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Abstract
In this paper, we investigate the Dirichlet problem for a degenerate parabolic
equation ut –�um = a(x)up(0, t) + b(x)uq(x, t). We prove that under certain conditions
the solutions have global blow-up, and the rate of blow-up is uniform in all compact
subsets of the domain. Moreover, the blow-up profile is precisely determined.
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1 Introduction
In this paper, we consider the following parabolic equation with nonlocal and localized
reaction:

ut –�um = a(x)up(, t) + b(x)uq(x, t), x ∈ �,  < t < T∗, (.)

u(x, τ ) = , x ∈ ∂�, t > , (.)

u(x, ) = u(x), x ∈ �, (.)

where � is an open ball of RN , N ≥  with radius R, and p ≥ q >m > .
Many of localized problems arise in applications and have been widely studied. Equa-

tions (.)-(.), as a kind of porous medium equation, can be used to describe some phys-
ical phenomena such as chemical reactions due to catalysis and an ignition model for a
reaction gas (see [–]).
As for our problem (.)-(.), to our best knowledge, many works have been devoted

to the case m =  (see [–]). Let us mention, for instance, when a(x) = b(x) = , blow-up
properties have been investigated by Okada and Fukuda []. Moreover, they proved that if
p ≥ q >  and u(x) is sufficiently large, every radial symmetric solution (maximal solution)
has a global blow-up and the solution satisfies

C
(
T∗ – t

)–/(p–) ≤ u(x, t)≤ C
(
T∗ – t

)–/(p–), (.)

in all compact subsets of � as t is near the blow-up time T∗, where C and C are two
positive constants. Souplet [, ] investigated that global blow-up solutions have uniform
blow-up estimates in all compact subsets of the domain.
The work of this paper is motivated by the localized semi-linear problem

ut –�um = λup(, t) + λuq(x, t), x ∈ �,  < t < T∗, (.)
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with Dirichlet boundary condition (.) and initial condition (.). In the case ofm =  and
m > , the uniform blow-up profiles were studied in [, ] and [], respectively.
It seems that the result of [, , ] can be extended to λ and λ are two functions. Mo-

tivated by this, in this paper, we extend and improve the results of [, , ]. Our approach
is different from those previously used in blow-up rate studies.
In the following section, we establish the blow-up rate and profile to (.)-(.).

2 Blow-up rate and profile
Throughout this paper, we assume that the functions a(x), b(x) and u(x) satisfy the fol-
lowing two conditions:
(A) a(x), b(x) and u(x) ∈ C

(�); a(x), b(x) and u(x) are positive in �.
(A) a(x), b(x) and u(x) are radially symmetric; a(r), b(r) and u(r) are non-increasing

for r ∈ [,R].

Theorem. Suppose that u(t) satisfies (A)and (A). Ifmax{p,q} >m, then the solutions
of (.)-(.) blow up in finite time for large initial data.

The proof of this theorem bears much resemblance to the result in [, , ] and is,
therefore, omitted here.
Next we will show that in the situation of localized source dominating (p > q), problem

(.)-(.) admits some uniform blow-up profile.

Theorem . Assume (A) and (A). Let u(x, t) be the blow-up solution of (.)-(.) and
u(x, t) is non-decreasing in time. If p >max{q,m}, then we have

lim
t→T∗ u(x, t)

(
T∗ – t

)/(p–) = a(x)
(
(p – )ap()

)/(–p), (.)

uniformly in all compact subsets of �.

Throughout this paper, we denote

g(t) = up(, t) and G(t) =
∫ t


g(s) ds.

In our consideration, a crucial role is played by the Dirichlet eigenvalue problem

{
–�ϕ = λϕ, in �,
ϕ(x) = , on ∂�.

Denote by λ the first eigenvalue and by ϕ the corresponding eigenfunction with ϕ >  in
�, normalized by

∫
�
a(x)ϕ(x) dx = . In the following, C is different from line to line. Also,

we will sometimes use the notation u ∼ v for limt→T∗ u(t)/v(t) =  with T∗ the blow-up
time for (.)-(.).
In order to prove the results of Section , first we derive a fact of the following problem:

⎧⎪⎨
⎪⎩
ut –�um = a(x)g(t), x ∈ �,  < t < T∗,
u(x, t) = , x ∈ ∂�, t > ,
u(x, ) = u(x), x ∈ �.

