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Abstract
In the present paper, we use variational methods to prove two existence results of
nontrivial solutions for the Schrödinger-Kirchhoff-type problem

{
–(a + b

∫
RN |∇u|2 dx)�u + V(x)u = f (x,u), for x ∈ RN ,

u(x) → 0, as |x| → ∞.

One deals with the asymptotic behaviors of f near zero and infinity and the other
deals with 4-superlinearity of F at infinity.

Keywords: Schrödinger-Kirchhoff-type problem; Sobolev’s embedding theorem;
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1 Introduction andmain results
In this paper, we consider the Schrödinger-Kirchhoff-type problem

{
–(a + b

∫
RN |∇u| dx)�u +V (x)u = f (x,u), for x ∈ RN ,

u(x)→ , as |x| → ∞,
(.)

where constants a > , b ≥ , N = ,  or , V ∈ C(RN ,R) and f ∈ C(RN × R,R). We are
concerned with the existence of nontrivial solutions of (.), corresponding to the critical
points of the energy functional

I(u) =
a


∫
RN

|∇u| dx + b


(∫
RN

|∇u| dx
)

+



∫
RN

V (x)u dx –
∫
RN

F(x,u)dx, (.)

where F(x, t) =
∫ t
 f (x, s)ds.

When a = , b = , problem (.) reduces to the following semilinear Schrödinger equa-
tion:

{
–�u +V (x)u = f (x,u), for x ∈ RN ,
u(x)→ , as |x| → ∞.

(.)

Equation (.) has been studied extensively by many authors, and there is a large body
of literature on the existence and multiplicity of results of solutions for equation (.); for
example, we refer the readers to [–] and references therein.
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On the other hand, the Kirchhoff-type problem on a bounded domain � ⊂ RN ,

{
–(a + b

∫
�

|∇u| dx)�u = f (x,u), in �;
u = , on ∂�,

(.)

is related to the stationary analogue of the Kirchhoff equation

utt –
(
a + b

∫
RN

|∇u| dx
)

�u = g(x, t),

which was proposed by Kirchhoff [] as an extension of the classical D’Alembert wave
equation for free vibrations of elastic strings. It is pointed out in [] that Kirchhoff-type
problem (.) models several physical and biological systems, where u describes the pro-
cess which depends on the average of itself (for example, population density). For the case
of bounded domain, some interesting studies by variational methods can be found in [–
] for equation (.) with several growth conditions on f . Very recently, Kirchhoff-type
equations on the unbounded domain or the whole space RN have also attracted a lot of
attention. Many solvability conditions on the nonlinearity have been given to obtain the
existence and multiplicity of solutions for problem (.). In [, ], the authors studied
the case of superlinear nonlinearity. In [, ], the authors considered the case of radial
potentials. In [], the authors studied the case of nonhomogeneous nonlinearity.
Equation (.) can be viewed as the combination of (.) and (.) in RN . So we call it the

Schrödinger-Kirchhoff-type problem. Compared with (.) or (.), problem (.) is much
more complicated and RN is in place of the bounded domain � ⊂ RN in (.). This makes
the study of equation (.) more difficult and interesting. In the present paper, the goal is
to study the existence of nontrivial solutions for equation (.) for the case of asymptotical
nonlinearity and weaker superlinear conditions compared with [, ].
For the potential V , we assume
(V) V ∈ C(RN ,R) satisfies infV (x) ≥ α >  and for eachM > ,

meas{x ∈ RN : V (x) ≤M} < +∞, where α is a constant and meas denotes the
Lebesgue measure in RN .

Set

H(RN)
=

{
u ∈ L

(
RN)

: ∇u ∈ L
(
RN)}

with the norm

‖u‖H =
(∫

RN

(|∇u| + u
)
dx

) 

.

Denote

E =
{
u ∈H(RN)

:
∫
RN

(|∇u| +V (x)u
)
dx < +∞

}

with the inner product and the norm

〈u, v〉E =
∫
RN

(∇u · ∇v +V (x)uv
)
dx, ‖u‖E = 〈u,u〉 


E .
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Since infV (x) ≥ α > , it is easy to see that the Hilbert space E is continuously embedded
in H(RN ). By the Sobolev embedding theorem, we know the embedding

E ↪→ Ls
(
RN)

, ≤ s ≤ ∗,

where ∗ = N
N– , if N ≥ , and ∗ = +∞, if N = , , is also continuous, and there is a con-

stant γs > ,  ≤ s ≤ ∗, such that

‖u‖s ≤ γs‖u‖E , ∀u ∈ E, (.)

where

‖u‖s =
(∫

RN
|u|s dx

) 
s
.

