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Abstract
This paper deals with an inverse problem of identifying an unknown source which
depends only on one variable in two-dimensional Poisson equation, with the aid of
an extra measurement at an internal point. This problem is ill-posed, we proposed a
regularization strategy, a wavelet dual least square method, to analyze the stability of
the problem. Meanwhile, a numerical experiment is devised to verify the validity of
the method.
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1 Introduction
Consider the following inverse problem: find a pair of functions (u(x, y), f (x)) satisfying

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

–uxx – uyy = f (x), –∞ < x < ∞, y > ,

u(x, ) = , –∞ < x < ∞,

u(x, y)|y→∞ bounded, –∞ < x < ∞,

u(x, ) = g(x), –∞ < x < ∞,

(.)

where f (x) is the unknown source depending only on one spatial variable and u(x, ) = g(x)
is the supplementary condition. In practical applications, the input data g(x) can only be
measured. Therewill bemeasured data function gδ(x) which ismerely in L(R) and satisfies

‖g – gδ‖L(R) ≤ δ, (.)

where the constant δ >  represents a noise level of input data. This problem is called the
inverse problem of unknown source identification.
Inverse source identification problems are important in many branches of engineering

sciences such as crack determination [, ], heat source determination [], heat conduction
problems [, ], electromagnetic theory []. This kind of problemarises inmany important
applications in practice, e.g., with the development of society and economics, groundwa-
ter pollution has become a serious threat to the environment. The government has to take
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some measures to prevent the groundwater from further contaminations. But the cost of
cleanup for polluted aquifers is staggering, and in many cases it is hard to identify which
companies are responsible for the contamination due to the lack of tools to discover the
pollution sources. So, it is necessary to try to givemore concrete information of the charac-
teristics (location, magnitude, and duration of activity) of specific groundwater pollution
sources (see []). As we know,most attempts at quantifying contaminant transport rely on
mathematical methods. Since the data cannot be measured by direct ways in many cases,
we are always encountering inverse problems of deciding unknown sources and aquifer
parameters.
The investigation of the traditional inverse potential problem can be found in [, ]. The

studies of such problems give a complete analysis of experimental data. In general, a full
source f in (.) is not solely attainable from boundary measurements. The inverse source
identification problem becomes solvable if some a priori knowledge is assumed. For in-
stance, when one of the products in the separation of variables is known [, ], or the base
area of a cylindrical source is known [], or a non-separable type is in the form of a mov-
ing front [], the boundary data g can then uniquely determine the unknown sources f .
Furthermore, when both u and f are relatively smooth, some standard regularization tech-
niques can be employed (see [] for a more detailed overview).
Wavelet regularization methods have been studied for solving various types of inverse

problems in the heat equation [–]. Eldén [] and Regińska [, ], Xiong [] used
the wavelet Galerkin method and the wavelet method to approximate the sideways heat
equation byMeyer wavelets, and Xiong [] used the wavelet dual least squaresmethod to
approximate the BHCP by Shannon wavelets. In this work, by using Meyer wavelets, we
obtain an explicit error estimate of Hölder type between the unknown source term and its
approximation. Moreover, according to the general theory of regularization, we conclude
that our estimate is order optimal.
In general, for an ill-posed problem, the convergence rates of the regularization solution

can only be given under a priori assumptions on the exact data. We will formulate such
an a priori assumption in terms of an exact solution f (x) by considering

‖f ‖p ≤ E, p > , (.)

where the ‖ · ‖p denotes the Sobolev space Hp(R)-norm defined by

‖f ‖p :=
(∫ ∞

–∞

(
 + ξ )p∣∣f̂ (ξ )∣∣ dξ

)/

. (.)

In order to formulate problem (.) in terms of an operator equation in the space X =
L(R), let A be the operator on X defined as follows:

Af (x) = g(x). (.)

Let

f̂ (ξ ) =
√
π

∫ ∞

–∞
f (x)e–iξx dx, ξ ∈ R (.)
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be the Fourier transform of the function f (x) ∈ L(R). Problem (.) can now be formulated
in a frequency space as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ξ û(ξ , y) – ûyy(ξ , y) = f̂ (ξ ), –∞ < x < ∞, y > ,

û(ξ , ) = , –∞ < x < ∞,

û(ξ , y)|y→∞ bounded, –∞ < x < ∞,

û(ξ , ) = ĝ(ξ ), –∞ < x < ∞.

(.)

By elementary calculations, the solution of problem (.) in the frequency space is given
by

f̂ (ξ ) =
ξ 

 – e–ξ
ĝ(ξ ), (.)

which shows that Â : L(R) → L(R) is the multiplication operator. In addition, Â is self-
adjoint, i.e.,

Â∗ f̂ = Âf̂ =
 – e–ξ

ξ  ĝ(ξ ). (.)

