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1 Introduction

We consider the fast diffusion equation with a nonlocal source
u, = Au" + auq/ u’(y,t)dy, x€Q,t>0, (1.1)
Q

subject to the homogeneous Dirichlet boundary and initial conditions

ulx,t)=0, x€dQt>0, 1.2)

ulx,0) =ug(x), x€€, (1.3)

where0<m<1,p>0,4>0,a>0,and Q@ C RN (N > 1) is a bounded domain with smooth
boundary and uy € L*(2) N WS’Z(Q) is a nonnegative function. The symbols || - ||, (p > 1)
and |2| denote the L”-norm and the measure of €2, respectively.

Equation (1.1) describes the fast diffusion of concentration of some Newtonian fluids
through porous media or the density of some biological species in many physical phe-
nomena and biological species theories. It has been known that the nonlocal source term
presents a more realistic model for population dynamics, see [1-3]. In the nonlinear dif-
fusion theory, there exist obvious differences among the situations of slow (m > 1), fast
(0 < m <1), and linear (m = 1) diffusions. For example, there is a finite speed propagation
in the slow and linear diffusion situations, whereas an infinite speed propagation exists in
the fast diffusion situation.

Recently, many scholars have been devoted to the study on blow-up and extinction prop-
erties of solutions for nonlinear diffusion equations with nonlocal terms, see [4—10]. Ex-
tinction of a function is a phenomenon for which there exists a finite time 7' > 0 such that
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the solution is nontrivial on (0, T) and then u(x, ) = 0 for all (x,£) € Q x [T, +00). In this
case, T is called an extinction time. It is also an important property of solutions to non-
linear parabolic equations which have been studied by many researchers. For example,
Kalashnikov [11] studied the Cauchy problem of a semilinear parabolic equation with an
absorption term

u=Au-ru?, xeRN,£>0,

and obtained extinctions as well as localization and finite propagation properties of the
solutions. Evans and Knerr [12] investigated extinction behaviors of the solutions for the
Cauchy problem of a semilinear parabolic equation with a fully nonlinear absorption term

u(x,t) = Aul(x, t) — ,B(M(x, t)), xeRN,t>0.

Ferrieira and Vazquez [13] studied extinction phenomena of the solutions for the Cauchy
problem of a porous medium equation with an absorption term

U = (”m)xx —u’, xeRt>0,
by using the analysis of a self-similar solution. By constructing a suitable comparison func-

tion, Li and Wu [14] considered the problem of a porous medium equation with a local

source term
u; = A" + 2, xe€Q,t>0,

subject to homogeneous Dirichlet boundary condition (1.2) and initial condition (1.3).
They obtained some conditions for extinction and non-extinction of the solutions to the
above equation and decay estimates. On extinctions of solutions to the p-Laplacian equa-
tion or the doubly degenerate equations, refer to [15, 16] and the references therein.

For equation (1.1) with p = 0 and N > 2, Han and Gao [8] showed that g = m is a critical
exponent for occurrence of extinction or non-extinction. Recently, Fang and Xu [9] con-
sidered equation (1.1) with p = 0 and a linear absorption term, when the diffusion term was
replaced with p-Laplacian operator in the whole dimensional space, and showed that the
extinction of the weak solution is determined by competition of source and absorption
terms. They also obtained the exponential decay estimates which depend on the initial
data, coefficients, and domains. Thereafter, they obtained the same results for a class of
nonlocal porous medium equations with strong absorption, see [10].

Motivated by the mentioned works above, we study extinction behaviors of the solutions
for problem (1.1)-(1.3) in the whole dimensional space. The main tools we use are the
super- and sub-solution and the energy methods to obtain some sufficient conditions for
extinction of the solutions, and we give exponential decay estimates which depend on the
initial data, coefficients, and domains. In fact, the energy method has a wide application,
especially for the equations that do not satisfy the maximum principle (¢f. [17]).

Our paper is organized as follows. In Section 2, we give preliminary knowledge including
lemmas that are required in the proofs of our results. In Section 3, we obtain a critical value
for extinction of the solutions to problem (1.1)-(1.3) by using the modified comparison
principle and give the decay estimates for the extinctions of the solutions in Section 4.
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2 Preliminaries and main results
Due to the singularity of equation (1.1), problem (1.1)-(1.3) has no classical solutions in
general, and hence it is reasonable to find a weak solution of the problem. To this end, we

first give the following definition of a weak local solution.

