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Abstract
The paper studies the question of solution existence to a nonlinear equation in the
degenerate case. This question is studied for three particular boundary value
problems for ordinary and partial second-order differential equations. The so-called
p-regularity theory is applied to these purposes as an effective apparatus to
investigate many nonlinear mathematical, physical and numerical problems. All
results obtained in the paper are based on the constructions of this theory whose
basic concepts were described by Tret’yakov. We recall the main definitions and
theorems of p-regularity theory and illustrate the results by examples including
singular boundary value problems. In the first and second ones, the description of
solutions by a tangent cone at an initial point are given. In the third example, we
formulate a sufficient condition for p-regularity (p = 2), which can be tested using the
notion of resultant.
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Introduction
In the paper, we study the question of solution existence to a nonlinear equation

F(x) = , ()

where X, Y are Banach spaces and F ∈ Cp(X,Y ) (p ≥ ). Let x∗ be a solution to this equa-
tion, i.e., F(x∗) = . The above problem is called regular at the point x∗ if ImF ′(x∗) = Y .
Otherwise, problem () is called irregular, degenerate or singular at x∗.
The construction of p-regularity [–] gives new possibilities for solving or describing

degenerate problems (see, for instance, [–]). We are going to use it to certain ques-
tions that appear in many numerical applications. Namely, we consider the equation of
rod bending and the nonlinear Laplace equation that describemanymathematical physics
problems like string oscillation, membrane oscillation and so on.
The following degenerate nonlinear boundary value problem:

F(x, ε) = x′′ + ( + ε)
(
x + x

)
= , ()

where F : C
[,π ]×R → C[,π ] and C

[,π ] = {x ∈ C[,π ] : x() = x(π ) = }, is the first
of them.
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The second one is a modification of equation (), i.e.,

F(x, ε) = x′′ + x + εxp– + xp = , ()

where F : C
[,π ]×R → C[,π ], p≥ .

The third one is the partial differential equation of the form

F(u, ε) = �u – (ε – )g(u) = , ()

where F : C
[�] × R → C[�], � = [,π ] × [,π ], � is the Laplacian and C

[�] = {u ∈
C[�] : u|∂� = }; moreover, g : � → R is a certain function such that g() = , g ′() = ,
g ′′() �= .
Note that the numbers – and – are the eigenvalues of the operators (·)′′ and � in

equations () and (), respectively. Moreover, in the first example, we could take g(x) in-
stead of x + x such that g() = , g ′() = , g ′′() �= . It is important that the -regularity
condition is fulfilled for the mapping F(x, ε) at the point (, ). We chose equation () in
order to expose our results not only for p = . In equation () we have taken λ = – as
an arbitrary representative element of eigenvalues of the Laplacian of the form –(k + n),
k,n ∈N. Of course it is possible to take for example λ = –.
We begin with some notation. Suppose X and Y are Banach spaces and denote the

space of all continuous linear operators from X to Y by L(X,Y ). Let p be a natural
number, and let B : X × X × · · · × X (p-copies of X) → Y be a continuous symmetric
p-multilinear mapping. The p form associated to B is the map B[·]p : X → Y defined by
B[x]p = B(x,x, . . . ,x) for x ∈ X. Alternatively, we may simply view B[·]p as a homogeneous
polynomial Q : X → Y of degree p, and hence Q(αx) = αpQ(x). Throughout this paper, we
assume that the mapping F : X → Y is p-times continuously Fréchet differentiable on X
and its pth order derivative at x ∈ X will be denoted as F (p)(x) (a symmetric multilinear
map of p copies of X to Y ) and the associated p-form, also called a pth-order mapping, is

F (p)(x)[h]p = F (p)(x)[h,h, . . . ,h].

We also use the notation

Kerp F (p)(x) =
{
h ∈ X : F (p)(x)[h]p = 

}
and refer to it as the p-kernel of the pth-order mapping.
The set M(x∗) = {x ∈ X : F(x) = F(x∗) = } is called the solution set for the mapping F .

