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Abstract
In this work, a numerical solution of the modified regularized long wave (MRLW)
equation is obtained by the method based on collocation of quintic B-splines over
the finite elements. A linear stability analysis shows that the numerical scheme based
on Von Neumann approximation theory is unconditionally stable. Test problems
including the solitary wave motion, the interaction of two and three solitary waves
and the Maxwellian initial condition are solved to validate the proposed method by
calculating error norms L2 and L∞ that are found to be marginally accurate and
efficient. The three invariants of the motion have been calculated to determine the
conservation properties of the scheme. The obtained results are compared with other
earlier results.
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1 Introduction
The modified regularized long wave (MRLW) equation, based upon the regularized long
wave (RLW) equation,

Ut +Ux + δUUx –μUxxt = , ()

which was proposed at first by Peregrine [] to describe the development of an undular
bore, has the form

Ut +Ux + UUx –μUxxt = , ()

where δ andμ are positive parameters and the subscripts x and t denote the differentiation.
The RLW equation is one of the best known partial differential equations because it de-
scribes a large number of important physical phenomena with weak nonlinearity and dis-
persion waves such as magneto hydrodynamic and ion-acoustic waves in plasma, phonon
packets in non-linear crystals, the transverse waves in shallow water, rotating flow down a
tube and pressure waves in liquid-gas bubble mixtures. Bona and Pryant [] have studied
the existence and uniqueness of the equation. Benjamin et al. [] have proposed the RLW
equation as a numerically superiormodification of the Korteweg de-Vries (KdV) equation.
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This superiority arises because, unlike the KdV equation, the dispersion relation associ-
ated with the linearized RLW equation yields the frequency that is bounded for large wave
numbers []. But they have found an analytical solution of the RLW equation under the
restricted initial and boundary conditions. So, various numerical techniques have been
introduced to solve the equation. These include the finite difference [–], finite element
[–], Fourier pseudo-spectral [] methods and the meshfree method []. One of the
special properties of the equation is that the solutions may exhibit solitons whose mag-
nitudes, shapes and velocities are not changed after the collision. The RLW equation is a
special case of the generalized long wave (GRLW) equation having the form

Ut +Ux + δUpUx –μUxxt = , ()

where p is a positive integer. Zhang [] has used the finite difference method to solve the
GRLW equation for a Cauchy problem. The quasilinearizationmethod based on finite dif-
ferences was used by Ramos [] for solving the GRLW equation. Kaya et al. [] have also
studied the GRLW equation with the Adomian decomposition method. Roshan [] has
solved the GRLW equation numerically by the Petrov-Galerkin method using a linear hat
function as the trial function and a quintic B-spline function as the test function. Gardner
et al. [] have developed a collocation solution to the MRLW equation using quintic B-
splines finite elements. Khalifa et al. [, ] have obtained the numerical solutions of the
MRLW equation using the finite difference method and the cubic B-spline collocation fi-
nite element method. Solutions based on the collocation method with quadratic B-spline
finite elements and the central finite difference method for time have been investigated
by Raslan []. Raslan and Hassan [] have solved the MRLW equation by the colloca-
tion finite element method using quadratic, cubic, quartic and quintic B-splines to obtain
the numerical solutions of a single solitary wave. Fazal-i-Haq et al. [] have designed a
numerical scheme based on the quartic B-spline collocation method for the numerical
solution of the MRLW equation. Ali [] has formulated a classical radial basis functions
(RBFs) collocation method for solving the MRLW equation. In this paper, we have ob-
tained a type of the quintic B-spline collocation procedure in which a nonlinear term in
the equation is linearized by using the form introduced by Rubin and Graves [] to solve
the MRLW equation. The proposed method is shown to represent accurately the migra-
tion of a single solitary wave. Then the interaction of two and three solitary waves and
theMaxwellian initial condition are studied. The linear stability analysis based on the Von
Neumann method is also investigated.

2 Quintic B-spline finite element solution
Let us consider MRLW equation () with the following initial,

U(x, ) = f (x), a ≤ x≤ b, ()

and boundary conditions:

U(a, t) = , U(b, t) = ,

Ux(a, t) = , Ux(b, t) = ,

Uxx(a, t) = , Uxx(b, t) = , t > .

