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1 Introduction
In this paper, we consider the asymptotic behavior of solutions for the Cauchy problem of

the porous medium equation with nonlinear sources

3
B—Lt‘ — A" =, inRN x (0,00), (L1)
u(x,0) = up(x), inRY, 1.2)

where m,p > 1 and ug € L®(p,) = {@; 0po € L®(RN)} with p, (x) = (1 + |x|?) 3

It is well known that any positive solutions of problem (1.1)-(1.2) blow up in finite time
fl<p<p.=m+ % [1-3], while positive global solutions do exist if p > p, [4-7]. In
2000, Mukai, Mochizuki and Huang in [6] found that if p > m + % and ﬁ <o <N and
0 < ¢ € Cp(RN) satisfies lim SUP, oo %17 @(x) < 00, then there exists a constant 7(¢) > 0
such that for 0 < n < n(p), the solutions u(x, £) of problem (1.1)-(1.2) with the initial value

ug = ne are global and the following estimate holds:
|u@®] Loy < CL oD, (1.3)
Moreover, if limy_, o0 [%|7 @(x) = Mo > 0, then

_ o 1
tom-1+2 u(t o(m-1)+2 X, t) t:f) S(l)wo (x)
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uniformly on RN, where wy(x) = M |x| . Here S(¢) is a semigroup generated by the

Cauchy problem of the porous medium equation

9
a—VtV —AW" =0, inRN x (0,00), (1.4)
w(x,0) = wo(x), inRN (1.5)

and wy(x) = nMy |x| 7.

On the other hand, regarding problem (1.4)-(1.5), in 2002, Vazquez and Zuazua [8]
found that for any bounded sequence {¢,}°; in L>°(RN), there exists an initial value #q €
L*®(RN) and a sequence ty, — 00 as k — oo such that limy_, S(tnk)uo(tékx) = S(1)p,(x)
uniformly on any compact subsets of RV, In our previous papers [9], for any bounded se-
quence {g,}°%; in C3(RY) = {¢p € Co(RN);¢(x) > 0}, we have shown that there exists an
initial value uo € Co(RN) and a sequence t,, — 00 as k — oo such that

I3
Jim 7St )uo (th %) = Sgu(x)

uniformly on R, where 0 < u <% and g = Z4) For more details on the study

Nim- 1 2
of complicated asymptotic behavior of solutions for the heat equation and other evolution
equations, we refer the readers to [10-14].

In this paper, we are quite interested in the above mentioned same topic for the equation
with strongly nonlinear sources, namely equation (1.1) with p > m + 2. We will show that
for any M > O there is a constant (M) and an initial value u, € C;(,;I) ={pe CRN)pe

By N ) w1th — <0 <N such that for any ¢ € C,7 (m)» there exists a sequence ¢, — 00 as

n— 0o satlsfymg
o ;
hm trrm 1+2 (t )MO( (m-1)+2 ) S(l)(p( )

uniformly on RY. Here B;&) ={¢ = np;0 < ¢ € L%(p5), (1 + |'|2)%(P(')||LOO(RN) =
M and 0 < n < n(M)}. For this purpose, we first show that if the initial value u, € BZ&),
then the solutions u(x, t) are global and satisfy

a

2 _g
u(x,t) < C(L+ 5002 4 |x[%) 72, (1.6)

One can easily see that (1.6) captures (1.3). From this, we can follow the framework by

Kamin and Peletier [15] to prove that

1
zl—l>nolo tolm= 1)+2 “ (t(r(m D+ t) (t)uo(t” m-1)+2 )H Loo@N) =0. (1.7)
So, we can get our results by following the framework in [9] and using (1.6)-(1.7).
The rest of this paper is organized as follows. The next section is devoted to giving a suf-
ficient condition for the global existence of solutions for problem (1.1)-(1.2) and the upper
bounded estimates on these solutions. In the last section, we investigate the complicated

asymptotic behavior of solutions.
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2 Preliminaries and estimates

In this section we state the definition of a weak solution of problem (1.1)-(1.2) and give
the upper bounded estimates on the global solutions. We begin with the definition of the
weak solution of problem (1.1)-(1.2).