Definition 1 A function u € L*°(Qr) is called a super-solution of problem (1.1)-(1.3) in
Qr if the following conditions hold:
(1) u(x,0) = up(x) in Q,
(ii) z(x,£)>00n o2 x (0,7),
(iii) for every ¢ € (0, T) and every test function &,

/u(x,t)%‘(x,t)dxz / uo(x)& (x,0) dx
Q

Q

m q p
+/0 /Q{ués+u A& +au fQu (y,t)dyé(x,s)}dxds,

where 0 < & € C(Qr N C**(Qr), &, A& € L*(Qr), § > 0, &yax(0,1) = 0, and
Qr =2 x (0,T). A sub-solution can be similarly defined by replacing the inequality
sign > in the above conditions with <. A function is called a local solution of

(1.1)-(1.3) if it is both super- and sub-solution for some T'.

Let ¢(x) be the unique positive solution of the following linear elliptic problem:
-Apx)=1, xe; px)=0, xed. (2.1)

Throughout this paper, the constants M and p are defined as M = sup, g ¢(x) and pu =
fQ (p% () dx. The existence of local solutions can be obtained by utilizing the method of
the standard regularization, and the regularities of the solutions can be derived by the ar-
gument similar to that in [18]. Since the regularization procedure is important to showing
the uniqueness of the solution to problem (1.1)-(1.3) for some special cases, we sketch the
outline below.

Consider the regularized problem

utzAum+auq/up(y,t)dy, x€Q,0<t<T,
Q
1
u(x,t)z%, x€09,0<t<T, (2.2)

1
u(x,0) = ug(x) + o x € Q,

where T > 0 can be chosen sufficiently small so that there exists a solution u; of (2.2) on
Qr for every k € N and || ux || is bounded for all k. Furthermore, % < u; < uy for k <[, and
a super-solution (sub-solution) comparison theory holds for (2.2) (see [19]).

Since the sequence {u;} is monotone and bounded, we may define U (x, £) = lim u(x,

k— 00

t), and it is easy to see that U(x, ) is a solution of (1.1)-(1.3). Furthermore, if « is a solution
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of (1.1)-(1.3), we then have

/(u ur)é (x, t dx—//{u up)és + —uk) &

+a“§(x,s)<uq/ u”(y,t)dy—uZ/ ui(y,t)dy)}dxds
Q

//—dS ds——/éx,())dx
//{u w)és + (u” — u]') AE

+a§(x,s)<uq/ u”(y,t)dy—uZ/ ui(y,t)dy)}dxds

Q Q

= ft/{(u—uk)és+(um—uf)A$+a.§/up(y,t)dy(uq—uZ)
0 Jo Q
+a&(x,s)u /(up(y ) —ui(y,1) dy)}dxds.

Here, we have used the fact % < 0 on €2 to derive this inequality.
Define the functions @, F, and G as

1
D(x,1) = m/ (6u + (1 - 0)ur)" ™" b,
0

1
F(x,t) = q/ (Ou+(1- 49)Lt/()1171 de,
0

and

-1

1
G(x,t) :p/ (914 + (1—9)uk)p do,
0

and let ¢, = 4™, we then have

@:/0 ¢u(0u+(1—0)uk)d92/(; (pu<2>d9

> L min Pu(p) =,
2 xeQ,sel0,4 max{u+uy (x,)€Qr}zp> }
and we also have F, G € L*. We can choose sequences of smooth functions ®,, F,, and G,
such that ®, — ®, F, — F, and G, — G in L*(Q;,) and also find a constant y for which
n<®, <y foralln
Let £ =&, denote the solution of the problem

£+ O, AE + aEMP|QIG, +aMipuF, =0, xeQ,te(0,T),

Ext)=xx), xeg,

where x is a smooth function and has compact support in Q with 0 < x < 1. From
Lemma 4.2 in [19], we can find some constants C; and C; such that 0 < & < C; and
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IVEC, O, |AE |2, | VE |2 < Co. With this &, we have

L(u —u)(x, t) x (x, t) dx

t
< / / (U — u)(® — D,)AE +at MP|Q|(G - G,,) + aMu(F — F,) dx ds.
0 Ja
Since u, u; € L*°(Q7) for some constant M and g < vy, we deduce that

/(u —u) @, ) x (x,8) < K(1 Dy = @21l AE |2 + aMP |G = Gull2 1€ 2
Q

+aM?|Q| | LI F = Fyll2)

for some constant K. Letting n — 00, we obtain

/ (u— ), t) x (%, £) dx < 0.
Q

Choosing x = sign(u — ux)*, we have
/ (u—up) (%, t)dx < 0.
Q

This implies that u# < u; on Q. Since t; < T is arbitrary, we have u < ux < U on Qr.
To establish the uniqueness of solution to problem (1.1)-(1.3) for some special cases, it
only remains to prove that the reverse inequality is also true. The desired result can be

seen in the following proposition.

