′ = T ′
∞ +

(
T ′
w – T ′

∞
)
t′/t at y =  for  < t′ ≤ t, (c)

T ′ = T ′
w at y =  for t′ > t, (d)

u′ → , T ′ → T ′
∞, C′ → C′

∞ as y → ∞ for t′ > . (e)

Introducing the following non-dimensional variables

η =
y

Ut
, u =

u′

U
, t =

t′

t
, T =

T ′ – T ′∞
T ′
w – T ′∞

and C =
C′ –C′∞
C′
w –C′∞

,

equations ()-() reduce to

∂u
∂t

=
∂u
∂η +GrT +GmC –Mu, ()

∂T
∂t

=

Pr

∂T
∂η – φT , ()

∂C
∂t

=

Sc

∂C
∂η , ()

where M = σB
ν/ρU

 is the magnetic parameter, Gr = gβ∗ν(T ′
w – T ′∞)/U

 is the thermal
Grashof number,Gm = gβ ′ν(C′

w –C′∞)/U
 is the mass Grashof number, Pr = ρνcp/k is the

Prandtl number, Sc = ν/D is the Schmidt number and φ = νQ/ρcpU
 is the heat absorp-

tion parameter. The characteristic time t is defined as

t =
ν

U

. ()

The corresponding initial and boundary conditions in non-dimensional form become

u = , T = , C =  for η ≥  and t ≤ , (a)

u = f (t), C =  at η =  for t > , (b)

T = t at η =  for  < t ≤ , (c)

T =  at η =  for t > , (d)

u→ , T → , C →  as η → ∞ for t > . (e)

The system of differential equations ()-() together with the initial and boundary condi-
tions (a)-(e) describes our model for the MHD free convective heat and mass transfer
flow of a viscous, incompressible, electrically conducting and heat absorbing fluid past a
vertical flat plate with ramped wall temperature.

http://www.boundaryvalueproblems.com/content/2013/1/247


Nandkeolyar et al. Boundary Value Problems 2013, 2013:247 Page 5 of 16
http://www.boundaryvalueproblems.com/content/2013/1/247

3 Solution of the problem
The set of equations ()-() subject to the initial and boundary conditions (a)-(e) were
solved analytically using Laplace transforms. The exact solutions for species concentration
C(η, t), fluid temperature T(η, t) and fluid velocity u(η, t) are, respectively,

C(η, t) = erfc

(
η



√
a
t

)
, ()

T(η, t) = P(η, t) –H(t – )P(η, t – ), ()

u(η, t) = P(η, t) + α
[
P(η, t) –H(t – )P(η, t – )

]
+ αP(η, t), ()

where

P(η, t) =L–[f (s)e–η
√
s+M]

,

P(η, t) =
(
t

+

cη

√
d

)
eη

√
d erfc(t) +

(
t

–

cη

√
d

)
e–η

√
d erfc(t),

P(η, t) =
(

αt – 
α +

cη
α

√
d

)
eη

√
d erfc(t) +

(
αt – 
α –

cη
α

√
d

)
e–η

√
d erfc(t)

+
e–αt

α

[
eη

√
d–αc erfc(t) + e–η

√
d–αc erfc(t)

]
–

(
αt – 
α +

η

α
√
M

)
eη

√
M erfc(t) –

(
αt – 
α –

η

α
√
M

)
e–η

√
M erfc(t)

–
e–αt

α

[
eη

√
M–α erfc(t) + e–η

√
M–α erfc(t)

]
,

P(η, t) =

β
erfc(t) –

e–βt

β
[
eη

√
–aβ erfc(t) + e–η

√
–aβ erfc(t)

]

–

β

[
eη

√
M erfc(t) + e–η

√
M erfc(t)

]

+
e–βt

β
[
eη

√
M–β erfc(t) + e–η

√
M–β erfc(t)

]
,

t, t =±
√
dt
c
+

η



√
c
t
, t, t =±

√
(d – αc)t

c
+

η



√
c
t
,

t, t =±√
Mt +

η


√
t
, t, t = ±√

(M – α)t +
η


√
t
,

t =
η



√
a
t
, t, t =±√

–βt +
η



√
a
t
, t, t =±√

(M – β)t +
η


√
t
,

a = Sc, c = Pr, d = Prφ, α =
–Gr
c – 

, α =
–Gm
a – 

,

α =
d –M
c – 

and β =
–M
a – 

.