We call h a tangent vector to the set M ⊆ X at x∗ ∈ M if there exist ε >  and a function
r : [, ε] → X with the property that for t ∈ [, ε] we have x∗+ th+r(t) ∈M and ‖r(t)‖ = o(t)
as t →  (for the sake of simplicity, the record t →  will be omitted in the following text
of paper). The set of all tangent vectors at x∗ is called the tangent cone to M at x∗ and is
denoted by TM(x∗). A map F : X → Y is regular at x∗ ∈ X if ImF ′(x∗) = Y . In the regular
case, the tangent cone to the solution set coincides with the kernel of the first derivative
of the map F . Recall the following theorem.

Theorem  (Classical Lyusternic theorem) Let X and Y be Banach spaces and a map
F : X → Y be regular at x∗ ∈ X. Then

TM(x∗) =KerF ′(x∗).
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The notion of regularity is generalized to the notion of the so-called p-regularity which
will be described in the next section.

Elements of p-regularity theory
Assume that x∗ ∈U ⊆ X,U is a neighborhood of an element x∗. Let a mapping F :U → Y
be p-times Fréchet differentiable in U and ImF ′(x∗) �= Y (the regularity condition does
not hold). In order to define the notion of p-regularity, let us define the so-called p-factor
operator (see []). Assume that the space Y is decomposed into a direct sum

Y = Y ⊕ · · · ⊕ Yp, ()

where Y = cl(ImF ′(x∗)) (the closure of the image of the first derivative of F evaluated at
x∗) and the next spaces are defined as follows. Let Z be a closed complementary subspace
to Y, that is, Y = Y ⊕Z (we assume that such a closed complement exists), and let PZ :
Y → Z be a projection operator onto Z along Y. Let Y = cl(span ImPZF ′′(x∗)[·]) ⊆ Z

(the closure of the linear span of the image of the quadratic map PZF ′′(x∗)[·]). More
generally, define

Yi = cl
(
span ImPZiF

(i)(x∗)[·]i
) ⊆ Zi, i = , . . . ,p – ,

where Zi is a closed complementary subspace to Y ⊕ · · · ⊕ Yi–, i = , . . . ,p, with respect
to Y , and PZi : Y → Zi is a projection operator onto Zi along Y ⊕ · · · ⊕ Yi–, i = , . . . ,p.
Finally, Yp = Zp. The order p is chosen as the minimal number (if it exists) for which the
above decomposition () holds.
Now, let us define the following mappings:

fi(x) :U → Yi, fi(x) = PYiF(x), i = , . . . ,p,

where PYi : Y → Yi is a projection operator from Y along Y ⊕ · · · ⊕Yi– ⊕Yi+ ⊕ · · · ⊕Yp.
Below we recall some important definitions for further considerations.
We introduce the following operator:

	p(x∗, ·) = f ′
 (x∗) + f ′′

 (x∗)[·] + · · · + f (p)p (x∗)[·]p–.

This means that

	p(x∗,h) = f ′
 (x∗) + f ′′

 (x∗)[h] + · · · + f (p)p (x∗)[h]p–.

Definition  Let h ∈ X. The linear operator 	p(x∗,h) ∈ L(X,Y ) is called the p-factor op-
erator.

Sometimes it is convenient to use the following representation of the p-factor operator:

	p(x∗,h) =
(
f ′
 (x∗), f ′′

 (x∗)[h], . . . , f (p)p (x∗)[h]p–
)

=
(
PYF

′(x∗),PYF
′′(x∗)[h], . . . ,PYpF

(p)(x∗)[h]p–
)

for h ∈ X. In this representation, we assume that Y = Y × · · · × Yp.

http://www.boundaryvalueproblems.com/content/2013/1/251


Grzegorczyk et al. Boundary Value Problems 2013, 2013:251 Page 4 of 13
http://www.boundaryvalueproblems.com/content/2013/1/251

We say that F is completely degenerate at x∗ up to order p if F (i)(x∗) = , i = , . . . ,p – .
In the completely degenerate case, the p-factor operator is equal to F (p)(x∗)[h]p–.