Definition 2.1 [16, 17] By a weak solution of problem (1.1)-(1.2) in RN x [0, T), we mean
a function u(x, t) in RN x [0, T) such that

1. u(x,t) > 0in RN x [0, T) and u(x,t) € C(RN x (0,7]) foreach0 <7 < T.

2. For 0 < 7 < T and any nonnegative ¢(x,t) € C*1(RN x [0, T')) which vanishes for

large |x|, the following equation holds:
/ u(x,r)gp(x,t)dx—/ uo(x)p(x,0) dx
RN RN

:// u™(x, ) Ap(x, t) dx de
0 JRN

T - .,
+/0 /]RN u(x, £);(x, t)dxdt+/0 _/szu (%, )p (o, £) dx dt. (2.1)

A supersolution [or subsolution] is similarly defined with equality of (2.1) replaced by
> [or <]. The weak solutions for problem (1.4)-(1.5) can be defined in a similar way as
above. It is well known that problem (1.1)-(1.2) has a unique, nonnegative and bounded
weak solution, at least locally in time [16, 17]. Now we state the comparison principle for
problem (1.1)-(1.2).

Lemma 2.1 [16,17] Suppose that for 0 < t < T, u(x, t), u(x, t) € C(RN x [0, T)) N L®(RN x
[0, T]) are supersolution and subsolution of the problem (1.1)-(1.2), respectively. If

u(x,0) > u(x,0) forxe RN,
then, for all (x,t) e RN x (0, T),
u(x, t) > u(x, t).
To study the asymptotic behavior of solutions for problem (1.1)-(1.2), we adopt the space

Xo and L*(p,) as that in [16—18]. For any ¢ > 0 and p,(x) = (1 + 1x2)%, the L*®(p,) is
defined as

L*(ps) = {9 pps € L% (RY) }
with the obvious norm [|¢[|ze(p,) = |90 | ;o) and the X is given by

Xo = {p € Lio(RV); llll1 < 00 and £(p) = 0}

loc

with the norm ||| - |||;. Here

N(m-1)+2

llelll, = supR™ ™~ m-1 f lp(x)|dx and £(p) = lim [le],.
R>r {|x|<R} r—o0
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Hence they are both Banach spaces. The existence and uniqueness of a weak solution of
problem (1.4)-(1.5) with the initial-value u#o € X is shown in [16, 17], and this solution

satisfies the following proposition.

Proposition 2.1 [17] Problem (1.4)-(1.5) generates a continuous bounded semigroup in X,

given by
S(8) : wy — wix, t).

In other words, S(t)wy € C([0,00); Xo). Moreover, if ug € LN(RN), then the semigroup S(t) is
a contraction.

We now introduce the definitions of scalings and the commutative relations between
the semigroup operators and the dilation operators. For any u, 8 > 0 and v(x) € X, the
dilation Df’ﬁ is defined as follows:

Df’ﬂw(x) = Mw(rPx).

From the definitions of the dilation operator and the semigroup operator, we can get that
for u, B >0 and wy € X,

DYPIS(A2E)wo](x) = S(A2> D28 £) [ DL wo | (w); (2.2)

see details in [19, 20].
In the rest of this section, we give a sufficient condition for the existence of global solu-

tions of problem (1.1)-(1.2) and establish the upper bounded estimates of these solutions.
Theorem 2.1 Let ﬁ <o <N and M > 0. There exists a constant n(M) such that for any

0 <n<nM), dpx) = 0and ||p|lro(,) <M, the solutions u(x,t) of problem (1.1)-(1.2) with
the initial value uy(x) = n¢(x) are global. Moreover, the following estimate holds:

2 _ga
0 < u(x,t) < C(M,n)(1+ 702 + |x]*) "2, (2.3)
where C(M, n) is a constant dependent only on M and 1.