Here, erfc(x), L– and H(t – ) are respectively the complimentary error function, the in-
verse Laplace transform operator and the Heaviside unit step function.
Equations ()-() represent the analytical solutions for the free convective heat and

mass transfer flow of a viscous, incompressible, electrically conducting and heat absorbing

http://www.boundaryvalueproblems.com/content/2013/1/247


Nandkeolyar et al. Boundary Value Problems 2013, 2013:247 Page 6 of 16
http://www.boundaryvalueproblems.com/content/2013/1/247

fluid past a flat plate with ramped temperature in the presence of a uniform transverse
magnetic field. In order to highlight the effects of the ramped temperature on the fluid flow,
it is worthwhile to compare such a flow with the flow near a moving plate with constant
temperature. The solution for species concentration is given by equation (). However,
the fluid temperature and velocity for free convection near an isothermal plate has the
following form:

T(η, t) =


[
eη

√
d erfc(t) + e–η

√
d erfc(t)

]
, ()

u(η, t) = P(η, t) + αP(η, t) + αP(η, t), ()

where

P(η, t) =

α

[
eη

√
d erfc(t) + e–η

√
d erfc(t)

]
–
e–αt

α
[
eη

√
(d–αc) erfc(t) + e–η

√
(d–αc) erfc(t)

]
–


α

[
eη

√
M erfc(t) + e–η

√
M erfc(t)

]
+
e–αt

α
[
eη

√
M–α erfc(t) + e–η

√
M–α erfc(t)

]
. ()

The physical quantities of engineering interest are the Sherwood number Sh, the Nusselt
numberNu and skin-friction τ . The Sherwood numbermeasures the rate of mass transfer
at the plate and is given by

Sh = –
(

∂C
∂η

)
η=

=
√

a
π t

. ()

The Nusselt number measures the rate of heat transfer at the plate, and for a ramped
temperature plate it is

Nu = –
(

∂T
∂η

)
η=

= –
[
F(t) –H(t – )F(t – )

]
, ()

where

F(t) = –
(√

dt +
c


√
d

)
erf

(√
dt
c

)
–

√
ct
π
e–

dt
c . ()

In the case of an isothermal plate, the Nusselt number is

Nui = (
√
d) erf

(√
dt
c

)
+

√
c
π t

e–
dt
c . ()

Equations ()-() represent the analytical solutions for the flow induced by a general
time-dependent movement of the vertical flat plate. To gain some practical understanding
of the flow dynamics, some particular cases of time-dependentmovements of the plate are
discussed below.
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3.1 Plate movement with uniform velocity
Assuming that the plate moves with uniform velocity f (t) =H(t), the fluid velocity for the
ramped temperature plate is obtained as

u(η, t) = P(η, t) + α
[
P(η, t) –H(t – )P(η, t – )

]
+ αP(η, t), ()

while the isothermal plate has the velocity

u(η, t) = P(η, t) + αP(η, t) + αP(η, t), ()

where

P(η, t) =


[
eη

√
M erfc(t) + e–η

√
M erfc(t)

]
. ()

The skin friction for the ramped temperature plate is

τ =
(

∂u
∂η

)
η=

=Q(t) + α
[
F(t) –H(t – )F(t – )

]
+ αF(t), ()

and for the isothermal plate

τi =Q(t) + αF(t) + αF(t), ()

where

Q(t) = –
√
M erf(

√
Mt) –

e–Mt
√

π t
,

F(t) = –
[(

αt – 
α

)√
d +

c
α

√
d

]
erf

(√
dt
c

)
–

√
d – αc
α erf

(√(
d – αc

c

)
t
)
e–αt

+
[(

αt – 
α

)√
M +


α

√
M

]
erf(

√
Mt) +

√
M – α

α erf
(√

(M – α)t
)
e–αt

–
e– dt

c

α

√
ct
π

+
e–Mt

α

√
t
π
,

F(t) =

β

[√
–aβ erf(

√
–βt)e–βt +

√
M erf(

√
Mt) –

√
M – β erf

(√
(M – β)t

)
e–βt],

F(t) =
–
√
d

α
erf

(√
dt
c

)
+

√
d – αc
α

erf

(√(
d – αc

c

)
t
)
e–αt +

√
M
α

erf(
√
Mt)

–
√
M – α

α
erf

(√
(M – α)t

)
e–αt .