Proposition1 Ifp +q=m and a,uM% <1, where u and M are constants defined in (2.1),
then the nonnegative solution of (1.1)-(1.3) is unique. Furthermore, if v is a sub-solution of
(1.1)-(1.3), we have v < u.

Proof We only need to show the uniqueness of solution.

Let u be an arbitrary solution of (1.1)-(1.3), and let u#; denote the solution of (2.2). We

then have

/ (ug — u)é(x, t) dx
Q

=/0£/Q{(uk—u)$s+(ukm—um)ﬁé

+a“;‘(x,s)(u,f/ﬂui(y,t)dy—uq/s;up(y,t)dy>}dxds

1 [t [ 0¢ 1
i —dS,ds+ — ,0) dx.
k/OLBMS s+k/Q§(xO)x

Page 5 of 15
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Choosing the unique positive solution ¢(x) of (2.1) as a testing function & (x, £) and noticing
thatp+q=m,auM% <l,and 0 < u < ux <M, we get

/ (ur — )€ (x, £) dx = / t / {~(ux — w) + audm (MP*1 - 07*7) ) dxds
Q 0 Q

1 [t [ ot 1
1 S as,ds+ - | £(x,0)d
k/o[szan “k/gf(’“ 4

1 [t a& 1
< - — —dS,ds+ — ,0) dx.
_ka/Qan s+k/95<x)x

Letting k — oo, we obtain

/(L[— u)é(x,t)dx < 0.
Q

The above inequality together with the fact U > u guarantees that u = U. IZI

The following comparison principle and lemmas will play a crucial role in what follows,
but the proofs of them are simple, and so we omit them here (see [19, 20]).

Proposition 2 (Comparison principle) Let u and v be nonnegative bounded super- and
sub-solution of (1.1)-(1.3), respectively, with u > § for some § > 0. If v(x,0) < u(x,0), then
v<uonQr.

Lemma 1 Suppose that k and « are positive constants, with k < 1. If y(t) is a nonnegative
absolutely continuous function on [0, 00) solving the problem

dy

dt+ayk§0, t>0;  »(0)=0,

we then have the decay estimate

O < [40) —a(l - K] F, te[0,T.),

y() =0, te[Ty +00),

1-k
where T, = {1(1—_(0)).
Lemma 2 [20] Suppose that 0 < k <m <1 and y(t) is a nonnegative function solving the

problem

dy

P +ayk <yy", t>0; ¥(0) =0 >0,

where a and y are nonnegative constants. If y < oty’é"’”, there exists n > 0 such that 0 <
y(t) < yoe™ forall t > 0.

3 Extinction and non-extinction
In this section, we construct suitable super- and sub-solution to determine whether there
exist extinction phenomena for the solutions of problem (1.1)-(1.3).
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Theorem 1 If p + g = m and apuMin <1, then for any nonnegative initial data u,, the
unique solution u(x,t) of (1.1)-(1.3) vanishes in finite time.

Proof We will prove this theorem by constructing a proper super-solution. Let ¢;(x) be
the unique positive solution of the following elliptic problem:

-Api(x) =1, x€Q; 01(x) =0, xe€0dQ. (3.1)

ya
Let M = sup,.g, ¢1(%), 8 = inf g ¢1(x), and let p; = ffh @/" (x) dx. We know from the
comparison principle of elliptic problems that ¢(x) < ¢1(x) for x € 2, and § > 0 and
w < py. Since apuM # <1and ¢1(x) is continuous, we can find a domain Q2 C € such that
q

auiM]" < 1. Let g(¢) be the positive solution of the following problem:

9
1-au M
g =———1"1g"0, g0)=4,
M

1 —
where A > 0 is a constant large enough so that uy < Ag;" (x) for allx € Q. Since 0 < m < 1,
1

the function g(¢) vanishes in a finite time T > 0. Set v(x, ) = g(£)¢;" (x), and then it can be
easily seen that v(x, t) also vanishes from the time Tj.