Remark 2.1 Notice that if 0 < ¢ € C,(RN) and limsup,,,_, o, ¢(x)|x|” < 0o, then ¢ €
L*>(pg). So, our results capture Theorem 3 in [6]. Here we use some ideas of them.

Proof To prove this theorem, we need the fact that if vy = M|x|~?, then

S(Eve(®) < CM) (677772 + [x12) 2, (2.4)

which has been given in Lemma 2.6 of [20]. We give the proof here for completeness. In
fact,

_ NOn-1+2 > o2
[[volly =sup R~ m1 Ax|dx<Cr? m1—0 asr— oo.
R>r Br
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This means that v € XO Therefore, from Proposition 2.1, we obtain that S(¢)vg(x) is well

defined. Taking u = 5 and g = 5 in (2.2), we have

(m e

32 [S(328)ve | (A5 02 5) = S(s)[ATTE T2 v (A 7002 )| () = S(s)vow).  (2.5)
Now takings=1, A = t2 and g(x) = S(1)vo(x) in (2.5), we obtain that

S(E)vo(x) = £ TR (¢ T ), (2.6)
The fact that ¢ € C*°(R¥ \ {0}) clearly means that

S(t)vo € C([0,00) x RN\ {(0,0)}) N C%"”((O, 00) x RN)  for some & > 0; (2.7)
see [21]. This implies that for |x| = 1, the following limit holds:

t oln= 1>+2g( m—1>+2x) SE)vo(x) > ¢px) =M|x|° =M ast— 0.
Let

y= tfmx.
So,

ly| > o0 ast— 0.
Therefore,

yI°¢(y) -M — 0
as |y| — oco. This means that there exists an M; > 1 such that if |y| > M;, then

g) <2Mly|™. (2.8)
From (2.7), for |y| < M;, there exists a constant C such that

sy =C (2.9)

Combining (2.8) and (2.9), we have

a

gx) < CWM)(L+[x*)*  forxeRN.

By (2.6), we thus obtain that

S(Hvo(x) < C(M)(tW + |x|2)_%‘
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So, we complete the proof of (2.4). Now taking
o) = M(1+1x2) 2,
we get that
0 <) <volx)=M|x|™" forx#0.
Therefore, by the comparison principle and (2.4), for all £ > 0, we have
S0 () < SOvo(x) < COD(E7T 77 + |af?) "%, (2.10)

Since S(t)p(x) € C([0,00) x RN) (see [17, 21]), there exists a #; > 0 such that for all x| < 1

and 0 <t <1t,

_z
2

S(Hp() < Colx) < CO(1+ [x2) 7.

Combining this with (2.6) and using the comparison principle, we can get

A
2

SOP@) < SOP(x) < CM)(1 + L7077 4 |x2) 3
In other words,
S(HP(x) < CM)((1 + 772 4 [x2) 2. (211)

If n = 0, (2.3) clearly holds. In the rest of proof, we can assume that 1 > 0. The hypothesis
2

p—m

<o < N indicates
olp-m)-2>0.
Let

o(p-1)

°° __ol)
n(M)"™ P = 2CP Y (M) (p - m)/o (1 +¢) omD+2 d¢

_ 2C(MYP Yo (m—-1) +2)(p — m)

0,
o(p—m)—2 g

where C(M) is the constant given by (2.11). For 0 < n < (M), taking

1
p-m

alt) = [(n’”"’ - cty - | (e m)] ,
0
and

wix, t) = S(t)p(x),
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we obtain from (2.11) that «(¢) is an increasing function satisfying

a(0) =n,

a(t) < 277n(M) forall >0, 2.12)
o(p-1)

a(t) = CMPa(ty " (1 + ) 5002 > a(t)P " ||w(t) |V

LoO(RN)
Now letting b(t) to satisfy

b'(t) = a(b(t))™,

(213)
b(0)=0

and then taking
w(x,t) = a(b(t))w(x, t),

one can see that w(x, t) is a supersolution of the following problem:

ou
Frin Au" =uP,  (x,8) € RN x (0,00);

u(x,0) = ug = np(x), xRN,

Therefore,

1

ulx,t) < a(b(t))w(x, t) <2pm n(M)w(x, b(t))