(.)
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Lemma . Assume (A), (A) and p > q. Let u(x, t) be the blow-up solution of (.) and
assume that u(x, t) is non-decreasing in time, we then have

lim
t→T∗

u(x, t)
G(t)

= a(x) (.)

uniformly in all compact subsets of �.

Proof Assumption (A) implies u(, t) =maxx∈�̄ u(x, t) and�um(, t)≤  on (,T∗). From
(.), we have

ut(, t)≤ a()up(, t) + b()uq(, t),  < t < T∗,

which implies

lim
t→T∗ sup

u(, t)
G(t)

≤ a(). (.)

Thus limt→T∗ G(t) =∞ and limt→T∗ g(t) = ∞.
Set R ∈ (,R), � = {x ∈ RN , |x| < R} and b(x) = /a(x), x ∈ �. By a′(r) ≤ , we obtain

that b′(r)≥ , for  ≤ r ≤ R.
Introducing a function

w(x, t) = b(x)u(x, t), x ∈ �,  < t < T∗.

In the following, we only consider m > . For the case of  <m ≤ , the proof is similar.
A series calculation yields

b�um = b–m�(bu)m + (m – )bum–)|∇u| –mumb–|∇b|

–mum�b – mum–∇u∇b. (.)

In addition, note

∇u(x, t)∇b(x) = ur(r, t)b′(r) ≤ . (.)

Now, according to (.) and (.), it follows that

wt = b(x)ut ≥ b(x)�um + g(t)

≥ (
a(x)

)m–�wm –
(
ma(x)

(|∇b|) +m�b
)
um + g(t) (.)

for x ∈ �,  < t < T∗.
Set m = minx∈�̄ |a(x)|m–, m = maxx∈�̄{ma(x)|∇b| +m|�b|}, ε(t) = mum(, t)/g(t).

Since p >m and note that g(t) = up(, t), then there exists τ ∈ (,T∗) such that  < ε(t) ≤
/.
Therefore, in view of (.), we observe

wt ≥m�wm +
(
 – ε(t)

)
g(t) + ε(t)g(t) –mum(, t)

=m�wm +
(
 – ε(t)

)
g(t), x ∈ �, τ < t < T∗.
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Set g(t) = ( – ε(t))g(t), G(t) =
∫ t
τ
g(s) ds. We then obtain

lim
t→T∗ G(t) = ∞ and lim

t→T∗
G(t)
G(t)

= .

Clearly, w(x, t) is a sup-solution of the following equation

⎧⎪⎨
⎪⎩
vt =m�vm + g(t), x ∈ �, τ < t < T∗,
v(x, t) = , x ∈ ∂�, t > ,
v(x, ) = v(x), x ∈ �,

(.)

where  ≤ v ≤ w(x, τ ) in � and v ∈ C(�̄) with v|∂� = . Here we also assume that
v(x) is a symmetric and non-increasing function of |x| (r = |x|).
By the maximum principle, we have ≤ v(x, t)≤ w(x, t) and vr ≤  in � for τ ≤ t < T∗.
Similar to the proof of Theorem . in [] that

lim
t→T∗

v(x, t)
G(t)

= 

uniformly in all compact subsets of �.
By the arbitrariness of �, we obtain that the following limit converges uniformly in all

compact subsets of �

lim
t→T∗ inf

u(x, t)
G(t)

≥ a(x). (.)

In particular,

lim
t→T∗ inf

u(, t)
G(t)

≥ a().

This inequality and (.) infer that

lim
t→T∗

u(, t)
G(t)

= a().

Multiplying both sides of (.) by ϕ and integrating over �× (, t), we have, for  < t < T∗,

∫
�

uϕ dx –
∫

�

uϕ dx = –λ

∫ t



∫
�

umϕ dxds +G(t). (.)

Since
∫ t

∫
�
umϕ dxds ≤ ∫

�
ϕ dx

∫ t
 u

m(, t) ds and limt→T∗ um(, t)/g(t) = , it then follows
that

lim
t→T∗

∫
�
uϕ dx
G(t)

= . (.)