()

http://www.boundaryvalueproblems.com/content/2013/1/27


Karakoc et al. Boundary Value Problems 2013, 2013:27 Page 3 of 17
http://www.boundaryvalueproblems.com/content/2013/1/27

For the numerical calculation, the solution domain of the problem is restricted over an in-
terval a ≤ x ≤ b. The interval is partitioned into uniformly-sized finite elements of length
h by the knots xm such that a = x< x< · · · < xN= b. The set of quintic B-spline functions
{φ–(x),φ–(x), . . . ,φN+(x),φN+(x)} forms a basis over the problem domain [a,b]. We seek
the numerical solution UN (x, t) to the exact solution U(x, t) in the form of

UN (x, t) =
N+∑
j=–

φj(x)δj(t), ()

where δj(t) are time dependent parameters to be determined from the boundary and col-
location conditions.
Quintic B-splines φm(x) (m = –()N + ), at the knots xm are defined over the interval

[a,b] by [].

φm(x) =

h

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x – xm–), [xm–,xm–],
(x – xm–) – (x – xm–), [xm–,xm–],
(x – xm–) – (x – xm–) + (x – xm–), [xm–,xm],
(x – xm–) – (x – xm–) + (x – xm–)

– (x – xm), [xm,xm+],
(x – xm–) – (x – xm–) + (x – xm–)

– (x – xm) + (x – xm+), [xm+,xm+],
(x – xm–) – (x – xm–) + (x – xm–)

– (x – xm) + (x – xm+) – (x – xm+), [xm+,xm+],
, otherwise.

()

Each quintic B-spline covers six elements so that each element [xm,xm+] is covered by
six B-splines. Substituting trial function () into Eq. (), the nodal values of U , U ′, U ′′ at
the knots xm are obtained in terms of the element parameters δm by

UN (xm, t) =Um = δm– + δm– + δm + δm+ + δm+,

U ′
m =


h
(–δm– – δm– + δm+ + δm+),

U ′′
m =


h

(δm– + δm– – δm + δm+ + δm+),

()

where the symbols ′ and ′′ represent first and second differentiation with respect to x, re-
spectively. The splinesφm(x) and their four principle derivatives vanish outside the interval
[xm–,xm+].
Using a first-order forward difference formula for the time derivative of the U and

Crank-Nicolson approximation for the space derivatives Ux and Uxx in Eq. () leads to

Un+ –Un

�t
+
Un+

x +Un
x


+ 

(UUx)n+ + (UUx)n


–μ

Un+
xx –Un

xx
�t

= . ()

Now, if we apply a linearization technique similar to the one first introduced by Rubin and
Graves [] to Eq. (),

(
UUx

)n+ =Un+UnUn
x +UnUn+Un

x +UnUnUn+
x – UnUnUn

x ,
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we obtain

Un+ +
�t

Un+

x + �t
(
Un+UnUn

x +UnUn+Un
x +UnUnUn+

x
)
–μUn+

xx

=Un –
�t

Un

x – �t
(
UUx

)n –μUn
xx + �t

(
UnUnUn

x
)
.

If we substitute the nodal values of U , Ux and Uxx given by () into (), we obtain the
following iterative system:

δn+m–( – α + α – α – α) + δn+m–( – α + α – α – α)

+ δn+m ( + α + α) + δn+m+( + α + α + α – α)

+ δn+m+( + α + α + α – α)

= δnm–( + α + α – α) + δnm–( + α + α – α) + δnm( + α + α)

+ δnm+( – α + α – α) + δnm+( – α + α – α), m = ()N , ()

where

α =
�t
h

,

α =
�t
h

(
δnm– + δnm– + δnm + δnm+ + δnm+

)(
–δnm– – δnm– + δnm+ + δnm+

)
,

α =
�t
h

(
δnm– + δnm– + δnm + δnm+ + δnm+

),
α =

μ

h
.