< Cln, M)(L+ ()71 + o) 5. (2.14)

(2.12) and (2.13) clearly mean that

m=1

"l < b(t) < 27 (M)t
From this and (2.14), we can get (2.3). So, we complete the proof of this theorem. O

3 Complicated asymptotic behavior
For any M > 0, let n(M) be as given by Theorem 2.1. We introduce

By = {00) = np(x) : () = 0, [ pll1 (p5) < M and 0 < 5 < n(M)}
and

o, _ NY. a,
Cron = {p e CRY);0 eBn(;I)}.
In the rest of this section, we show that the complexity may occur in the asymptotic be-
havior of solutions of problem (1.1)-(1.2) with g € C;(’X,I). Our main result is the following
theorem.


http://www.boundaryvalueproblems.com/content/2013/1/35

Wang and Yin Boundary Value Problems 2013, 2013:35 Page 8 of 12
http://www.boundaryvalueproblems.com/content/2013/1/35

Theorem 3.1 Let p > m + % and zﬁ <0 < N. Then there is a function uy € CZ(';,[) such
that for any ¢ € C;(’;I)’ there exists a sequence t, — 00 as n — oo such that

__o__ _1_
lim t;(m—l)ﬂ M(tnrr(m—l)ﬂx, tn) _ S(l)go(x)

n—0o0
uniformly on RN . Here u(x, t) is the solution of problem (1.1)-(1.2).
To get this theorem, we need to prove the following lemma first.

Lemma 3.1 Suppose p > m + % and M > 0. Let u be a solution of problem (1.1)-(1.2). If
0 <uy EBZ(’;\/D with ﬁ <o <N, then

lim ¢Z0mD ||u(tm HE) = [S(t)uo](tm ) =0.

500 “LOO(RN)

Proof We first define the functions

u(x,t) = Df\"ﬂu(x,kt) = Mu(2Px,27t)

and
wi (%, 8) = D P wx, At) = M w(3Px,2%),
where = U(m2f1)+2 and B8 = m Using the comparison principle, we know that for

(x,£) e RN x (0,00),
wix, t) < u(x, t)
and forall A > 1,
wi (%, 1) < u (%, 7).
The results of Theorem 2.1 imply that

) = G (132 + 21T E
<O+ 4 al?)

<O+ t) (1 (124 0) )R (3.1)

Here we have used the fact u = Bo. So,

T T+A72 sP
/ / u,\(x,t)dxdth/ sN‘g’“ds/ N=o-ldr < Cr.
0 By 0

A2

Now we estimate the integral

//uk(x,t)qudt
0 By
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with g > 1 in several steps. For any 7 > 0, we take A large enough to satisfy A2 < t and
assume, without loss of generality, that (z + A=2)™ > 1 in the rest of this proof. Then using
the same method as above, we have

Ct¥P 4+ Ct ify>0and N #ogq,
i Cr+Crinl ify>0and N =o0g¢q,
/ / u (x, ) dedt < ’ (3.2)
o JB Ct+Cln(l+A%1r) ify =0,
Ct + CA2Pr ify <0,

where y = N + o(m — 1) — oq + 2. Similarly, we can get the integral estimates for w; (x, ),
which have been given in [22]. By using the same methods as in [15], we can get that for
T>0

u(T)—=w;(T)—> 0 asi— o0 (3.3)

uniformly on any compact subset of RN, For any T, A, € > 0, we can obtain from (3.1) that
there exists a constant R > 0 satisfying

€
””A(T)”Loo(RN\BR) < [es(T) ||L°°(RN\BR) <3 (34)
and
€
||W)\(T) ||L°°(RN\BR) E ” uk(': T) ||L°°(]RN\BR) < g: (3'5)

2 - 2 o

where @, (x,£) = CA*[(1 + A2t) oD+ 4 |APx|2]"2 = C[(A2 + £)°™-D+2 + |x|?]"2 and By =
{x € RN; |x| < R}. Taking R as given by (3.4), from (3.3), there exists A; such that for all
A Z )"1’

