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Abstract

In this paper, we study three-point boundary value problems of the following
fractional functional differential equations involving the Caputo fractional derivative:

DY) = f(tu, “DPut), O<t<T,
u'(0)=0, u(M=ad (),

where €D DB denote Caputo fractional derivatives, 2 < <3,0< 8 < 1,7 €(0,1),
T<A< 21—” We use the Green function to reformulate boundary value problems into
an abstract operator equation. By means of the Schauder fixed point theorem and the
Banach contraction principle, some existence results of solutions are obtained,
respectively. As an application, some examples are presented to illustrate the main
results.

MSC: 34A08; 34K37

Keywords: fractional functional differential equation; delay; three-point boundary
value problems; fixed point theorem; existence of solutions

1 Introduction

Fractional calculus is a branch of mathematics, it is an emerging field in the area of the
applied mathematics that deals with derivatives and integrals of arbitrary orders as well as
with their applications. The origins can be traced back to the end of the seventeenth cen-
tury. During the history of fractional calculus, it was reported that the pure mathematical
formulations of the investigated problems started to be addressed with more applications
in various fields. With the help of fractional calculus, we can describe natural phenom-
ena and mathematical models more accurately. Therefore, fractional differential equations
have received much attention and the theory and its application have been greatly devel-
oped; see [1-6].

Recently, there have been many papers focused on boundary value problems of frac-
tional ordinary differential equations [7-15] and an initial value problem of fractional
functional differential equations [16—28]. But the results dealing with the boundary value
problems of fractional functional differential equations with delay are relatively scarce
[29-35]. It is well known that in practical problems, the behavior of systems not only
depends on the status just at the present, but also on the status in the past. Thus, in many
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cases, we must consider fractional functional differential equations with delay in order to
solve practical problems. Consequently, our aim in this paper is to study the existence of
solutions for boundary value problems of fractional functional differential equations.

In 2011, Rehman [12] studied the existence and uniqueness of solutions to nonlinear

three-point boundary value problems for the following fractional differential equation:

D). u(t) =f(t,u(t), “Di.u(t)), tel0,T],

u(0) = au(n), u(T) = Bu(n),

where1<8<2,0<0 <L o, B€R, an(l-p) + (1 -a)(t—Bn) #0 and “D)., “DF, denote
Caputo fractional derivatives. By the Banach contraction principle and the Schauder fixed
point theorem, they obtained some new existence and uniqueness results.

For 0 < r < 1, we denote by C, the Banach space of all continuous functions ¢ : [-r,0] —

R endowed with the sup-norm
l@lli-ro := sup{|e(s)| : s € [-r,0]}.

Ifu:[-r,1] = R, then for any ¢ € [0,1], we denote by u, the element of C, defined by
us(0) = u(t +0), for6 e[-r,0].

Enlightened by literature [12], in this paper we study the following three-point boundary

value problem for the fractional functional differential equation:
D*u(t) =f(t,u, “D’u(t)), 0<t<l, (L1)

where 2 <o <3, 0 < 8 <1 and “D% ¢DP denote Caputo fractional derivatives, f(¢, u;,

CDPu(t)) is a continuous function associated with the boundary conditions

#'(0)=0, u'(1) = A (n), 1.2)
and ug = ¢, where n € (0,1), 1< A < ﬁ and ¢ is an element of the space

C/(0):={y € Cly(s) = 0,5 € [-,0,¥/(0) = 0,“DPy (5) = 0}.

To the best of our knowledge, no one has studied the existence of positive solutions for
problem (1.1)-(1.2). The aim of this paper is to fill the gap in the relevant literatures. In
this paper, we firstly give the fractional Green function and some properties of the Green
function. Consequently, boundary value problem (1.1) and (1.2) is reduced to an equiva-
lent Fredholm integral equation. Then we extend the existence results for boundary value
problems of an ordinary fractional differential equation of §-order (1 < § < 2) in [12] to a
fractional functional differential equation of a-order (2 < « < 3). As an application, some

examples are presented to illustrate the main results.
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2 Preliminaries

For the convenience of the reader, we give the following background material from frac-
tional calculus theory to facilitate the analysis of boundary value problem (1.1) and (1.2).
This material can be found in the recent literature; see [1, 2, 36].