Definition  The p-kernel of the operator 	p(x∗, ·) is a set

Hp(x∗) = Kerp 	p(x∗, ·) =
{
h ∈ X :	p(x∗,h)[h] = 

}
=

{
h ∈ X : f ′

 (x∗)[h] + f ′′
 (x∗)[h] + · · · + f (p)p (x∗)[h]p = 

}
.

Note that

Kerp 	p(x∗, ·) =
{ p⋂

i=

Keri f (i)i (x∗)

}
.

In the completely degenerate case, Hp(x∗) is equal to

Kerp F (p)(x∗) =
{
h ∈ X : F (p)(x∗)[h]p = 

}
.

Definition  A mapping F is called p-regular at x∗ along h, p > , if Im	p(x∗,h) = Y (i.e.,
the operator 	p(x∗,h) is surjection).

Definition  A mapping F is called p-regular at x∗, p > , if it is p-regular along every h
belonging to the set Hp(x∗)\{}.

Note that if Hp(x∗) = {}, then F is automatically p-regular.
The following theorem gives a description of the tangent cone in the degenerate case.

Theorem  (Generalized Lyusternik theorem []) Let X and Y be Banach spaces, F ∈
Cp(X,Y ) be p-regular at x∗ ∈U ⊂ X. Then

TM(x∗) =Hp(x∗).

Applications
The following lemma will be important in the study of surjectivity of p-factor operators
in the mentioned examples.

Lemma  Suppose that Y = Y ⊕ Y, where Y, Y are closed subspaces in Y , A,B ∈
L(X,Y ), ImA = Y. Let also P be a projection onto Y along Y. Then (A + PB)X = Y ⇔
(PB)KerA = Y.

This lemma is a straightforward consequence of the following simple lemma.

Lemma  Suppose that Y = Y ⊕ Y, where Y, Y are closed subspaces in Y , A,A ∈
L(X,Y ), AX ⊂ Y, AX ⊂ Y. Then (A +A)X = Y iff AKerA = Y and AKerA = Y.

The proof is obvious. Lemma  follows from Lemma  if we put A = A and A = PB.

http://www.boundaryvalueproblems.com/content/2013/1/251
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Example  Now we apply the above theory to differential equation ()

F(x, ε) = x′′ + ( + ε)
(
x + x

)
= ,

where F : C
[,π ] × R → C[,π ] and C

[,π ] = {x ∈ C[,π ] : x() = x(π ) = }. Observe
that x∗ = (, ) is a trivial solution of this equation.
The first derivative of the mapping F is

F ′(x, ε) =
[
F ′
x(x, ε),F

′
ε(x, ε)

]
=

[
d

dt
+ ( + ε)( + x),x + x

]
.

In our case, F ′
x(, ) = (·)′′ + (·) and F ′

ε(, ) = .
Note that KerF ′

x(, ) = {x ∈ C[,π ] : dxdt + x = }. The general solution of the equation
x′′ + x =  is x(t) = c cos t + c sin t. Taking into account the boundary condition, we obtain
c = , x(t) = c sin t and KerF ′

x(, ) = span{sin t}.
The image of F ′

x(, ) is defined as follows:

ImF ′
x(, ) =

{
y ∈ C[,π ] : ∃x ∈ C[,π ] F ′

x(, )x = y,x() = x(π ) = 
}

=
{
y ∈ C[,π ] : ∃x ∈ C[,π ] such that x′′ + x = y,x() = x(π ) = 

}
.

The general solution of the above equation has the form

x(t) = c cos t + c sin t – cos t
∫ t


y(τ ) sin τ dτ + sin t

∫ t


y(τ ) cos τ dτ .