<& (3.6)

||MA(T)_W)»(T)||L°°(BR) 3

Therefore, from (3.4)-(3.6), we have

)\li)nolo”M)n(T) - WA(T) ||L°°(RN) = O' (3'7)

Now letting T =1 and A = t7 in (3.7), we get that

. g 1 1
t1—1>nolo t2ro(m-T) ” [u(t2+a(m—1) -,t) - W(t2+a(m—1) ~,t)] ||LOO(RN) =0.
So, we complete the proof of this lemma. d

Now we can prove our main result.

Proof of Theorem 3.1 Let

B 20
'u_cr(m—l)+2
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and

2
om-1)+2"

B =
From the definition of C:('X/I)’ we obtain that there exists a countable set F such that
Fc Cyyy NLY(RY)
and for any € > 0 and ¢ € Cy, there exists a function ¢ € F satisfying

lpe — @ll e mry < €. (3.8)

Therefore, there exists a sequence {¢;};>1 C F such that

L. For any ¢ € F, there exists a subsequence {gj, }x>1 of the sequence {¢;};-1 satisfying
@, (x)=¢ forallk>1,
II. There exists a constant C > 0 satisfying
max ([lg;ll oo @y, 97l @ny) <G forj = 1.

Now we can follow the methods given in [9] to construct an initial value as follows. Let

o (x) = Zx i (0] ) gi(wnl) =y D X,(x)go,(x)] (3.9)

j=1 j=

Here

2 forj=1,
)»,» = 4BN-2

o apN . (3.10)
maXQmAZN-“[NV”“Z] @xja) %)) forj>1,

xj(x) is the cut-off function defined on {x € RN;27 < |x| < 2/} relatively to {x € RN;27* <
x| < 271}, and A; is selected large enough to satisfy

j-1
DP[S(32e)uo(@)] = D [s(kft) Do (123 (1 )}
n=1
+ DEP[S(20) "y (x12] )y (/2] ]

+D§j’ﬁ |:S(A/2t) Z )\n"‘x,,(x/)nﬁ)%(x/kg)}.

n=j+1

Notice first that if ¢ € C} 1), then

@l ooy < n(M), @l (ps) = n(M)
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and
g € Co(RV).
By (3.9) and (3.10), we have

llt0 oo vy < N0 1220 ) < su?yyx,»-“x,(x/xf)wj(x/Xf) [P0
Jj=

So, we have
Uug € CZ(,;\./I) c Co (RN)

Using the same method as that in [9], we can get that for any ¢ € F, there exists a sequence

t, — o0 as n — oo such that

__o__ _1__
t};r(m—l)+2 [S(tn)uo](t;(m—IHZ x) n—>0Q S(l)(p(x) (311)

uniformly on R, For any ¢ € CZ(,/T/I)’ from (1.2), we know that there exists a sequence
{¢x} C F such that

or— ¢ ask— oo.
Therefore,

Sy — S1)¢p ask — oo (3.12)
uniformly on any compact subset of RN, This uses the fact that the map S(1) is regularizing
since the images of bounded sets are relatively compact subsets of C* for some « > 0
in compact sets of RN [21]. And notice that ¢, ¢ € CZ(’;[,I) C BZ(’;/I). We thus obtain from
Theorem 2.1 that for any € > 0, there exists R > 0 such that if |x| > R, then

e

SMe(x) < 3 (3.13)
and

S()gr(x) < g forall k > 1. (3.14)
Combining (3.12), (3.13) with (3.14), we thus have that

SU)pr — S1)¢p ask — oo (3.15)

uniformly on R, By Lemma 3.1, (3.11) and (3.15), we can get that for any ¢ € C:&), there
exists a sequence £, — 00 as £ — 0o such that

o __ 1
lim £, " u(ty " xt,) = SQ)g(x)

n—00

uniformly on RY. So, we complete the proof of Theorem 3.1. d
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