Moreover, the embedding E ↪→ Ls(RN ) is compact for each  ≤ s < ∗ due to the assump-
tion (V). In fact, if N = , it follows from Lemma . in []. If N = , , we also claim that
the compactness of the embedding is valid for ∗ = +∞. Indeed, let {un} ⊂ E be a sequence
of E such that un ⇀ uweakly in E. Similarly to the proof of Lemma . in [], up to a sub-
sequence, we can obtain un → u strongly in L(RN ). Next, we shall prove un → u strongly
in Ls(RN ) for  < s < +∞. In fact, ∀s ∈ (, +∞), there are t ∈ (s, +∞) and θ ∈ (, ) such that
s = θ + ( – θ )t. Then, by the Hölder inequality,

‖un – u‖ss =
∫
RN

|un – u|θ |un – u|(–θ )t dx ≤ ‖un – u‖θ ‖un – u‖(–θ )t
t .

Since the embedding

E ↪→ Ls
(
RN)

, ≤ s < +∞,N = , ,

is continuous, {un} is bounded in Lt(RN ). This, together with ‖un – u‖ → , shows un →
u strongly in Ls(RN ),  ≤ s < +∞, N = , . Therefore, the compactness result holds for
N = , , .
Throughout this paper, we shall always assume f (x, t)t ≥ , ∀(x, t) ∈ RN ×R. To establish

the existence of nontrivial solutions for Schrödinger-Kirchhoff-type problem (.) in RN ,
we make the following assumptions:

(f) f ∈ C(RN × R,R) and |f (x, t)| ≤ c( + |t|p–) for some  ≤ p < ∗, where c is a positive
constant.

(f) f (x, t) = o(|t|) as |t| →  uniformly in x ∈ RN .
(f) lim|t|→+∞ f (x,t)

t = l uniformly in x ∈ RN .
(f) F(x, t)≤ f (x, t)t+αt for all (x, t) ∈ RN ×R, where  < α < min{a,}

γ 


(γ appears in (.)).

We consider the subcritical case in the present paper, (f) and (f) with l < +∞ charac-
terize the asymptotic behavior of f at zero and infinity. The condition (f) with l = +∞
implies lim|t|→+∞ F(x,t)

t = +∞, that is, -superlinearity of F at infinity.
As usual, the Ambrosetti-Rabinowitz [] type condition

(AR) ∃ν >  : νF(x, t)≤ tf (x, t), |t| large,
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is assumed to ensure the boundedness of a Palais-Smale sequence. It implies that there
exists a constant c >  such that F(x, t) ≥ c(|t|ν – ). By a simple calculation, it is easy to
see that (AR) implies that lim|t|→+∞

F(x,t)
t = +∞, and hence (f) with l < +∞ does not ensure

the condition (AR). Furthermore, our condition (f) with l ≡ +∞ is much weaker than
the condition (AR). It is important to show that there are many functions satisfying the
conditions (f)-(f) with l ∈ (b
, +∞) or l = +∞, where


 = inf

{∫
RN

(|∇u| +V (x)u
)
dx : u ∈ E,

∫
RN

u dx = 
}
. (.)

But the condition (AR) is not satisfied.

Example  For any givenM ∈ (b
, +∞), set

f (x, t) =

{
|t|t, |t| ≤M;
Mt, |t| >M.

Then it is easy to verify that f (x, t) satisfies (f)-(f) with l ≡ M, but does not satisfy the
condition (AR).

Example  Set

f (x, t) =

{
t, |t| ≤ e;
t ln |t|, |t| > e.

Then it is easy to verify that f (x, t) satisfies (f)-(f) with l = +∞, but does not satisfy the
condition (AR).

Our main results are stated as the following theorems.

Theorem . Let conditions (V) and (f)-(f) hold and l ∈ (b
, +∞). Then problem (.)
has at least one nontrivial solution in E.

Theorem . Let conditions (V), (f)-(f) with l ≡ +∞ hold. Then problem (.) has at
least one nontrivial solution in E.

Corollary . If the following (f) or (f) is used in place of (f):

(f) F(x, t)≤ f (x, t)t, ∀x ∈ RN , ∀t ∈ R.
(f) f (x,t)

|t| is nondecreasing with respect to t.

Then the conclusions of Theorem . and Theorem . hold.