On the other hand, one can directly verify that v(x, £) is a super-solution of (1.1)-(1.3) for
any fixed T such that 0 < T < Ty. There exist two positive constants C; and C, such that
C) < v(x,t) < C,. By Proposition 2, we know that u(x, £) < v(x, t) for any (x,) € Q x [0, T].
Since T < Ty, is arbitrary, one can see that u(x, T1) = 0 for some 77 < T. Then it follows
from Proposition 1 that u(x, ) = 0 for all £ > T;, which implies that u(x, £) vanishes from
the time T7. O

prtq
Theorem 2 Suppose that p + q > m and a < %. Then, for any nonnegative initial
data uy, the unique solution u(x,t) of (1.1)-(1.3) vanishes in finite time.

Proof Let v(x,t) = g(t)wﬁ(x), where ¢(x) is the function solving (2.1). Then v(x,?) is a
super-solution of (1.1)-(1.3) if and only if the following conditions (3.2), (3.3), and (3.4)

hold:
207 (%) > g"(6) Ag + agh*i(t) g /Q ondy, xeQ0<t<T, (3.2)
gpi(x) >0, x€dR0<t<T, (3.3)
200 (x)>0, xe. (3.4)
Letg'(¢) = —‘%, where min,cq ¢(x) = 1and H = max q)% (). One can see that the following

condition is sufficient to guarantee (3.2):

20> ¢ O (x) + ag () fn o d. (35)

Since

FOer ) = D o <

1 m
oH 38 (®) (3.6)
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prtq
Q
and v(x, t) > §, we may choose a constant a < % such that

1
ag"(D)ph /Q o dr < Lg"(0) (37)

Combining (3.6) with (3.7), it can be seen that (3.5) is true. Hence, if uy < g(0)¢p(x), the
function v is a super-solution of (1.1)-(1.3). From the definition of g(¢), we obtain the inte-

gral equality

/go ds ot
o & 2H'

Define T = 2H [3° ng ds. We then have v> 0 for 0 <t < T and x € ©, and v(x, T) = 0 for
x € Q. By Proposition 2, we conclude that u <vforx € Qand 0 <t < T. O

Theorem 3 Assumethatp+q<morp+q=mand ap.M% > 1. Then, for any nonnegative
initial data uy, the maximal solution U(x, t) of (1.1)-(1.3) does not vanish in finite time.

Proof We will prove this theorem by constructing a suitable sub-solution. Set v(x,t) =
g(t)<p%, where ¢(x) is the unique positive solution of (2.1). It can be easily verified that
v(x, £) is a sub-solution of (1.1)-(1.3) for p + g < m, if g(¢) solves the problem

g(6) = M7 {~g" () + auMmgr*1);

g0)=0, g(®)>0 (t>0).
If p+q=mand a,uM% > 1, choose g(¢) to be the solution of the problem

g(6) = M7 (M —1)g"(0);

g0)=0, g@®)>0 (t>0).

Then v(x, t) is also a sub-solution of (1.1)-(1.3). Hence, it follows from the sub-solution
comparison principle that U(x,t) > 0 in © x (0, 00). 0

Remark 1 It can be seen from Theorems 1-3 that when p + g < m or p + g = m and
apM > 1, the maximal solution U(x,t) is positive for all £ > 0, which means that the
effect of the source term is, in some sense, strong and the diffusion term cannot dominate

riq
maxg 7 |Q| _ 4
the source term. However, when p+ g > m and a < = 5=~ or p+q = mand auMn <1,

the effect of the nonlocal source is a little weak, and the diffusion term may cause the non-
negative solution of (1.1)-(1.3) to vanish in finite time, provided that the initial data are

sufficiently small.

4 Decay estimates

In Section 3, we have used the super- and sub-solution method to obtain some sufficient
conditions on extinction for the solutions of problem (1.1)-(1.3), but we cannot obtain the
decay estimates by the method. Therefore, we adopt other approximation techniques, i.e.,
the energy method and the differential inequality technique to obtain corresponding decay
estimates which depend on the initial data, coefficients, and domains.
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Theorem 4 Suppose 0 <m<landm=p +q.