In view of the boundary conditions x() = x(π ) = , we obtain

ImF ′
x(, ) =

{
y ∈ C[,π ] :

∫ π


y(τ ) sin τ dτ = 

}
.

One can easily show that the boundary value problem x′′ + x = sin t, x() = x(π ) = 
does not have a solution. Moreover, since

∫ π

 sin(t)dt �= , it follows that y(t) = sin t /∈
ImF ′

x(, ). This implies that the operator F ′
x(, ) is not surjective, i.e., ImF ′

x(, ) �=
C[,π ] = Y . Then Y = Y ⊕ Z, where Y = ImF ′

x(, ) and Z =KerF ′
x(, ).

The projector PZ : Y → Z along Y can be described as

PZy =

π
sin t

∫ π


y(τ ) sin τ dτ , y ∈ Y .

Since

F ′′(x, ε) =

[
( + ε)  + x
 + x 

]
, F ′′(, ) =

[
 
 

]
,

F ′′(, )[hz,hε] = [hz + hε ,hz], F ′′(, )[hz,hε] = hz + hzhε ,

then

Y = span
(
ImPZF

′′(, )[·])
= span

{
y(t) ∈ Y : y(t) =


π
sin t

∫ π


F ′′(, )[·] sin τ dτ

}
= span{sin t} = Z

http://www.boundaryvalueproblems.com/content/2013/1/251
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and

Y = C[,π ] = Y ⊕ Y = ImF ′
x(, )⊕KerF ′

x(, ).

Consequently, [ImF ′
x(, )]⊥ =KerF ′

x(, ).
Using p-regularity theory and the generalized Lyusternik theorem, we obtain the fol-

lowing assertion. If the mapping F is p-regular (p = ) at the point x∗ = (, ) with re-
spect to the element h = [hz,hε], where hz = z sin t, z ∈R, hε = ε, then there exist solutions
x = x(t, ε) = εz sin t + r(ε), ‖r(ε)‖ = o(ε) of equation () for ε ∈ (–σ ,σ ), where σ >  is suffi-
ciently small. Below we will describe a -factor operator and show its surjectivity.
Let P = PY be a projection onto Y = ImF ′

x(, ) and P = PY be a projection onto Y =
KerF ′

x(, ) along Y. The -factor operator has the form

	
(
(, ), [hz,hε]

)
= f ′

 (, ) + f ′′
 (, )[hz,hε]

= PF ′
x(, ) + PF ′′(, )[hz,hε]

= F ′
x(, ) + PF ′′(, )[hz,hε]

because PF ′
x = F ′

x.
Using the second derivative of F , we obtain, for [hu,hλ] ∈ C[,π ]×R,

	
(
(, ), [hz,hε]

)
[hu,hλ] =

dhu
dt

+ hu + P[hzhu + hεhu + hzhλ]

=
dhu
dt

+ hu +

π

〈hzhu + hεhu + hzhλ, sin t〉 sin t

=
dhu
dt

+ hu +

π
sin t

∫ π


(hzhu + hεhu + hzhλ) sin t dt.

Now we describe the -kernel of the operator 	((, ), ·)

H(, ) =
{
h = [hz,hε] ∈ C[,π ]×R :	

(
(, ),h

)
[h] = 

}
.

Assume that h = [hz,hε] ∈KerF ′
x(, ), i.e., F ′

x(, )[hz,hε] = . Then hz = z sin t, z ∈R, hε ∈
R and

	
(
(, ), [hz,hε]

)
[hz,hε] = PF ′′(, )[hz,hε] =


π
sin t

∫ π



(
hz + hzhε

)
sin t dt = 

⇔
∫ π



(
hz + hzhε

)
sin t dt = 

⇔ z
∫ π


sin t dt + zhε

∫ π


sin t dt = 

⇔ 

z +

π


zhε =  ⇔ z = ∨ z = –



πhε

⇔ hz = ∨ hz = –


πhε sin t.