2 The preliminary lemmas
First, under assumptions (V), the embedding E ↪→ Ls(RN ) is compact for each  ≤ s < ∗.
Then the condition (f) implies I ∈ C(E,R),

〈
I ′(u), v

〉
=

(
a + b

∫
RN

|∇u| dx
)∫

RN
∇u∇vdx +

∫
RN

V (x)uvdx –
∫
RN

f (x,u)vdx (.)

http://www.boundaryvalueproblems.com/content/2013/1/250
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for all u, v ∈ E, and the weak solutions of problem (.) correspond to the critical points of
energy functional I .
Recall that we say that I satisfies the (PS) condition at the level c ∈ R ((PS)c condition for

short) if any sequence {un} ⊂ E along with I(un) → c and I ′(un) →  as n → ∞ possesses
a convergent subsequence. If I satisfies the (PS)c condition for each c ∈ R, then we say that
I satisfies the (PS) condition.
For the proof of our main results, we will make use of the following lemmas.

Lemma . 
 >  defined by (.) achieves by some ϕ
 ∈ E with
∫
RN ϕ


 dx =  and ϕ
 > 
a.e. in RN .

Proof By the Sobolev embedding theorem, one has 
 > . In order to prove that the infi-
mum is achieved, we consider a minimizing sequence {un} ⊂ E such that

‖un‖ = , ‖un‖E → 
, n→ ∞.

By the embedding E ↪→ Ls(RN ) is compact for each  ≤ s < ∗, up to a subsequence, we
may assume that there is ϕ
 ∈ E such that

un ⇀ ϕ
 in E, un → ϕ
 in L
(
RN)

,

so that

‖ϕ
‖E ≤ lim inf
n→∞ ‖un‖E =
, ‖ϕ
‖ = ,

because of the weak lower semicontinuity of ‖ · ‖E . Furthermore, we may assume that
ϕ
(x) >  a.e. in RN . Otherwise, we can replace ϕ
 by |ϕ
|. �

Lemma . Set Q(u) =
∫
RN |∇u| dx, u ∈ E. Then Q is weakly lower semicontinuous on E.

Proof The proof has been given by Lemma  in []. Next we give another direct method
to prove it, which is much easier than Lemma  in []. Let {un} ⊂ E and un ⇀ u in E. By
the embedding E ↪→ L(RN ) is compact and the weak lower semicontinuity of ‖ · ‖E , then

lim inf
n→∞ Q(un) =

[
lim inf
n→∞ Q(un) +

∫
RN

u dx
]
–

∫
RN

u dx

= lim inf
n→∞

[∫
RN

(|∇un| + un
)
dx

]
–

∫
RN

u dx

≥
∫
RN

(|∇u| + u
)
dx –

∫
RN

u dx

= Q(u).

This shows that Q is weakly lower semicontinuous on E. �

Lemma . Let (f) hold. Then any (PS) sequence of I is bounded in E.

http://www.boundaryvalueproblems.com/content/2013/1/250
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Proof Let {un} ⊂ E be a (PS) sequence with

I(un) → c, I ′(un) → , n→ ∞.

Hence, for large n, the combination of (.) with (f) implies that

c +  + ‖un‖E ≥ I(un) –



〈
I ′(un),un

〉
≥ 


min{a, }‖un‖E +

∫
RN

[


f (x,un)un – F(x,un)

]
dx

≥ 

min{a, }‖un‖E –




α

∫
RN

un dx

≥ 


[
min{a, } – αγ 


]‖un‖E . (.)

Therefore, the conclusion follows from (.) and αγ 
 <min{a, }. �

3 Proof of main results

Proof of Theorem . To begin with, we prove that there exist ρ,β >  such that I(u) ≥ β

for all u ∈ E with ‖u‖E = ρ , and I(tϕ
) → –∞ as t → +∞. Indeed, for any ε > , by (f),
(f) and (f), there exists C(ε) >  such that

F(x, t)≤ 

ε|t| + C(ε)


|t|, ∀(x, t) ∈ RN × R. (.)

Choosing  < ε < min{a,}
γ 


(γ appears in (.)), by (.) and (.),

I(u) ≥ 

min{a, }‖u‖E –

ε


‖u‖ –

C(ε)


‖u‖

≥ 

(
min{a, } – γ 

 ε
)‖u‖E –

C(ε)
p

γ 
 ‖u‖E .