The solutions (), (), (), (), (), (), () and (), in the absence of heat absorption
(φ = ) and mass transfer (Gm = ), are in agreement with the results obtained by Seth et
al. [] when K = , N = . The results are also consistent with those of Seth and Ansari
[] for a non-porous medium K =  in the absence of mass transfer and with the results
reported by Chandran et al. [] in the absence of a magnetic field M = , mass transfer
and heat absorption.
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3.2 Plate movement with single acceleration
Assuming that the plate moves with single acceleration f (t) = tH(t), the fluid velocity for
a ramped temperature plate was obtained as

u(η, t) = P(η, t) + α
[
P(η, t) –H(t – )P(η, t – )

]
+ αP(η, t), ()

and for the isothermal plate

u(η, t) = P(η, t) + αP(η, t) + αP(η, t), ()

where

P(η, t) =
(
t

+

η


√
M

)
eη

√
M erfc(t) +

(
t

–

η


√
M

)
e–η

√
M erfc(t). ()

The skin friction for the ramped temperature plate is

τ =Q(t) + α
[
F(t) –H(t – )F(t – )

]
+ αF(t). ()

The corresponding skin friction for the isothermal plate is

τi =Q(t) + αF(t) + αF(t), ()

where

Q(t) = –
(



√
M

+ t
√
M

)
erf(

√
Mt) –

√
t
π
e–Mt . ()

3.3 Plate movement with periodic acceleration
Assuming that the plate moves with periodic acceleration f (t) = cosωtH(t), the fluid ve-
locity for the ramped temperature plate is

u(η, t) = P(η, t) + α
[
P(η, t) –H(t – )P(η, t – )

]
+ αP(η, t), ()

and the fluid velocity for the isothermal plate is

u(η, t) = P(η, t) + αP(η, t) + αP(η, t), ()

where

P(η, t) =


e–iωt

[
eη

√
M–iω erfc

(√
(M – iω)t +

η


√
t

)

+ e–η
√
M–iω erfc

(
–
√
(M – iω)t +

η


√
t

)]

+


eiωt

[
eη

√
M+iω erfc

(√
(M + iω)t +

η


√
t

)

+ e–η
√
M+iω erfc

(
–
√
(M + iω)t +

η


√
t

)]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

()
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The skin friction for the ramped temperature plate is expressed as

τ =Q(t) + α
[
F(t) –H(t – )F(t – )

]
+ αF(t), ()

and the skin friction for the isothermal plate is

τi =Q(t) + αF(t) + αF(t), ()

where

Q(t) = –
e–Mt
√

π t
–


√
M – iωe–iωt erf

(√
(M – iω)t

)

–


√
M + iωeiωt erf

(√
(M + iω)t

)
. ()

4 Results and discussion
The effects of various flow parameters on theMHDheat andmass transfer in the fluid flow
past a flat plate, the velocity, species concentration and temperature profiles are given in
Figures -whenω = π/ for both ramped temperature and isothermal plates. The values
of the skin friction, Nusselt number and Sherwood number are presented in Tables -,
again for both ramped temperature and isothermal plates.
Figure  shows that species concentration C(η, t) increases with t and decreases with an

increase in Sc. Since the Schmidt number Sc is the ratio of viscosity to mass diffusivity, an
increase in Sc implies a decrease in the mass diffusion rate. Thus it follows that species
concentration increases with an increase in time or mass diffusion rate.

Figure 2 Effect of (a) time t and (b) the Schmidt number Sc on species concentration C(η, t).

Figure 3 Effect of variation in (a) time t, (b) the heat absorption parameter φ, and (c) the Prandtl
number Pr on temperature T(η, t).
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Figure 4 Effect of variation in time t on the fluid velocity u(η, t) when (a) f (t) = H(t), (b) f (t) = tH(t), and
(c) f (t) = cosωtH(t) for Sc = 0.6, φ = 1, Pr = 0.71,M = 3, Gr = 2 and Gm = 2.