This newly obtained iterative system () consists ofN + linear equations includingN +
unknown parameters (δ–, δ–, . . . , δN+, δN+)T . To obtain a unique solution to this system,
we need four additional constraints. These are obtained from the boundary conditions
U(a, t) = U(b, t) =  and Ux(a, t) = Ux(b, t) =  and can be used to eliminate δ–, δ– and
δN+, δN+ from system (), which then becomes amatrix equation for theN + unknowns
d = (δ, δ, . . . , δN )T of the form

Adn+ = Bdn. ()

The matrices A and B are pentagonal (N + )× (N + ) matrices given as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a a a
a a a a

. . .
am,m– am,m– am,m am,m+ am,m+

. . .
an,n– an,n– an,n an,n+

an+,n– an+,n an+,n+

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

m = ()n – ,
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B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b b b
b b b b

. . .
bm,m– bm,m– bm,m bm,m+ bm,m+

. . .
bn,n– bn,n– bn,n bn,n+

bn+,n– bn+,n bn+,n+

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

m = ()n – ,

where

a = –α,
a = –α,
a = –α,

b = –α,
b = –α,
b = –α,

a = 
 – 

 α + 
 α – 

 α + 
 α,

a = 
 + 

α + 
 α + 

α + 
 α,

a = 
 + 

 α + 
 α + 

 α – 
 α,

a =  + α + α + α – α,

b = 
 + 

 α + 
 α + 

 α,
b = 

 – 
α + 

 α + 
 α,

b = 
 – 

 α + 
 α – 

 α,
b =  – α + α – α,

am,m– =  – α + α – α – α,
am,m– =  – α + α – α – α,
am,m =  + α + α,
am,m+ =  + α + α + α – α,
am,m+ =  + α + α + α – α,

bm,m– =  + α + α – α,
bm,m– =  + α + α – α,
bm,m =  + α + α,
bm,m+ =  – α + α – α,
bm,m+ =  – α + α – α,

m = ()n – ,

an–,n– =  – α + α – α – α,
an–,n– = 

 – 
 α + 

 α – 
 α – 

 α,
an–,n– = 

 – 
α + 

 α – 
α + 

 α,
an–,n = 

 + 
 α + 

 α + 
 α + 

 α,

bn–,n– =  + α + α – α,
bn–,n– = 

 + 
 α + 

 α – 
 α,

bn–,n– = 
 + 

α + 
 α + 

 α,
bn–,n = 

 – 
 α + 

 α + 
 α,

an,n– = –α,
an,n– = –α,
an,n = –α,

bn,n– = –α,
bn,n– = –α,
bn,n = –α.

To proceed with iterative formula (), we need the initial vector d which is determined
from the initial and boundary conditions. For this purpose, approximation () must be
rewritten for the initial condition as

UN (x, ) =
N+∑
m=–

δm()φm(x), ()

where the δm ’s are unknown element parameters. Now, if we require the initial numeri-
cal approximation UN (x, ) to satisfy the following boundary conditions to eliminate δ–

http://www.boundaryvalueproblems.com/content/2013/1/27
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and δN+:

UN (x, ) =U(xm, ), m = , , . . . ,N ,

(UN )x(a, ) = , (UN )x(b, ) = ,

(UN )xx(a, ) = , (UN )xx(b, ) = ,

()

we obtain the following matrix form for the initial vector d:

Wd = b, ()

where

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

  
. . . 
    

    
. . .

    
 . . .

  

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

d = (δ, δ, δ, . . . , δN–, δN–, δN )T

and

b =
(
U(x, ),U(x, ),U(x, ), . . . ,U(xN–, ),U(xN–, ),U(xN , )

)T .
2.1 A linear stability analysis
The stability analysis is based on the Von Neumann theory in which the growth factor of
a typical Fourier mode is defined as

δnj = ζ̂ neijkh, ()

where k is a mode number and h is the element size. The non-linear term UUx of the
MRLW equation cannot be handled by the Fourier mode method. Thus, this term is lin-
earized bymaking the quantityU in the nonlinear term a local constant such as Zm. Then
substituting Eq. () into system () gives

ζ̂ n+ = gζ̂ n, ()

where g is the growth factor.
Now, we identify the collocation points with the knots and use Eq. () to evaluate Um

and its necessary space derivatives and substitute into Eq. () to obtain the following equa-
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tion:

δ̇m– + δ̇m– + δ̇m + δ̇m+ + δ̇m+

+

h
( + Zm)(–δm– – δm– + δm+ + δm+)

–
μ

h
(δ̇m– + δ̇m– – δ̇m + δ̇m+ + δ̇m+) = . ()

Here · denotes derivativewith respect to time. If time parameters δi ’s and their time deriva-
tives δ̇i’s in Eq. () are discretized by the Crank-Nicolson formula and usual forward finite
difference approximation, respectively:

δi =
δn + δn+


, δ̇i =

δn+ – δn

�t
, ()

we obtain a recurrence relationship between two time levels n and n +  relating two un-
known parameters δn+i , δni for i =m – ,m – , . . . ,m + ,m + 

γδ
n+
m– + γδ

n+
m– + γδ

n+
m + γδ

n+
m+ + γδ

n+
m+

= γδ
n+
m– + γδ

n
m– + γδ

n
m + γδ

n
m+ + γδ

n
m+, ()

where

γ = ( – E –M), γ = ( – E – M),

γ = ( + M), γ = ( + E – M),

γ = ( + E –M),

m = , , . . . ,N , E = ( + Zm)

h

�t, M =

h

μ.

()

Substituting the Fourier mode () into () gives the growth factor g of the form

g =
a – ib
a + ib

, ()

where

a =  + M + ( – M) cos[hk] + ( –M) cos[hk],

b = E sin[hk] + E sin[hk].
()

The modulus of |g| is , therefore the linearized scheme is unconditionally stable.

3 Results and discussion
In this section, we consider the following four test problems: themotion of a single solitary
wave, the interaction of two and three solitary waves and theMaxwellian initial condition.
Accuracy and efficiency of the method are measured by the error norms L

L =
∥∥Uexact –UN

∥∥
 �

√√√√h
N∑
J=

∣∣Uexact
j – (UN )j

∣∣,
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and L∞

L∞ =
∥∥Uexact –UN

∥∥∞ �max
j

∣∣Uexact
j – (UN )j

∣∣, j = , , . . . ,N – .

The MRLW equation satisfies only three conservation laws given by []

I =
∫ b

a
U dx� h

N∑
j=

Un
j ,

I =
∫ b

a

[
U +μ(Ux)

]dx� h
N∑
j=

[(
Un

j
) +μ(Ux)nj

]
,

I =
∫ b

a

(
U –μU

x
)
dx � h

N∑
j=

[(
Un

j
)–μ(Ux)nj

]
,

which correspond to conversation of mass, momentum and energy, respectively. In the
simulation of a solitary wave motion, the invariants I, I and I are monitored to check
the conversation of the numerical algorithm.

3.1 The motion of a single solitary wave
For this problem, MRLW Eq. () is considered with the boundary condition U →  as
x → ±∞ and the initial condition

U(x, ) =
√
c sech

(
p(x – x)

)
.

Note that the analytical solution of this problem can be written as

U(x, t) =
√
c sech

(
p
(
x – (c + )t – x

))
,

where p =
√

c
μ(c+) , x and c are arbitrary constants. The constants of motion, for a solitary

wave of amplitude
√
c and width depending on pmay be evaluated analytically as []

I =
∫ ∞

–∞
U(x, )dx =

π
√
c

p
,

I =
∫ ∞

–∞

(
U(x, ) +μU

x (x, )
)
dx =

c
p

+
μpc


,

I =
∫ ∞

–∞

(
U(x, ) –μU

x (x, )
)
dx =

c

p
–
μpc


.