-2
(1) When N =1o0r2,if|2| < %]3 mord < %& then for any nonnegative
o 1212 (m+1)?

initial data ug, the unique solution u(x,t) of (1.1)-(1.3) vanishes in finite time, with the

following decay estimates:

1
1\ Tiomr
0} = 1l - (152 )e|7F eetomy

||M(, t) ||§ = 0) te [Tl) +OO),

where y; > 0 is an embedding constant, and C, and T\ will be determined later.
(2) When N > 2,

1
-2
(a) sz ; <m<1,and || < (y2 )”1%1 ora< Qy -+, then for any nonnegative initial data

Uo, the unique solution u(x,t) of (1.1)-(1.3) vamshes in finite time, with the following decay

estimates:
1
2 1 2m
IIM(»t)IIiiZ_[IIuMIM Q(l—ﬁ)t]l B telo, Ty
||u(-,t)||1+m50 t € [Ty, +00),

1+m

where vy > 0 is an embedding constant, and C2 and T, will be determined later;

4msy§2(N Q)

(b)if0 <m < N+2, and || < ]“N ora < —3———, then for any nonnegative
QTN (m+s)?

initial data ug, the unique solution u(x,t) of (1.1)-(1.3) vanishes in finite time, with the

[4msy3 2NQ) L2
a(m+s)?

following decay estimates:

1
1 m+s 1-7E
”u(-,t)Hljj_[nuonm cg<1— )t:| " tel0,Ts);

1+s

||u( £) ||1+S t € [T3,+00),

1+s

where s = %(1 —m) —1and ys > 0 is an embedding constant, and Cs and Ts will be deter-

mined later.

Proof We first consider the case N =1 or 2. Multiplying both sides of equation (1.1) by #*

(s > 0) and integrating the result over 2, we obtain

1 d 1 4dms m+s
—_— dx+ — | |(Vu 2 |7d P d T dx. 4.1
i Qu x+(m+s)2/| | x = a/u x/u x (4.1)

By Holder’s inequality, we get the inequality
) G Z
[ [ < jer ™ g,
where s; > 1 will be determined later. Choosing s; = s + 1 > 1, we get the inequality

_1 d dms mts 12 2+s—m
_ Lts+1 dx + / Vu 2 [“dx<alQ s ||ul™s, 4.9
s+1dt/ (m +5)? Q’ |"dx < alQ 117411 (4.2)

Page 9 of 15
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By using the Sobolev embedding inequality, one can show that there exists an embedding
constant y1(N, ) such that

m+s

[, = v @) vu's

2’

where sy > 2 will be determined later, i.e.,

WI+S

i, <N Vu'T |,

LetC; = ‘M#ENQ) |Q| = , 8 = 14 ,andlets=1. Thens, > 2, since 0 < m < 1. From the
above inequality with the constant s, and s, we obtain the 1nequa11ty IIuII2 +Cyllullyp+t <
0,if C; >0, ie, || < [%] 3-m. By Lemma 1, we then obtain its decay estimates,

. ~ lluolls™
with Tl = 76‘1(1—”'7“).
Secondly, we consider the case N > 2.
(a) For m such that % < m < 1, multiplying both sides of equation of (1.1) by #” and

integrating the result over €2, we obtain

1 d
— u”’”dx+/|Vum|2dx:a/ updx/ u? dx. (4.3)
m+1dt Q Q Q Q

By the Sobolev embedding and Holder’s inequalities, one can show that

1 d
——||u||“*’”

-2
7 g + v 19, < al T

and hence we get

1+m

d
— Nl

7 + Collull <
1

provided Cz—(m+1)(y22|§2| -1 —a|S2|1+m)>0 ie., |Q|<(y2 )*_ By Lemma 1, we

”’40H1

G-

(b) For m such that 0 < m < %, multiplying both sides of equation (1.1) by #* (s = %(1 -

then obtain its decay estimates, with T, =

m) — 1) and integrating the result over 2, we obtain

1 d 4 mts
—— | udx+ l/WuT
s+1dt Jq (m+3s)? Jg

By the Sobolev embedding inequality and a suitable s, one can show that

*dx=a / u dx / Ut dx. (4.4)
Q Q

lull,f = (/ u'’re NN2> <y VT |, (4.5)
Q

Using Holder’s inequality, we have

/updx/ u? dx < || Q> (lul . (4.6)
Q Q
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From inequalities (4.5) and (4.6), we get the inequality