2 Preliminaries
2.1 Dual least squares method
Ageneral projectionmethod for the operator equationAf = g ,A : X = L(R) 	−→ X = L(R)
is generated by two subspace families {Vj} and {Yj} of X, and the approximate solution
fj ∈ Vj is defined to be the solution of the following problem:

〈Afj, y〉 = 〈g, y〉, ∀y ∈ Yj, (.)

where 〈·, ·〉 denotes the inner product in X. If Vj ⊂ R(A∗) and subspaces Yj are chosen such
that

A∗Yj = Vj, (.)

then we have a special case of the projection method known as the dual least squares
method. If {ψλ}λ∈Ij is an orthogonal basis of Vj and yλ is the solution of the equation

A∗yλ = kλψλ, ‖yλ‖ = , (.)

then the approximate solution is explicitly given by the expression

fj =
∑
λ∈Ij

〈g, yλ〉 
kλ

ψλ. (.)

2.2 Subspaces Yj
In this section, we investigate some properties of the subspaces Yj. A method for con-
structing the basis of the subspace is given. This method is different from [] in that the
function v(ξ , y) is not specific. The basis of Yj cannot be explicitly obtained by dilations
and integer translations of a function like the one in [].
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According to A∗Yj = Vj, the subspaces Yj are spanned by fλ, λ ∈ Ij, where

A∗fλ =�λ and kλ = ‖fλ‖–, yλ =
fλ

‖fλ‖ = kλfλ. (.)

Since supp �̂λ is compact, the solution exists for any y ∈ [, ). Similarly, the solution of
the adjoint problem is unique. Therefore, for a given �λ, fλ can be uniquely determined;
furthermore,

f̂λ = v(ξ , y)�̂λ(ξ ) ⇔ ŷλ = v(ξ , y)kλ�̂λ(ξ ), λ = {j,k}. (.)

As for some properties of kλ, the results are similar to Lemma . of []. Herewe omit it.

2.3 Meyer wavelets
TheMeyer wavelet ψ is a function C∞(R) defined by its Fourier transform as follows []:

ψ̂(ξ ) =

⎧⎪⎪⎨⎪⎪⎩
√
π e

i ξ sin[π
 ν( 

π |ξ | – )], π
 ≤ |ξ | ≤ π

 ,
√
π e

i ξ cos[π
 ν( 

π
|ξ | – )], π

 ≤ |ξ | ≤ π
 ,

, otherwise,

(.)

where ν ∈ Ck is equal to  for x ≤ , is equal to  for x ≥ , and ν(x) + ν( – x) =  for
 < x < . The corresponding scaling function φ is defined by

φ̂(ξ ) =

⎧⎪⎪⎨⎪⎪⎩

π , |ξ | ≤ π

 ,
√
π cos[π

 ν( 
π |ξ | – )], π

 ≤ |ξ | ≤ π
 ,

, otherwise.

(.)

Let us list some notations: ψj,k(x) := 
j
 ψ(jx – k), φj,k(x) := 

j
 φ(jx – k), j,k ∈ Z; �–,k :=

φ,k and �l,k := ψl,k for l ≥ ; wavelet spaces Wj = span{ψj,k}j,k∈Z ; some index sets (where
J ≥  is a fixed integer)

I =
{{j,k} : j,k ∈ Z

} ⊂ Z,

IJ =
{{j,k} : j = –, , . . . , J – ;k ∈ Z

} ⊂ Z, (.)

Ij≥J+ =
{{j,k} : j ≥ J ;k ∈ Z

} ⊂ Z.

By successively decomposing the scaling space VJ , VJ– and so on, we have VJ = VJ– ⊕
WJ– = VJ– ⊕ WJ– ⊕ WJ– = · · · = V ⊕ W ⊕ · · · ⊕ WJ–, hence we can define the sub-
spaces VJ

VJ = span{�λ}λ∈IJ . (.)

Define an orthogonal projection PJ : L(R) 	−→ VJ :

PJϕ =
∑
λ∈IJ

〈ϕ,�λ〉�λ, ∀ϕ ∈ L(R), (.)
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then replace the {ψλ}λ∈Ij in (.) by {�λ}λ∈IJ . We easily conclude

fJ = PJ f . (.)

From the point of view of an application to problem (.), the important property ofMeyer
wavelets is the compactness of their support in the frequency space. Indeed, since

ψ̂j,k(ξ ) = –
j
 e–i

–jkξ ψ̂
(
–jξ

)
, φ̂j,k(ξ ) = –

j
 e–i

–jkξ φ̂
(
–jξ

)
,

it follows that for any k ∈ Z,

supp(ψ̂j,k) =
{
ξ :



πj ≤ |ξ | ≤ 


πj

}
, supp(φ̂j,k) =

{
ξ : |ξ | ≤ 


πj

}
. (.)

From (.), PJ can be seen as a low pass filter. The frequencies with greater than 
π

J are
filtered away.

3 Error estimates for the wavelet dual least square method
Theorem . If f (x) is the solution of problem (.) satisfying condition (.), then it holds
that

∥∥f (·) – PJ f (·)
∥∥ ≤

(


πJ+

)–p

E. (.)

Proof From (.), we have

f (·) =
∑
λ∈I

〈
f (·),�λ

〉
�λ,

PJ f (·) =
∑
λ∈IJ

〈
f (·),�λ

〉
�λ.