This implies that H(, ) = {[, ε]} ∪ {[–
πε sin t, ε]}, where hε = ε.

http://www.boundaryvalueproblems.com/content/2013/1/251
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Next we verify that themapping	((, ), [hz,hε]) is surjective onto C[,π ] for elements
belonging to the set H(, ), that is,

∀y ∈ C[,π ] ∃[hu,hλ] ∈ C[,π ]×R such that 	
(
(, ), [hz,hε]

)
[hu,hλ] = y.

Consider the first case [hz,hε] = [, ε], ε �= .
Assume that

dhu(t)
dt

+ hu(t) +

π
sin t

∫ π


εhu(t) sin t dt = y = y + y, ()

where

y =
dhu(t)
dt

+ hu(t) = Py ∈ Y = ImF ′
x(, ),

y =

π
sin t

∫ π


εhu(t) sin t dt = Py ∈ Y =KerF ′

x(, ).

Putting y = a sin t and using Lemma , it suffices to take hu = b sin t ∈ KerF ′
x(, ). Then

from () we obtain y =  and 
π
ε sin t

∫ π

 b sin t dt = a sin t from where b = a
ε
, hu = a

ε
sin t.

The solutions of equation () exist, and hence 	((, ), [hz,hε]) is surjective.
Verify the second case [hz,hε] = [–

πε sin t, ε], ε �= . Consider the equation

dhu(t)
dt

+ hu(t) +

π
sin t

∫ π



[
ε

(
–


π sin t

)
hu(t) + εhu(t)

+ ε

(
–


π sin t

)
hλ

]
sin t dt = y = y + y. ()

Putting y = a sin t, using Lemma  and taking hu = b sin t ∈KerF ′
x(, ), we have y =  and

–
π

hλε sin t +


π

ε sin t
∫ π



(
–



π sin t + sin t
)
b sin t dt = a sin t.

Hence b = –
πhλ– a

ε
, and hu = (–

πhλ– a
ε
) sin t. The solutions of equation () exist, hence

	((, ), [hz,hε]) is surjective in this case too. Therefore the mapping F is -regular at the
point x∗ = (, ) with respect to the element h = [hz,hε].

Using the generalized Lyusternik theorem, we can describe the solutions belonging to
the tangent cone TM(, ). For [hz,hε] = [, ε] we have x(t, ε) = r(ε) and for [hz,hε] =
[–

πε sin t, ε] we have x(t, ε) = –
πε sin t + r(ε), where ‖ri(ε)‖ = o(ε) for i = ,  and ε ∈

(–σ ,σ ), σ >  is sufficiently small. Thus we obtain the following theorem.

Theorem  Equation () has two solutions xi(t, ε), i = , , such that

x(t, ε) = r(ε),

x(t, ε) = –


πε sin t + r(ε),

where ‖ri(ε)‖ = o(ε) for i = ,  and ε ∈ (–σ ,σ ), σ >  is sufficiently small.

http://www.boundaryvalueproblems.com/content/2013/1/251
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Example  Equation (), i.e.,

F(x, ε) = x′′ + x + εxp– + xp = ,

where F : C
[,π ] × R → C[,π ], p ≥ , can be investigated analogously. Similarly, we

obtain the following result.

Theorem  Equation () has a nonzero solution x(t, ε) such that

x(t, ε) = –
ε

p
cp sin t + r(ε),

where

cp =
∫ π

 sinp t dt∫ π

 sinp+ t dt
,

∥∥r(ε)∥∥ = o(ε)

and ε ∈ (–σ ,σ ), σ >  is sufficiently small.