Therefore, we can choose small ρ >  such that

I(u) ≥ 


(
min{a, } – γ 

 ε
)
ρ := β > 

whenever u ∈ E with ‖u‖E = ρ .
Since l > b
, by Fatou’s lemma and (f), we have

lim sup
t→+∞

I(tϕ
(x))
t

≤ lim sup
t→+∞

{
max{a, }‖ϕ
‖E

t
+
b


‖ϕ
‖E –
∫
RN

F(x, tϕ
(x))
t

dx
}

≤ b


‖ϕ
‖E – lim inf
t→+∞

∫
RN

F(x, tϕ
(x))
t

dx

≤ b


‖ϕ
‖E –
∫
RN

lim
t→+∞

F(x, tϕ
(x))
t

dx

=
b


‖ϕ
‖E –
∫
RN

lim
t→+∞

f (x, tϕ
(x))ϕ
(x)
t

dx

http://www.boundaryvalueproblems.com/content/2013/1/250
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=
b


‖ϕ
‖E –



∫
RN

lim
t→+∞

f (x, tϕ
(x))
(tϕ
(x))

· ϕ

(x)dx

=
b


‖ϕ
‖E –
l


∫
RN

ϕ

(x)dx

=
b



 –
l


< .

Hence, I(tϕ
) → –∞ as t → +∞. Therefore, we can find large t >  such that ‖tϕ
‖E >
ρ , I(tϕ
) < .
Now, we prove that I satisfies the (PS) condition. Indeed, if a sequence {un} ⊂ E is such

that

I(un) → c, I ′(un) → , n→ ∞,

then by Lemma ., {un} is bounded in E. Since the embedding E ↪→ Ls(RN ) is compact
for each s ∈ [, ∗), up to a subsequence, there is u ∈ E such that

un ⇀ u in E, un → u in Ls
(
RN)

, s ∈ [, ∗).

By (.) and a simple computation, we conclude

〈
I ′(un) – I ′(u),un – u

〉
=

(
a + b

∫
RN

|∇un| dx
)∫

RN
∇un · ∇(un – u)dx +

∫
RN

V (x)|un – u| dx

–
(
a + b

∫
RN

|∇u| dx
)∫

RN
∇u · ∇(un – u)dx

–
∫
RN

[
f (x,un) – f (x,u)

]
(un – u)dx

=
(
a + b

∫
RN

|∇un| dx
)∫

RN

∣∣∇(un – u)
∣∣ dx + ∫

RN
V (x)|un – u| dx

– b
(∫

RN
|∇u| dx –

∫
RN

|∇un| dx
)∫

RN
∇u · ∇(un – u)dx

–
∫
RN

[
f (x,un) – f (x,u)

]
(un – u)dx

≥min{a, }‖un – u‖E

– b
(∫

RN
|∇u| dx –

∫
RN

|∇un| dx
)∫

RN
∇u · ∇(un – u)dx

–
∫
RN

[
f (x,un) – f (x,u)

]
(un – u)dx. (.)

Then (.) implies that

min{a, }‖un – u‖E
≤ 〈

I ′(un) – I ′(un),un – u
〉

http://www.boundaryvalueproblems.com/content/2013/1/250
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+ b
(∫

RN
|∇u| dx –

∫
RN

|∇un| dx
)∫

RN
∇u · ∇(un – u)dx

+
∫
RN

[
f (x,un) – f (x,u)

]
(un – u)dx. (.)

Define the functional hu: E → R by

hu(v) =
∫
RN

∇u · ∇vdx, ∀v ∈ E.

Obviously, hu is a linear functional on E. Furthermore,

∣∣hu(v)∣∣ ≤
∫
RN

|∇u · ∇v|dx ≤ √
Q(u)‖v‖E , ∀v ∈ E,

which implies that hu is bounded on E, whereQ(u) is defined in Lemma..Hence hu ∈ E∗.
Since un ⇀ u in E, it has limn→∞ hu(un) = hu(u), that is,

∫
RN ∇u · ∇(un – u)dx →  as

n→ ∞. Consequently, by the boundedness of {un}, it has

b
(∫

RN
|∇u| dx –

∫
RN

|∇un| dx
)∫

RN
∇u · ∇(un – u)dx → , n→ +∞. (.)

Moreover, for any ε > , by (f), (f) and (f), there exists C(ε) >  such that

∣∣f (x, t)∣∣ ≤ ε|t| +C(ε)|t|, ∀(x, t) ∈ RN × R. (.)

Hence, (.) implies

∣∣∣∣
∫
RN

[
f (x,un) – f (x,u)

]
(un – u)dx

∣∣∣∣
≤

∫
RN

[
ε
(|un| + |u|) +C(ε)

(|un| + |u|)]|un – u|dx

≤ εc +C(ε)‖un – u‖
(‖un‖ + ‖u‖

)
≤ εc + cC(ε)‖un – u‖,

where c and c are independent of ε and n. Since ‖un –u‖ →  as n → +∞, we conclude

∫
RN

[
f (x,un) – f (x,u)

]
(un – u)dx →  as n→ +∞. (.)