Figure 5 Effect of variation in the Schmidt number Sc on the fluid velocity u(η, t) when (a) f (t) = H(t),
(b) f (t) = tH(t), and (c) f (t) = cosωtH(t) for t = 0.7, φ = 1, Pr = 0.71,M = 3, Gr = 2 and Gm = 2.

Figure 6 Effect of variation in the heat absorption parameter φ on the fluid velocity u(η, t) when
(a) f (t) = H(t), (b) f (t) = tH(t), and (c) f (t) = cosωtH(t) for t = 0.7, Sc = 0.6, Pr = 0.71,M = 3, Gr = 2 and
Gm = 2.

Figure 7 Effect of variation in the Prandtl number Pr on the fluid velocity u(η, t) when (a) f (t) = H(t),
(b) f (t) = tH(t), and (c) f (t) = cosωtH(t) for t = 0.7, Sc = 0.6, φ = 1,M = 3, Gr = 2 and Gm = 2.

http://www.boundaryvalueproblems.com/content/2013/1/247


Nandkeolyar et al. Boundary Value Problems 2013, 2013:247 Page 11 of 16
http://www.boundaryvalueproblems.com/content/2013/1/247

Figure 8 Effect of variation in the magnetic parameterM on the fluid velocity u(η, t) when
(a) f (t) = H(t), (b) f (t) = tH(t), and (c) f (t) = cosωtH(t) for t = 0.7, Sc = 0.6, φ = 1, Pr = 0.71, Gr = 2 and
Gm = 2.

Figure 9 Effect of variation in the thermal Grashof number Gr on the fluid velocity u(η, t) when
(a) f (t) = H(t), (b) f (t) = tH(t), and (c) f (t) = cosωtH(t) for t = 0.7, Sc = 0.6, φ = 1, Pr = 0.71,M = 3 and
Gm = 2.

Figure 10 Effect of variation in the mass Grashof number Gm on the fluid velocity u(η, t) when
(a) f (t) = H(t), (b) f (t) = tH(t), and (c) f (t) = cosωtH(t) for t = 0.7, Sc = 0.6, φ = 1, Pr = 0.71,M = 3 and
Gr = 2.

Figure  shows that for both ramped temperature and isothermal plates, the fluid tem-
perature T(η, t) increases with t and decreases with an increase in either φ or Pr. Since
the Prandtl number Pr is the ratio of viscosity to the thermal diffusivity, an increase in Pr
implies a decrease in thermal diffusivity. This implies that heat absorption tends to reduce
the fluid temperature, whereas thermal diffusion and time have the opposite effect. The
finding that the fluid temperature increases with thermal diffusion and time is in agree-
ment with earlier results of Seth and Ansari [] and Seth et al. [].
Figure  shows that for both ramped temperature and isothermal plates, the fluid veloc-

ity u(η, t) increases with an increase in t in all cases except in the case of periodic acceler-
ation of the plate. In this case, the fluid velocity near the plate decreases with an increase
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Table 1 Skin friction when f (t) = H(t) for Sc = 0.6

t φ Pr M Gr Gm τ1 τ1i

0.3 1 0.71 3 2 2 –0.80740428 –0.06468570
0.5 1 0.71 3 2 2 –0.49752200 0.17704678
0.7 1 0.71 3 2 2 –0.28731934 0.25326881
0.7 1 0.71 3 2 2 –0.28731934 0.25326881
0.7 3 0.71 3 2 2 –0.29496426 –0.03525641
0.7 5 0.71 3 2 2 –0.31937448 –0.09571177
0.7 1 0.50 3 2 2 –0.26830104 0.26126499
0.7 1 0.71 3 2 2 –0.28731934 0.25326881
0.7 1 7.00 3 2 2 –0.43648929 –0.25489651
0.7 1 0.71 3 2 2 –0.28731934 0.25326881
0.7 1 0.71 5 2 2 –1.01876598 –0.61694534
0.7 1 0.71 7 2 2 –1.58008231 –1.25625623
0.7 1 0.71 3 2 2 –0.28731934 0.25326881
0.7 1 0.71 3 4 2 0.06194951 1.14312581
0.7 1 0.71 3 6 2 0.41121836 2.03298282
0.7 1 0.71 3 2 2 –0.28731934 0.25326881
0.7 1 0.71 3 2 4 0.82070361 1.36129176
0.7 1 0.71 3 2 6 1.92872655 2.46931471