Example  Consider now equation ()

F(u, ε) = �u – (ε – )g(u) = ,

where F : C
[�] × R → C[�], � = [,π ] × [,π ], � is the Laplacian, with the assump-

tion g() = , g ′() = , g ′′() �= . The point x∗ = (, ) is the trivial solution of the above
equation.
We put u = u(y) = u(y, y).
The first derivative of the mapping F is the following:

F ′(u, ε) =
[
F ′
u(u, ε),F

′
ε(u, ε)

]
=

[
� – (ε – )g ′(u), –g(u)

]
.

In our case F ′
u(, ) = � + .

Note that KerF ′
u(, ) = {u ∈ C

[�] : �u + u = }. This space is spanned by the L

orthonormal functions (see [], p.)

u =

π
siny sin y, u =


π
sin y siny

(that is, 〈ui,uj〉 =
∫
�
uiuj dy dy and

∫
�
ui dy dy = ,

∫
�
uiuj dy dy =  for i �= j). More-

over,

C[�] = ImF ′
u(, )⊕KerF ′

u(, )

and

[
ImF ′

u(, )
]⊥ =KerF ′

u(, ).

From p-regularity theory and the generalized Lyusternik theorem, we obtain the following
assertion. If the mapping F is p-regular at the point x∗ = (, ) with respect to the element
h = [hz,hε], where z = (z, z), hz = zu +zu, hε = ε, then there exist solutions u = u(y, ε) =

http://www.boundaryvalueproblems.com/content/2013/1/251
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ε(zu + zu)+ r(ε), ‖r(ε)‖ = o(ε) of equation () for ε ∈ (–σ ,σ ), where σ >  is sufficiently
small.
Let P = PY be the projection of Y onto Y = ImF ′

u(, ), and let P = PY be the projec-
tion of Y onto Y =KerF ′

u(, ) along Y. We define the -factor operator:

	
(
(, ),h

)
= 	

(
(, ), [hz,hε]

)
= f ′

 (, ) + f ′′
 (, )[hz,hε]

= PF ′
u(, ) + PF ′′(, )[hz,hε]

= F ′
u(, ) + PF ′′(, )[hz,hε]

(
because PF ′

u = F ′
u
)
.

Using the second derivative of F , that is,

F ′′(u, ε) =

[
–(ε – )g ′′(u) –g ′(u)

–g ′(u) 

]
, F ′′(, ) =

[
g ′′() –

– 

]
,

F ′′(, )[hz,hε] =

[
g ′() –
– 

]
[hz,hε] =

[
g ′′()hz – hε , –hz

]
,

we obtain, for [hu,hλ] ∈ C
[�]×R,

F ′′(, )[hz,hε][hu,hλ] =
[
g ′′()hz – hε , –hz

]
[hu,hλ] = g ′′()hzhu – hεhu – hzhλ,

and hence

F ′′(, )[hz,hε] = g ′′()hz – hzhε .

From the above calculations it follows that the value of the -factor operator 	((, ),
[hz,hε]) on an element x = [hu,hλ] ∈ C

[�]×R is equal to

	
(
(, ),h

)
[x] = 	

(
(, ), [hz,hε]

)
[hu,hλ]

= �hu + hu + P
[
g ′′()hzhu – hεhu – hzhλ

]
= �hu + hu +

∑
i=

〈
g ′′()hzhu – hεhu – hzhλ,ui

〉
ui.

Now we describe the -kernel of the operator 	((, ), ·), which is the set

H(, ) =
{
h = [hz,hε] ∈ C

[�]×R :	
(
(, ),h

)
[h] = 

}
.

Assuming that [hz,hε] = [zu + zu, ε] ∈KerF ′
u(, ), we have

F ′
u(, )[hz,hε] = 

and

	
(
(, ), [hz,hε]

)
[hz,hε]

= PF ′′(, )[hz,hε] =
∑
i=

〈
F ′′(, )[hz,hε],ui

〉
ui
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=
∑
i=

ui
∫

�

(
g ′′()hz – hzhε

)
ui dy dy

=
∑
i=

ui
∫

�

[
g ′′()(zu + zu) – (zu + zu)ε

]
ui dy dy

=
∑
i=

ui
[
g ′′()

∫
�

ui(zu + zu) dy dy – ε
∫

�

ui(zu + zu)dy dy
]

=
∑
i=

ui
[
g ′′()

∫
�

ui(zu + zu) dy dy – εzi
]
.