1 d (1+5) 4ms i) o_mis
A ¢ I < al T

Furthermore, we can have 1”””%12 + Csllull$*™ < 0, provided C3 = (s + 1)(y52 ;:”55)2 -

_1
4 . .
alQF15) >0, ie, |9 < (ammsﬁ )“N By Lemma 1, we then obtain its decay estimates,

with T3 = ”g(’!“,; . O

3 Trs

Theorem 5 Suppose that0 <m<1landp+q>m.
(1) When N =1or2,if

Ql 8my, 2(N, Q) T
<
alllug llzeo1T4)P+a= (m + 1)?

or

8my4’2(N, Q)

3—p—
1175 (lluo [ 3e-a Ta)yr+a=m(m + 1)2

a<

and uy small enough, the unique solution u(x,t) of (1.1)-(1.3) vanishes in finite time, with

the following decay estimates:

e, t)|| <[lluol3e ], te(0,Ta);
1
1\ Jimt
|u, D)3 < an @Q—m;>412,teu@nx
||u t)||250 t €[Ts, +00),

where yy > 0 is an embedding constant, o is a suitable constant, and Cy, Ty, Ts will be
determined later.

(2) When N > 2,

(a) for m such that M <m<l,if

1
o] ( vs” )Nﬁz s
<
(@lluolltmeeze) Thm

1+m

or

-2
Vs
N+2

—m
191 T (Juo [ 1nee2t) T

a<

and uy small enough, the unique solution u(x,t) of (1.1)-(1.3) vanishes in finite time, with
the following decay estimates:

|t 0" < [luollt7e ], € [0, Te)

1+m — 1+m€

2m

1
1 1- 2
0112 = [l - s (1- 2 )e | rem Ty

+m
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1+
|u 0, =0, telTs+o0),
where s > 0 is an embedding constant, a; is a suitable constant, and Cs, Tg, T; will be
determined later;

(b) for m such that 0 < m < %, if

dmsyg? PRy
|Q| < ( 1 ptq—s o
a(m + 5)*(|luoll 35e~32) T

or

dmsyg*

prq=s
Q25 (m + )2 (luo 15e-58) T

and uy small enough, the unique solution u(x,t) of (1.1)-(1.3) vanishes in finite time, with

the following decay estimates:

JuC 0|17 < [luoltsest], ¢ e [0, Ts);

1
Jut o)1 < |:||M0||1+S Cs (1— S;:f)t} T e Ty, Ty,
|u, 0]} =0, telTs,+00),

1+s

where y, > 0 is an embedding constant, as is a suitable constant, and Cg, Ty, To will be

determined later.

Proof Multiplying both sides of equation (1.1) by #* (s > 0) and integrating the result

over $2, we obtain

1 d 4 m+s
_ us+1dx+A/IVuT
s+1dt Jg (m+39)? Jg

We first consider the case p + ¢ < 1.
(1) When N =1 or 2, setting s =1 in (4.7), we get

1 d 4 m+.
- uzdx+7m/|VuTl‘2dx=a/updx/ u?dx.
2dt Jq (m+1)2? Jo Q Q

Using Holder’s inequality and the Sobolev embedding inequality, one can show that

dx = a/ u? dx/ u?™ dx. (4.7)
Q Q

d 8my,;? 3-p—q 1
Eallullg m 1)2|| ull " <alQ) T fulhy .

By Lemma 2, one can see that there exists a constant a1 > 0 such that 0 < ||u(-,2)||5 <

, 8
lluoll5et, provided |luoll3 < [ myg” ]p+q 7 . Hence, there exists a constant Ty > 0
a(m+1)2|Q| 3P4 1’ q

such that

8m)/ + 8m _ +q—m
R T Q prqg-m 774 Q 2 —a1 T4 \Pr4- =C 0
e~ AR E T 2 A —al0) Y (o e ™) >
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for all ¢ € [T}, +00), and so :t llul|3 + Cyllue]|7*! < 0. By Lemma 1 we can obtain its decay

estimate, with 75 = uoly ™ + Ty.