Table 2 Skin friction when f (t) = tH(t) for Sc = 0.6

t φ Pr M Gr Gm τ2 τ2i

0.3 1 0.71 3 2 2 0.24349996 0.98621853
0.5 1 0.71 3 2 2 0.12077153 0.79534031
0.7 1 0.71 3 2 2 –0.04094174 0.49964642
0.7 1 0.71 3 2 2 –0.04094174 0.49964642
0.7 3 0.71 3 2 2 –0.04858666 0.21112119
0.7 5 0.71 3 2 2 –0.07299688 0.15066583
0.7 1 0.50 3 2 2 –0.02192344 0.50764260
0.7 1 0.71 3 2 2 –0.04094174 0.49964642
0.7 1 7.00 3 2 2 –0.19011168 –0.00851890
0.7 1 0.71 3 2 2 –0.04094174 0.49964642
0.7 1 0.71 5 2 2 –0.56908866 –0.16726802
0.7 1 0.71 7 2 2 –0.97488806 –0.65106197
0.7 1 0.71 3 2 2 –0.04094174 0.49964642
0.7 1 0.71 3 4 2 0.30832712 1.38950342
0.7 1 0.71 3 6 2 0.65759597 2.27936043
0.7 1 0.71 3 2 2 –0.04094174 0.49964642
0.7 1 0.71 3 2 4 1.06708121 1.60766936
0.7 1 0.71 3 2 6 2.17510416 2.71569231

in t and thereafter attains its usual nature, which is to increase with t. Thus, in general, it
may be concluded that the fluid velocity in all three cases of interest increases with time.
Figures - show that for both ramped temperature and isothermal plates, in all three
cases, the fluid velocity decreases with an increase in Sc, φ, Pr, orM, whereas it increases
with an increase in Gr or Gm. Thus it follows that heat absorption and the magnetic field
tend to retard the fluid flow, whereas thermal diffusion, mass diffusion, thermal buoyancy
force andmass buoyancy force have the opposite effect.We further note fromFigures -
that the fluid velocity in the case of a flow past an isothermal plate is higher than that of a
flow past a ramped temperature plate. The effect of the magnetic field, thermal buoyancy
force and time on the fluid velocity in the case of a flow past an impulsively started plate
are in agreement with that of Seth et al. [].
Tables - show that the skin friction decreases with an increase in time t except for

the case where the plate moves with periodic acceleration. In this case, the skin friction
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Table 3 Skin friction when f (t) = cosωtH(t) for Sc = 0.6

t φ Pr M Gr Gm τ3 τ3i

0.3 1 0.71 3 2 2 –0.51381907 0.22889951
0.5 1 0.71 3 2 2 0.23463588 0.90920466
0.7 1 0.71 3 2 2 0.98010460 1.52069275
0.7 1 0.71 3 2 2 0.98010460 1.52069275
0.7 3 0.71 3 2 2 0.97245968 1.23216753
0.7 5 0.71 3 2 2 0.94804946 1.17171216
0.7 1 0.50 3 2 2 0.99912289 1.52868893
0.7 1 0.71 3 2 2 0.98010460 1.52069275
0.7 1 7.00 3 2 2 0.83093465 1.01252743
0.7 1 0.71 3 2 2 0.98010460 1.52069275
0.7 1 0.71 5 2 2 0.49014643 0.89196706
0.7 1 0.71 7 2 2 0.11796087 0.44178695
0.7 1 0.71 3 2 2 0.98010460 1.52069275
0.7 1 0.71 3 4 2 1.32937345 2.41054975
0.7 1 0.71 3 6 2 1.67864230 3.30040676
0.7 1 0.71 3 2 2 0.98010460 1.52069275
0.7 1 0.71 3 2 4 2.08812754 2.62871570
0.7 1 0.71 3 2 6 3.19615049 3.73673864