()

For our computational work, we have chosen two sets of parameters. Firstly, we have
used the parameters c = , μ = , h = ., x = , k = . over the interval [, ] to
coincide with those of earlier papers [–, ]. So, the solitary wave has amplitude .
and the computations are done up to time t =  to obtain the invariants and error norms
L and L∞ at various times. Error norms L, L∞ and three invariants of the MRLW equa-
tion are listed in Table . It is seen that the error norms are found to be small enough

http://www.boundaryvalueproblems.com/content/2013/1/27
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Table 1 Invariants and error norms for a single solitary wave with c = 1, h = 0.2, k = 0.025,
0 ≤ x ≤ 100

t I1 I2 I3 L2×103 L∞×103

0 4.4428660 3.2998226 1.4142046 0.00000000 0.00000000
1 4.4428660 3.2998068 1.4142204 0.28867055 0.17189210
2 4.4428660 3.2997776 1.4142496 0.56818930 0.32423631
3 4.4428660 3.2997536 1.4142736 0.83577886 0.46169463
4 4.4428660 3.2997375 1.4142897 1.09458149 0.59234819
5 4.4428660 3.2997272 1.4143000 1.34807894 0.72040575
6 4.4428660 3.2997206 1.4143066 1.59852566 0.84732049
7 4.4428660 3.2997164 1.4143108 1.84722430 0.97368288
8 4.4428660 3.2997137 1.4143135 2.09491698 1.09976163
9 4.4428661 3.2997119 1.4143153 2.34203425 1.22568849
10 4.4428661 3.2997108 1.4143165 2.58891199 1.35164457

Table 2 Errors and invariants for a single solitary wave with c = 1, h = 0.2, k = 0.025,
0 ≤ x ≤ 100, at t = 10

Method I1 I2 I3 L2×103 L∞×103

Analytical 4.4428829 3.2998316 1.4142135 0 0
Present 4.4428661 3.2997108 1.4143165 2.58891 1.35164
Pet-Gal.[28] 4.44288 3.29981 1.41416 3.00533 1.68749
Cubic B-splines coll-CN[29] 4.442 3.299 1.413 16.39 9.24
Cubic B-splines coll+PA-CN[29] 4.440 3.296 1.411 20.3 11.2
Cubic B-splines coll[30] 4.44288 3.29983 1.41420 9.30196 5.43718
MQ[35] 4.4428829 3.29978 1.414163 3.914 2.019
IMQ[35] 4.4428611 3.29978 1.414163 3.914 2.019
IQ[35] 4.4428794 3.29978 1.414163 3.914 2.019
GA[35] 4.4428829 3.29978 1.414163 3.914 2.019
TPS[35] 4.4428821 3.29972 1.414104 4.428 2.306

and the computed values of invariants are in good agreement with their analytical val-
ues I = ., I = ., I = .. Percentage values of the relative er-
ror of the conserved quantities I, I and I are calculated with respect to the conserved
quantities at t = . Percentage values of relative changes of I, I and I are found to be
.× –%, .× –%, .× –%, respectively. Thus, the invariants remain
almost constant during the computer run. Table  displays a comparison of the values of
the invariants and error norms obtained by the present method with those obtained by
other methods [–, ]. It can be seen from Table  that the error norms obtained
by the present method are smaller than other methods [–, ]. Figure  shows the
motion of a solitary wave with c = , h = ., k = . at different time levels. It is ob-
served that the soliton moves to the right at a constant speed and almost unchanged am-
plitude with increasing time, as expected. At t =  the amplitude is . which is located
at x = , while it is . which is located at x = . At times t =  and t = , the
absolute difference in amplitude is × – so there is a little change between the ampli-
tudes.
For the second set, the parametersμ = , c = ., h = ., k = . and x =  with range

[, ] are chosen to compare the results obtained by the present method with those
obtained given in Refs. [, , , , ]. So, the solitary wave has amplitude .
and the computations are done up to time t =  to obtain the invariants and error norms
L and L∞ at various times. Error norms L and L∞ and conserved quantities are tabulated
in Table  together with the results obtained with Refs. [, , , , ]. As it is seen
from the table, the error norms obtained by the present method are smaller than those
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Figure 1 Single solitary wave with c = 1, h = 0.2, �t = 0.025, 0 ≤ x ≤ 100, t = 0,2, 4, 6, 8 and 10.

given in Refs. [, ] and almost the same as those in Refs. [, , ]. The agreement
between numerical and analytic solutions is perfect which is given by Eq. . Percentage
values of relative changes of I, I and I are found to be . × –%, . × –%,
.× –%, respectively. Moreover, from Table  , the changing of the invariants I, I
and I during the computer run is less than × –, . × –, . × –, respectively.
The profiles of the solitary wave at different time levels have been shown in Figure . The
distributions of the errors at time t =  and t =  are shown graphically for solitary wave
amplitudes  and . in Figure . It is seen that the maximum errors are about at the
tip of the solitary waves and between – × – and  × –, – × – and  × –,
respectively.