By virtue of the Parseval relation, with the �̂λ’s compact support (.), there holds

∥∥f (·) – PJ f (·)
∥∥ =

∥∥f̂ (·) – P̂J f (·)
∥∥ =

∥∥∥∥∑
λ∈I

〈f̂ , �̂λ〉�̂λ –
∑
λ∈IJ

〈f̂ , �̂λ〉�̂λ

∥∥∥∥
=

∥∥∥∥ ∑
λ∈Ij≥J+

〈f̂ , �̂λ〉�̂λ

∥∥∥∥
=

∥∥∥∥ ∑
λ∈Ij≥J+

〈(
 + ξ )–p/( + ξ )p/ f̂ (·), �̂λ

〉
�̂λ

∥∥∥∥
≤ sup


πj+≤|ξ |≤ 

πj+

(
 + ξ )–p/| · ∥∥∥∥ ∑

λ∈Ij≥J+

〈(
 + ξ )p/ f̂ (·), �̂λ

〉
�̂λ

∥∥∥∥
≤

(


πJ+

)–p

E.
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The approximate solution for noisy data gδ is explicitly given by

PJ f δ(x) = f δ
J =

∑
λ∈IJ

〈
f δ ,�λ

〉
�λ =

∑
λ∈IJ

〈gδ , yλ〉 
kλ

�λ. (.)

Now we will estimate the error ‖PJ f δ – PJ f ‖. �

Theorem . If gδ is noisy data satisfying condition (.), then for any fixed y, we have

∥∥PJ f δ – PJ f
∥∥ ≤ C

(


πJ+

)

δ, C =


 – e– 
π

.= . (.)

Proof Using (.), (.), and (.), from the Parseval relation, we have

∥∥PJ f δ – PJ f
∥∥

=
∥∥∥∥∑

λ∈IJ


 – λ

(
ĝδ – ĝ,

ξ 

 – e–ξ
kλ�̂λ

)
�̂λ

∥∥∥∥
≤ sup


πJ≤|ξ |≤ 

πJ

ξ 

 – e–ξ

∥∥∥∥∑
λ∈IJ

(ĝδ – ĝ, �̂λ)�̂λ

∥∥∥∥
≤ sup


πJ≤|ξ |≤ 

πJ

ξ 

 – e–ξ

∥∥ ̂PJ (gδ – g)
∥∥

≤ sup

πJ≤|ξ |≤ 

πJ

ξ 

 – e–ξ

∥∥(gδ – g)
∥∥

≤ ( π
J )

 – e– 
πJ

δ

≤ C
(


πJ+

)

δ, C =


 – e– 
π

.= . �

Theorem . If f (·) is the solution of problem (.) satisfying the condition ‖u(·, )‖p ≤ E,
let PJ f δ be given by (.). If ‖g – gδ‖ ≤ δ and J = J(δ) is selected such that



πJ+ =

(
E
δ

) 
p+

, (.)

then

∥∥f (·) – PJ f δ(·)∥∥ ≤ (C + )E


p+ δ
p

p+ . (.)

Proof By the triangle inequality, we have

∥∥f (·) – PJ f δ(·)∥∥ ≤ ∥∥f (·) – PJ f (·)
∥∥ +

∥∥PJ f (·) – PJ f δ(·)∥∥. (.)

Combining Theorem . with Theorem ., we obtain the convergence estimate of our
method. �
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4 Numerical tests
Example  It is easy to see that the function

u(x, y) =
(
 – e–y

)
sinx (.)

and the function

f (x) = sinx (.)

satisfy problem (.) with exact data

g(x) =
(
 – e–

)
sinx. (.)

We will do the numerical tests in the interval x ∈ [–, ].
Suppose that the sequence g(xi)ni= represents samples from the function g(x) on an

equidistant grid, and n is even, then we add a random uniformly distributed perturbation
to each data, and obtain the perturbation data

gδ = g +μ ∗ rand
(
size(g)

)
, (.)

where

g =
(
g(x), g(x), . . . , g(xn)

)
, xi = (i – )�x – ,�x =


n – 

, i = , , . . . ,n.

Figure 1 Data ϕ.

Figure 2 Noisy data ϕδ .

http://www.boundaryvalueproblems.com/content/2013/1/267
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Then the total noise δ can be measured in the sense of root mean square error according
to

δ = ‖gδ – g‖l =
(

n

n∑
i=

(
(gδ)i – gi

))/

. (.)

The computed errors are defined by

l norm error: E(f ) =

√√√√ 
n

n∑
i=

(
f (xi) – fr(xi)

), (.)

relative error: ER(f ) =

√√√√ 
n

n∑
i=

(
f (xi) – fr(xi)

)/√√√√ 
n

n∑
i=

(f (xi), (.)

where xi, i = , , . . . ,n, are the test points. In computation, we take n = , fr(·) denotes
the regularization solution. In numerical tests, the regularization parameter α is selected
by α = δ

M .

From Figures  and , we can conclude that the approximation effect of wavelet dual
least square regularization for y =  and y = ..
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