Table 4 The Nusselt number and Sherwood number

t φ Pr Sc Nu Nui Sh

0.3 1 0.71 0.6 0.57134752 1.11605411 0.79788456
0.5 1 0.71 0.6 0.77913255 0.98302070 0.61803872
0.7 1 0.71 0.6 0.96929143 0.92531051 0.52233806
0.7 1 0.71 0.6 0.96929143 0.92531051 -
0.7 3 0.71 0.6 1.26243402 1.47003548 -
0.7 5 0.71 0.6 1.50704023 1.88594507 -
0.7 1 0.50 0.6 0.81341130 0.77650333 -
0.7 1 0.71 0.6 0.96929143 0.92531051 -
0.7 1 7.00 0.6 3.04350641 2.90540943 -
0.7 1 0.71 0.40 - - 0.42648724
0.7 1 0.71 0.60 - - 0.52233806
0.7 1 0.71 0.78 - - 0.59555702

for both ramped temperature and isothermal plates increases with an increase in time. It
is evident that the skin friction, for both ramped temperature and isothermal plates, in
all cases, increases with φ, Pr, or M, whereas it decreases with an increase in Gr or Gm,
which implies that heat absorption and themagnetic field tend to increase the shear stress
at the plate, while the thermal diffusion, thermal buoyancy force andmass buoyancy force
have the reverse effect on it. The effects of the magnetic field, thermal buoyancy force and
time on the skin friction in the case of a flow past an impulsively moving plate are similar
to those obtained by Seth et al. [].
In Table  we note that the Nusselt number for both ramped temperature and isother-

mal plates increases with Pr, φ or t, which implies that heat absorption and time have a
tendency to enhance the rate of heat transfer at the plate, whereas thermal diffusion has
the reverse effect on it. The tendency of the Nusselt number to increase with time is in
agreement with the results of Seth et al. []. It is also observed from Table  that the
Sherwood number decreases with an increase in t, whereas it increases with an increase
in Sc. Thus both mass diffusivity and time tend to reduce the rate of mass transfer at the
plate.
To analyze the behavior of species concentration, fluid temperature and fluid velocity for

large time t, the profiles of species concentration and temperature are presented in Fig-

http://www.boundaryvalueproblems.com/content/2013/1/247


Nandkeolyar et al. Boundary Value Problems 2013, 2013:247 Page 14 of 16
http://www.boundaryvalueproblems.com/content/2013/1/247

Figure 11 Behavior of (a) C(η, t) and (b) T(η, t) for large time t.

Figure 12 Behavior of u(η, t) for large time t when (a) f (t) = H(t), (b) f (t) = tH(t), and (c) f (t) = cosωtH(t).

ure  and the velocity profiles are depicted in Figure . Figure  shows that the unsteady
nature of species concentration and fluid temperature last even for large values of time t,
which implies that even for large values of time, the species concentration and tempera-
ture field does not approach the steady state. However, in Figure , it may be seen that
the velocity profiles for all the cases of plate movement become parallel to the t-axis after
a certain time. This shows that the velocity field approaches steady state as t → ∞. It is
also observed that the velocity field approaches the steady state much faster in the case of
impulsive and accelerated movements of the plate as compared to periodic acceleration
of the plate.

5 Conclusions
We have investigated the unsteady MHD free convection heat and mass transfer flow of a
viscous, incompressible, electrically conducting and heat absorbing fluid flow past an in-
finite vertical flat plate. The flow was induced by a time-dependent movement of the flat
plate. Three cases of particular interest, namely () movement of the plate with uniform
velocity, () movement of the plate with single acceleration and () movement of the plate
with periodic acceleration, have been discussed. Exact solutions of the governing equa-
tions were found using Laplace transforms. The important findings may be summarized
as follows:
- the mass diffusion rate and time tend to increase species concentration,
- heat absorption reduces the fluid temperature, whereas thermal diffusion and time
have the opposite effect,

- heat absorption and the magnetic field tend to retard the fluid flow, whereas thermal
diffusion, mass diffusion, thermal buoyancy force and mass buoyancy force have the
opposite effect,
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- heat absorption and the magnetic field tend to increase the shear stress at the plate,
whereas thermal diffusion, thermal buoyancy force and mass buoyancy force have the
reverse effect,

- heat absorption and time tend to increase the rate of heat transfer at the plate,
whereas thermal diffusion has the reverse effect, and

- mass diffusivity and time tend to reduce the rate of mass transfer at the plate.
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