3.2 Interaction of two solitary waves
Here the interaction of two solitary waves is studied by using the initial condition given
by the linear sum of two well-separated solitary waves having various amplitudes

U(x, ) =
∑
j=

Aj sech
(
pj(x – xj)

)
, ()

whereAj =
√cj, pj =

√ cj
μ(cj+)

, j = , , cj and xj are arbitrary constants. The analytical values
of the invariants are found by []

I =
∑
j=

π
√cj
pj

,

I =
∑
j=

(
cj
pj

+
μpjcj



)
,

I =
∑
j=

(cj
pj

–
μpjcj



)
.

()
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Table 3 Invariants and error norms for a single solitary wave with c = 0.3, h = 0.1, k = 0.01,
0 ≤ x ≤ 100

t I1 I2 I3 L2×104 L∞×104

0 3.5820205 1.3450941 0.1537283 0.0000000 0.0000000
2 3.5820205 1.3450944 0.1537280 0.0082694 0.0034843
4 3.5820205 1.3450950 0.1537274 0.0162937 0.0070162
6 3.5820206 1.3450955 0.1537268 0.0242346 0.0105732
8 3.5820206 1.3450960 0.1537264 0.0322064 0.0141521
10 3.5820206 1.3450964 0.1537260 0.0402374 0.0177376
12 3.5820206 1.3450966 0.1537257 0.0483276 0.0213278
14 3.5820206 1.3450969 0.1537255 0.0564695 0.0249138
16 3.5820206 1.3450971 0.1537253 0.0646548 0.0285146
18 3.5820206 1.3450972 0.1537251 0.0728758 0.0321067
20 3.5820204 1.3450974 0.1537250 0.8112594 0.3569076
20[30] 3.58197 1.34508 0.153723 6.06885 2.96650
20[34] 3.581967 1.345076 0.153723 0.508927 0.222284
20[35]MQ 3.5819665 1.3450764 0.153723 0.51498 0.22551
20[35]IMQ 3.5819664 1.3450764 0.153723 0.51498 0.22551
20[35]IQ 3.5819654 1.3450764 0.153723 0.51498 0.22551
20[35]GA 3.5819665 1.3450764 0.153723 0.51498 0.22551
20[35]TPS 3.5819663 1.3450759 0.153723 0.51498 0.26605

Figure 2 Single solitary wave with c = 0.3, h = 0.1, �t = 0.01, 0≤ x ≤ 100 at times t = 0,5, 10, 15 and
20.

Figure 3 Error with a) c = 1, h = 0.2,�t = 0.025, t = 10, 0≤ x ≤ 100, b) c = 0.3, h = 0.1,�t = 0.01, t = 20,
0≤ x ≤ 100.

http://www.boundaryvalueproblems.com/content/2013/1/27


Karakoc et al. Boundary Value Problems 2013, 2013:27 Page 12 of 17
http://www.boundaryvalueproblems.com/content/2013/1/27

Table 4 Comparison of invariants for the interaction of two solitary waves with results from
[34] with h = 0.2, k = 0.025 in the region 0 ≤ x ≤ 250

Present method [34]