Next, introducing the quadratic forms

Qi(hz, ε) =Qi(z, z, ε) = g ′′()
∫

�

ui(zu + zu) dy dy – εzi, i = , ,

we obtain the following system of equations for elements belonging to the set H(, ):

{
Q(hz, ε) =Q(z, z, ε) = g ′′()

∫
�
u(zu + zu) dy dy – εz = ,

Q(hz, ε) =Q(z, z, ε) = g ′′()
∫
�
u(zu + zu) dy dy – εz = 

()

or, equivalently,

{
g ′′()

∫
�
(uz + zzuu + zuu)dy dy – εz = ,

g ′′()
∫
�
(uuz + zzuu + zu)dy dy – εz = .

Simple calculations give us

a =
∫

�

u dy dy =
∫

�

u dy dy =



· 
π ,

b =
∫

�

uu dy dy =
∫

�

uu dy dy = –



· 
π ,

and we obtain the following form of system ():

{
g ′′()(az + bzz + bz) – εz = ,
g ′′()(bz + bzz + az) – εz = ,

()

or putting Cjk
i = g ′′()

∫
�
uiujuk dy dy, we get

∑
j,k=

Cjk
i zjzk – εzi = , i = , .

Note that ifM(z, z) is the ×  symmetric matrix whose (i, j) entry is

aij =
∑

m=

(∫
�

uiujum dy dy
)
zm,
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that is,

M(z, z) =

[
az + bz bz + bz
bz + bz bz + az

]
,

then system () is equivalent to the following equation:

[
g ′′()M(z) – εI

][
z
z

]
= , where I =

[
 
 

]
.

Thus we get the following condition: elements [zu + zu, ε] ∈ H(, ) (that is, ele-
ments (z, z, ε) are the solutions of system ()) if and only if either (z, z) is an eigenvec-
tor of g ′′()M(z) corresponding to the eigenvalue ε or (z, z) = (, ). We will prove
that for [u + u, ε] ∈ H(, ), the mapping F is always -regular and for any other
[zu + zu, ε] ∈H(, ), F is -regular if ε is not an eigenvalue of g ′′()M(z).
Note thatQ(z, z, ε) = (Q(z, z, ε),Q(z, z, ε)) is a quadraticmapping associated to the

-factor operator 	((, ),h). If [zu + zu, ε] ∈H(, ), then the first differentiation of
Q gives us the matrix form of the operator 	((, ),h). Consider the calculations:

Q′(z, z, ε) =

[
g ′′()(za + zb) – ε g ′′()(zb + zb) –z

g ′′()(zb + zb) g ′′()(zb + za) – ε –z

]
,

Q′′(z, z, ε) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣
g ′′()a g ′′()b –
g ′′()b g ′′()b 

–  

⎤
⎥⎦

⎡
⎢⎣
g ′′()b g ′′()b 
g ′′()b g ′′()a –

 – 

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and 	((, ),h) =Q′′(z, z, ε)
[ z
z
ε

]
.

It follows that

	
(
(, ),h

)
=

[
g ′′()(za + zb) – ε g ′′()(zb + zb) –z

g ′′()(zb + zb) g ′′()(zb + za) – ε –z

]
, ()

that is, 	((, ),h) =Q′.
For an arbitrary element h = (z, z, ε) ∈H(, ), we examine the surjectivity of themap-

ping 	((, ),h), that is, the following condition:

∀η ∈ C[�] ∃ξ ∈ C
[�]×R such that 	

(
(, ),h

)
[ξ ] = η.