Since I ′(un) → , the combination of (.), (.) and (.) implies that ‖un – u‖E → .
Note that I() =  applying the mountain pass theorem (Theorem . in []), then I

possesses a critical value c ≥ β , i.e., problem (.) has a nontrivial solution in E. This com-
pletes the proof of Theorem .. �

Proof of Theorem . Set  < ε < min{a,}
γ 


(γ appears in (.)). By (f) and (f), there exists
C(ε) >  such that

∣∣f (x, t)∣∣ ≤ ε|t| +C(ε)|t|p–. (.)

http://www.boundaryvalueproblems.com/content/2013/1/250
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Then, by (.), one has

F(x, t)≤ 

ε|t| + C(ε)

p
|t|p, ∀(x, t) ∈ RN × R.

Since p > , there exist constants ρ,β >  such that I(u) ≥ β for all u ∈ E with ‖u‖E = ρ

(see the proof of Theorem .).
Since E ↪→ L(RN ) and L(RN ) is a separable Hilbert space, E has a countable orthogonal

basis {ei}. Set Ek = span{e, . . . , ek} and Zk = E⊥
k . Since all norms are equivalent in a finite

dimensional space, there is a constant C >  such that

‖u‖ ≥ C‖u‖E , ∀u ∈ Ek . (.)

By (f)-(f) with l ≡ +∞, for anyM > b
C


, there is a constant C(M) >  such that

F(x,u)≥M|u| –C(M)|u|, ∀(x,u) ∈ RN × R. (.)

Hence, combining (.) and (.), we deduce

I(u) ≤ 

max{a, }‖u‖E +

b


‖u‖E –M‖u‖ +C(M)‖u‖

≤ 

max{a, }‖u‖E –

(
MC

 –
b


)
‖u‖E +C(M)γ 

 ‖u‖E

for all u ∈ Ek . Consequently, there is a point e ∈ E with ‖e‖E > ρ such that I(e) < .
Next, we show that I satisfies the (PS) condition. In fact, let {un} ⊂ E be a (PS) sequence

with

I(un) → c, I ′(un) → , n→ ∞.

Then, by Lemma ., {un} is bounded in E. Since the embedding E ↪→ Ls(RN ) is compact
for each s ∈ [, ∗), up to a subsequence, there is u ∈ E such that

un ⇀ u in E, un → u in Ls
(
RN)

, s ∈ [, ∗).

Thanks to (.), we have
∣∣∣∣
∫
RN

[
f (x,un) – f (x,u)

]
(un – u)dx

∣∣∣∣
≤

∫
RN

[
ε
(|un| + |u|) + c(ε)

(|un|p– + |u|p–)]|un – u|dx

≤ εc + c(ε)‖un – u‖p
(‖un‖p–p + ‖u‖p–p

)
≤ εc + cc(ε)‖un – u‖p,

where c and c are independent of ε and n. Since ‖un –u‖p →  as n→ +∞, we conclude

∫
RN

[
f (x,un) – f (x,u)

]
(un – u)dx →  as n→ +∞.

http://www.boundaryvalueproblems.com/content/2013/1/250
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The rest of the proof is the same as the proof of Theorem ., the desired conclusion fol-
lows from the mountain pass theorem (Theorem . in []). This completes the proof of
Theorem .. �

Proof of Corollary . In order to obtain the desired conclusions, by the proof of Theo-
rem . and Theorem ., it is sufficient to show that the condition (f) or (f) implies the
condition (f). First, it is obvious that (f) implies (f). Next, we only show (f) implies (f).
Indeed, by (f), whenever u > ,

F(x,u) =
∫ 


f (x,ut)udt =

∫ 



f (x,ut)
(ut)

ut dt ≤
∫ 



f (x,u)
u

ut dt =


f (x,u)u. (.)

Whenever u < ,

F(x,u) =
∫ 


f (x,ut)udt = –

∫ 



f (x,ut)
(–ut)

ut dt ≤
∫ 



f (x,u)
u

ut dt

=


f (x,u)u. (.)

Thus, (.) and (.) imply that F(x,u) ≤ f (x,u)u, ∀x ∈ RN , ∀u ∈ R. Hence (f) implies
(f). �

Remark In [], Wu considered the superlinear nonlinearity case and obtained the ex-
istence of nontrivial solutions for problem (.) under the same conditions of our Corol-
lary . with superlinear case (see Theorem  and Theorem  in []). Therefore, our The-
orem . is a generalization of Theorem  and Theorem  in [].
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