Next we prove that

lim
t→T∗ sup

u(x, t)
G(t)

≤ a(x)

uniformly in any compact subsets of �.
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Assume on the contrary that there exists x ∈ � (x �= ) such that

lim
t→T∗ sup

u(x, t)
G(t)

= c > a(x).

Then there exists a sequence {tn}, tn → T∗ such that

lim
tn→T∗ u(x, tn)/G(tn) = c.

Using the continuity of a(x), we see that there exists x ∈ � (|x| < |x|) such that c > a(x)
for |x| ≤ |x| ≤ |x|. Note that ur ≤  and (.), we obtain

lim
t→T∗

∫
�
uϕ dx
G(t)

= lim
tn→T∗

(∫
|x|<|x| uϕ dx

G(tn)
+

∫
|x|<|x|<|x| uϕ dx

G(tn)
+

∫
|x|<|x|<R uϕ dx

G(tn)

)

≥
∫

|x|<|x|
a(x)ϕ(x) dx + c

∫
|x|<|x|<|x|

ϕ dx +
∫

|x|<|x|<R
a(x)ϕ(x) dx

>
∫

|x|<|x|
a(x)ϕ(x) dx +

∫
|x|<|x|<|x|

a(x)ϕ dx +
∫

|x|<|x|<R
a(x)ϕ(x) dx = .

This contradicts (.) and we then complete the proof of Lemma .. �

Lemma . Under the assumption of Theorem ., let u(x, t) be the blow-up solution of
(.)-(.), then it holds that

lim
t→T∗

u(x, t)
G(t)

= a(x) (.)

uniformly in all compact subsets in �.

Proof Proceeding as in (.), we have

lim
t→T∗ sup

u(, t)
G(t)

≤ a(), (.)

which implies limt→T∗ G(t) = ∞ and limt→T∗ g(t) = ∞.
Now, according to ut ≥ �u + a(x)g(t), it then follows that u(x, t) is a sub-solution of the

following equation:

⎧⎪⎨
⎪⎩
vt –�vm = a(x)g(t), x ∈ �,  < t < T∗,
v(x, t) = , x ∈ ∂�, t > ,
v(x, ) = u(x), x ∈ �.

By the maximum principle, u(x, t) ≥ v(x) and vr ≤  in � × (,T∗). Using Lemma ., it
holds that

lim
t→T∗

v(x, t)
G(t)

= a(x)

uniformly in all compact subsets of �.
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Hence

lim
t→T∗ sup

u(x, t)
G(t)

≥ a(x) (.)

uniformly in any compact subsets of �, which implies

lim
t→T∗ sup

u(, t)
G(t)

= a(). (.)

Combining (.) with (.), we deduce that

lim
t→T∗ sup

u(, t)
G(t)

= a(). (.)

Multiplying both sides of (.) by ϕ and integrating over � × (, t), we find, for  < t < T∗,

∫
�

uϕ dx –
∫

�

uϕ dx = –λ

∫ t



∫
�

umϕ dxds +G(t) –
∫ t



∫
�

b(x)uqϕ dxds.

Since
∫ t

∫
�
umϕ dxds ≤ ∫ t

 u(, s) ds
∫
�

ϕ dx and p > q, it then follows that

lim
t→T∗

∫ t

∫
�
vmϕ dxds
G(t)

=  and lim
t→T∗

∫ t

∫
�
vqϕ dxds
G(t)

= .

Therefore,

lim
t→T∗

∫
�
uϕ dx
G(t)

= .

By analogy with the argument taken in Lemma ., we complete the proof of this lemma.
�

Proof of Theorem . By Lemma ., we infer that

u(, t) ∼ a()G(t) as t → T∗,

hence

G′(t) = g(t) ∼ ap()Gp(t) or
(
G–p))′ ∼ –(p – )ap().

Integrating this equivalence between t and T∗, we obtain

G(t) ∼ [
(p – )ap()

(
T∗ – t

)] 
–p . (.)

The result finally follows by returning (.) to (.). �

Remark . It seems that in the case of p = q >m, the blow-up rate remains valid in all
compact subsets, but we do not know how to treat it. (It is an open problem in this case.)
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