t I1 I2 I3 I1 I2 I3
0 11.4676542 14.6292080 22.8803584 11.467698 14.629277 22.880432
2 11.4678169 14.6282301 22.8813363 11.467698 14.624259 22.860365
4 11.4679819 14.6282293 22.8813371 11.467698 14.619226 22.840279
6 11.4681349 14.6181053 22.8914611 11.467699 14.614169 22.820069
8 11.4675390 14.1393389 23.3702275 11.467700 14.606821 22.787857
10 11.4674118 14.0502062 23.4593602 11.467700 14.603687 22.771773
12 11.4685494 14.6816556 22.8279107 11.467699 14.603056 22.775766
14 11.4687073 14.6648742 22.8446922 11.467699 14.598059 22.756029
16 11.4688627 14.6459207 22.8636457 11.467700 14.593048 22.736127
18 11.4690242 14.6370095 22.8725569 11.467700 14.588061 22.716289
20 11.4691886 14.6331334 22.8764330 11.467701 14.583089 22.696510
20[28] 11.4677 14.6299 22.8806
20[30] 11.4677 14.6292 22.8809
20[35]MQ 11.467698 14.583052 22.696539
20[35]IMQ 11.467679 14.583052 22.696539
20[35]IQ 11.467690 14.583052 22.696539
20[35]GA 11.467698 14.583052 22.696539
20[35]TPS 11.467742 14.582424 22.694269

For the numerical simulation, the parameters μ = , h = ., k = ., c = , c = ,
x = , x =  are used over the range  ≤ x ≤  to coincide with those used by Refs.
[, , , ]. The experiment is run from t =  to t =  and the values of invariant
quantities I, I and I are recorded in Table . The analytical values of the invariants for
this case are I = ., I = ., I = .. A comparison of the values
of the invariants obtained by the present method with those obtained in Refs. [, ,
, ] are listed in Table . It is seen that the obtained values of the invariants remain
almost constant during the computer run. The development of the interaction of two soli-
tary waves is shown in Figure . It can be seen from the figure that at t =  the wave with
larger amplitude is to the left of the second wave with smaller amplitude. Since the taller
wave moves faster than the shorter one, it catches up and collides with the shorter one
at t =  and then moves away from the shorter one as time increases. At t = , the am-
plitude of larger waves is . at the point x = . whereas the amplitude of the
smaller one is . at the point x = . It is found that the absolute difference in am-
plitude is . × – for the smaller wave and . × – for the larger wave for this
algorithm.

3.3 Interaction of three solitary waves
For this problem, the behavior of interaction of three solitary waves having different am-
plitudes and traveling in the same direction is studied. So, we consider Eq. () with the
initial condition given by the linear sum of three well-separated solitary waves of different
amplitudes

U(x, ) =
∑
j=

Aj sech
(
pj(x – xj)

)
, ()
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Figure 4 Interaction of two solitary waves with t = 0,4, 8, 10, 14, 20.

where Aj =
√cj, pj =

√ cj
μ(cj+)

, j = , , , cj and xj are arbitrary constants. The analytical
values of the conservation laws are found from Eq. () as follows:

I =
∑
j=

π
√cj
pj

,

I =
∑
j=

(
cj
pj

+
μpjcj



)
,

I =
∑
j=

(cj
pj

–
μpjcj



)
.

()

For the purpose of comparison, parameters μ = , h = ., k = ., c = , c = ,
c = ., x = , x = , x =  are used over the region  ≤ x ≤ . During the sim-
ulation, time is taken up to t = . The analytical values of the invariants for this case
are I = ., I = ., I = .. A comparison of the values of the invariants
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Table 5 Comparison of invariants for the interaction of three solitary waves with results from
[34] with h = 0.2, k = 0.025 in the region 0 ≤ x ≤ 250

Present method [34]

t I1 I2 I3 I1 I2 I3
0 14.9800762 15.8374849 23.0081806 14.980099 15.837528 23.008136
5 14.9381371 15.7382326 23.1074329 14.980105 15.824928 22.957891
10 14.9071292 14.1781087 24.6675567 14.980109 15.807025 22.877972
15 14.8836886 15.3648852 23.4807802 14.980106 15.807032 22.885947
20 14.8503851 15.5659364 23.2797291 14.980106 15.795022 22.837454
25 14.8194163 15.6235556 23.2221098 14.980107 15.782840 22.788852
30 14.7905616 15.5976717 23.2479938 14.980107 15.770634 22.740419
35 14.7636015 15.5610664 23.2845991 14.980108 15.758480 22.692279
40 14.7383184 15.5256320 23.3200335 14.980108 15.746389 22.644448
45 14.7145273 15.4927592 23.3529062 14.968030 15.734374 22.596591
45[30] 13.7043 15.6563 22.9303
45[35]MQ 14.96814 15.73434 22.596625
45[35]IMQ 14.96808 15.73434 22.596625
45[35]IQ 14.96813 15.73434 22.596625
45[35]GA 14.96810 15.73433 22.596626
45[35]TPS 14.96824 15.73376 22.594494