For ξ = (ξ, ξ,λ), η = (η,η), we have

	
(
(, ),h

)⎡
⎢⎣

ξ

ξ

λ

⎤
⎥⎦

=

[
[g ′′()(za + zb) – ε]ξ + [g ′′()(zb + zb)]ξ – zλ
g ′′()(zb + zb)ξ + [g ′′()(zb + za) – ε]ξ – zλ

]
=

[
η

η

]
,
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or
[
g ′′()

[
az + bz bz + bz
bz + bz bz + az

]
– ε

[
 
 

]][
ξ

ξ

]
– λ

[
z
z

]
=

[
η

η

]

and


[
g ′′()M(z) – εI

][
ξ

ξ

]
= λ

[
z
z

]
+

[
η

η

]
. ()

Observe that for [u + u, ε], ε �= , F is always -regular (since the matrix () has the
maximal rank). Now put ε =  in (). Then we get z = z = . This means that in this case
H(, ) = {} and then F is -regular (in this trivial case, the equation F(u, ε) =  has the
unique solution u = ). Consider the other [zu + zu, ε] ∈ H(, ). Then equation ()
has the solution if det[g ′′()M(z) – εI] �= . This means that ε is not an eigenvalue of
g ′′()M(z).
From the above consideration, we obtain the following sufficient condition for -regular-

ity: thematrix g ′′()M(z) has no eigenvalues ε and ε. This condition can be tested using
the notion of resultant. We evidently have g ′′() �= . Let λ and λ be the eigenvalues,
and let λ �= . Then we obtain

det
[
M(z, z) – λI

]
= det

[[
az + bz bz + bz
bz + bz bz + az

]
– λ

[
 
 

]]

= λ +Aλ +A = , ()

where A = –(a + b)(z + z) and A = (ab – b)z + (a – b)zz + (ab – b)z.
Likewise,

det
[
M(z, z) – λI

]
= λ + Aλ +A = . ()

Subtracting equation () from () gives λ +A =  (because λ �= ). The condition that
an eigenvalue multiplied by two is not an eigenvalue means that the polynomials f = λ +
Aλ+A and g = λ+A do not have a common root. This is equivalent to the nonvanishing
of the resultant:

R(f , g) =

∣∣∣∣∣∣∣
 A A

 A 
  A

∣∣∣∣∣∣∣ = Az + Bzz +Az.

This resultant is a quadratic form with A = (ab – b) – (a + b), B = 
 [(a

 – b) – (a +
b)]. Thus a sufficient condition of -regularity is that this form is positively or negatively
defined. Therefore one obtainsA –B > . In our case, one findsA = [a –ab+b] ≈
. · ( 

π ), B = 
 [b

 –a +ba] ≈ . · ( 
π ) andA > B, so the test with resultants

is effective.

Summing up we conclude from the generalized Lyusternic theorem: the tangent cone
coincides with the -kernel H(, ) and this gives the solutions.
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Theorem  Equation () has a nonzero solution u(ε) such that

u(ε) = ε(zu + zu) + r(ε),
∥∥r(ε)∥∥ = o(ε)

for ε ∈ (–σ ,σ ), where σ >  is sufficiently small.

Conclusion
The paper was inspired by Buchner, Marsden and Schecter’s article []. The authors con-
sider the bifurcation problem F(x,λ) = Lx+ (λ–λ)x+R(x) = , where L is the elliptic self-
adjoint operator on a suitable Banach space Y of functions, with another suitable Banach
space of function X - the domain of L ⊂ Y , R : X → Y is a smooth map with R() =  and
R′() = , λ - is an eigenvalue of L of multiplicity n, x ∈ X and λ ∈R. They use Lyapunov-
Schmidt procedure to examine the above equation and show that (, ) is a bifurcation
point and that there exist solutions different from (,λ). Our examples are special cases of
the above problem, and we use p-regularity theory to prove the existence of solutions and
give an approximative description of the solution set. The structure of the solution set is
reduced to a study of the system of homogeneous algebraic equations.
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