Cy (1 m+1
(2) When N > 2,
(a) for m such that < m <1, we choose s = m in (4.7). We then have the inequality
1 d m+1 -2 m+s AL prq+m
i el + v~ 1S2] - llullssy < al| ot ||u Ul (4.8)

by the Sobolev embedding and Hoélder’s inequalities. By Lemma 2, one can see that there

exists a constant & > 0 such that 0 < [lu(-, £)[|”1 < |luo||”*1e~*2!, provided |luo|/™t} <
(m+1)y5‘

1
[W]WI-’" . Then there exists a constant T > 0 such that
alQ "N “Tmil

mip+q —
(L+m)(y5°12 T - al QP ")

m+, prq—m
<(1+Wl)( |Q| N 1+m)_a|Q|2_ Tt (||u0||m+1 —OlzTe) T =Cs  (>0)

for all ¢t € [Tg, +00).

Hence, we get % ||u||%ﬂ +Cs ||u||%+m < 0. By Lemma 1 we can obtain its decay estimate,
. lluo 742
with 77 = Lm_  Te;
AT R

(b) for m such that 0 < m < %, we choose s = %(1 —m) —1in (4.4). From the Sobolev
embedding inequality, we get

m+s m+s

lully? = |u”s <y Vur |, (4.9)
By Holder’s inequality, we obtain the inequality
1 vy 24ms
—|| I+ 2 | < @l QPP a2 (4.10)

P (1 + s)2

One can see that there exists a constant Ol3 > 0 such that 0 < [lu(-, £)[I$] < l|luo|I5H1e7*3! by
4 — 1
msyg_swq 1774 . Then there exists a constant Tg > 0

s+l
a(m+1)2|Q|" s+

Lemma 2, provided [|uo||$; <[

such that

dsmy;? _stprq -
oGt - )

4smyg?
(m + 5)?

ptq-s
<@ +m) —alQ T (Juo e ™) 5 =Co  (>0)
forallt € [Tg, +00).

Hence, dt ||u||§ﬁ + Csllull7;;® < 0. By Lemma 1 we can obtain its decay estimate, with

o 15,
T9 = —C6(1—1yxnﬁ) + Tg.
Secondly, we consider the case p + g > 1.
It can be easily verified that k¢ (x) is a super-solution of (1.1)-(1.3) for sufficiently small

k > 0, where ¢ (x) is the unique positive solution of (2.1). We then have
1 1
ulx, t) < ko/" (x) <kM{", £>0

1
by Proposition 2, if 1y < k¢;" (x) in .


http://www.boundaryvalueproblems.com/content/2013/1/266

Fang and Wang Boundary Value Problems 2013, 2013:266 Page 14 of 15
http://www.boundaryvalueproblems.com/content/2013/1/266

The above inequality and (4.7) yield the inequality

1 d 4 m+s prq-1
——/ u“ldx+l/WuTdefakp*q_lMl " |Q|/ udx (4.11)
s+1dt Jq (m+5)? Jg Q

by applying Holder’s inequality to the right-hand side of (4.7).
For m such that % < m < 1, we choose s = m in (4.11). It follows from the Sobolev

embedding and Holder’s inequalities that

1 d N-2_ 2m
1 2y N2 2m 1 1
g Q1T R < a M

By Lemma 2, there exists a constant ay > 0 such that 0 < [|u(-, £) |71 < |luo||"+1e~4¢, pro-

N-2_2m Y
[\Q\ 2 “Temy;

p+q-1
akp+q—1M1 m

. i
vided ||ug ||} < ]™=m . Hence, one can find a constant Ty > 0 such that

m+1

1+ m) (v 21Q1 % T — kP Y ||u||1+'")

N-2_ 2 1-m
<AQ+m)(y21QI' %" ﬁ) ak?+a- 1M (IIuo e esTo) T = C; (> 0)
for all ¢ € [T}p, +00), from which we get
Ellullﬁﬂ + G llulliy, <
By Lemma 1, we then obtain its decay estimates, with T7; = % + T, as follows:
m+1

Jut, 0], <

o< [Nuollyime™*], £ € [0, Tao);

1+m +m

<[l
1
+ 2 1- 2
Jut, 0], < [nmnm,, 67(1— l—m)t] B e [T, To);
0,

Jut, 0|,

1+m

t € [Th1, +00).

N-2
N ’
the extinction results by using a similar argument as the one used for the case p + g <1,

For m such that 0 < m < we choose s = %(1 —m) > 1in (4.7), and then we can obtain

and so the details are omitted. O
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