obtained by the present method with those obtained in Refs. [, , ] are shown in Ta-
ble . It is observed from the table that the obtained values of the invariants remain almost
constant during the computer run which are all in good agreement with their analytical
values given by Eq. (). The absolute difference between the values of the conservative
constants obtained by the present method at times t =  and t =  are �I = . × –,
�I = . × –, �I = . × –, respectively. Figure  shows the interaction of these
solitary waves at different times. As it is seen from the Figure , the interaction started
at about time t = , overlapping processes occurred between time t =  and t =  and
waves started to resume their original shapes after the time t = .

3.4 The Maxwellian initial condition
Finally, we have studied the development of the Maxwellian initial condition

U(x, ) = exp
(
–(x – )

)
()

into a train of solitary waves. As it is known, with the Maxwellian condition (), the be-
havior of the solution depends on the values of μ. We study each of the following cases:
μ = ., μ = ., μ = . and μ = .. For μ = ., only a single soliton is formed
as shown in Figure a. When μ = . and μ = ., two and three stable solitons are
formed, respectively, as shown in Figure b, c. For μ = ., the Maxwellian initial condi-
tion has decayed into four solitary waves as shown in Figure d. All figures were drawn up
at time t = .. The peaks of the well-developedwave lie on a straight line, so that their ve-
locities are linearly dependent on their amplitudes.We also observe a small oscillating tail
appearing behind the last wave in all Maxwellian figures. The obtained numerical values
of the invariants are given in Table .

4 Conclusions
A numerical solution of the MRLW equation based on the quintic B-spline finite element
has been successfully presented. The nonlinear term of the equation is linearized by using
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Figure 5 Interaction of three solitary waves with t = 0,5, 8, 15, 20, 40.

Table 6 Invariants of the MRLW equation using the Maxwellian initial condition

t μ I1 I2 I3 μ I1 I2 I3
0 0.1 1.7724809 1.3786633 0.7609104 0.015 1.7724809 1.2721327 0.8674410
3 1.7721927 1.4728222 0.6667515 1.7436793 1.4180550 0.7215188
6 1.7717480 1.4720618 0.6675119 1.7244620 1.4036726 0.7359011
9 1.7713064 1.4715473 0.6680264 1.7116986 1.3940073 0.7455664
12 1.7708674 1.4711193 0.6684544 1.7021509 1.3870669 0.7525068
15 1.7704309 1.4707290 0.6688447 1.6945087 1.3816736 0.7579001
0 0.01 1.7724809 1.2658662 0.8737075 0.04 1.7724809 1.3034651 0.8361087
3 1.7264258 1.4001430 0.7394307 1.7685556 1.4501960 0.6893777
6 1.7031386 1.3850514 0.7545223 1.7637294 1.4456393 0.6939344
9 1.6885258 1.3755380 0.7640357 1.7592882 1.4415131 0.6980606
12 1.6777156 1.3686563 0.7709174 1.7551780 1.4378815 0.7016922
15 1.6691476 1.3635304 0.7760434 1.7513552 1.4345989 0.7049748

a form given in the paper []. Four test problems are studied to examine the perfor-
mance of the scheme. To show how good and accurate the numerical solutions of the test
problems are, the error norms L and L∞ and the invariant quantities I, I and I have
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Figure 6 Maxwellian initial condition at t = 14.5 with a) μ = 0.1, b) μ = 0.04, c) μ = 0.015, d) μ = 0.01.

been used. It is seen that the error norms are sufficiently small and the invariants are well
conserved. The method successfully models the motion and interaction of solitary waves.
The computed results indicate that the presentmethod ismore accurate than some earlier
results found in the literature. So, it can be said that the method is a reliable one for ob-
taining the numerical solutions of a wider range of physically important non-linear partial
differential equations.
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