Definition 2.1 ([1]) The fractional integral of order « (« > 0) of a function f : (¢y, +o0) —
R is given by
L[ fG)
I°f(t) = — ————ds, t>ty,
SO 1 ), Gog= ™ 20
where I'(+) is the gamma function, provided that the right-hand side is point-wise defined
on (g, +00).

Definition 2.2 ([1]) The Caputo fractional derivative of order & (n —1 < « < n) of a func-
tion f : (¢p, +00) — R is given by

Crapp L PO
Df(t) = T —a) /to syt ds, t>ty,

where I'(-) is the gamma function, provided that the right-hand side is point-wise defined
on (p, +00).
Obviously, the Caputo derivative for every constant function is equal to zero.

From the definition of the Caputo derivative, we can acquire the following statement.
Lemma 2.1 ([2]) Letf(¢t) € L}[ty, 00). Then
Cp~ (I“f(t)) =f(t), t>tyandO<a<l.
Lemma 2.2 ([2]) Let a > 0. Then
ICDYf(t) =f(t) —c1 — et — -+ - — cpt" !
forsomec; €eR,i=1,2,...,n, where n = [«] + 1 and [«a] denotes the integer part of «.

Next, we introduce the Green function of fractional functional differential equations
boundary value problems.

Lemma2.3 Let2<a<3,0<n<],1<A< ﬁ and h : [0,1] — R be continuous. Then the

boundary value problem

“D*u(t)=h(t), 0<t<l,
(2.1)
u(0)=u'(0)=0,  #(1)=2ru'(n),

has a unique solution

1
u(t):/ G(t,8)h(s) ds, (2.2)
0
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where
G(t,s)
(t-s)*"+ 2 m 2 ((1-5)"2 =20y - 5)*?),
L et igtang,
[(e) <;-;;; L= = 20y - 52,
2 2)”7 (1 S)a_Zr

Proof From equation (2.1), we know
I“CD*u(t) = I h(t).

From Lemma 2.2, we have
1 t
u(t) — 1 — cot — c3t® = —— / (¢t - )*Lh(s) ds,
C(a) Jo

1 t
u(t) = — / (£ = 8)*Th(s) ds + ¢ + cot + c382.
() Jo

According to (2.1), we know that

Cl=62=0y
oa-1

u'(t) = @ /Ot(t —8)*2h(s) ds + 2c3t.

By u/(1) = At/ (1), we have

a-—-1
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(2.4)

1 , n _2
cgzmu) (1-s) h(s)ds—k/() (n—s) h(s)ds).

Therefore,

u(t) = ﬁ / (£ —9)*h(s) ds

(a = 1)¢?

_ 0t2 _ a2
(2 2An) F(oz)(/ (1=9)"""h(s)ds /( s) h(s)ds>,

W= T @)

2t(a — 1)
T 22T

/ (£ —9)*2h(s)ds

Now, for ¢ < 1, we have

u(t) = % /t(t—s)""lh(s) ds

(o = 1)¢?

' _q)e2 _ ! )2 )
)(/0 (1 -28)*""h(s)ds A/(; (n—=2s)*"h(s)ds ).

" @211 a)((/ / / )(1—s>“ 2h(s) ds
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—A(/t+/")(n —s)""zh(s)ds)

2
- a)/ ((t‘ 97+ ;x zlit (-9 - )»(n—s)o"z))h(s)ds
2
F(a)/ ;X zlii, =) = A0 = 5)" ) h(s) ds
2
F(a)/ ; 21; (1=5)"h(s) ds.

For t > 5, we have

u(t) = %(/n +/t>(t—s)"“1h(s) ds
(@ =12 (( / / / )(1 )% 2h(s)ds — ) f o -s)”h(s)ds)

T2 2m(@)
_ 1 o (- 1)£2
- F(oz)/o ((t_s) T o

(@-s)*? k(n—S)“‘z))h(S)ds

1 ! a-1 (O[ B l)tz a2
F_oz)f ((t—s) + 2 20 1-5s) )h(s)ds
o — 1))52 w2
F(oz) / 2 20 —8)““h(s)ds.

Hence, we can conclude (2.2) holds, where

-9+ g;;‘n (A-s)*2-A(n-5)72), 0<s<t<Ls<n,
Glt.s) 1 -9+ ;"Zlitn(l—s)"‘2 0<s<t<ln<s,
»8) =
['(a) %((l—s)“ 2y -9)22), 0<t<s<ls<n,
(gjzli;z(l—s)“‘z, 0<t<s<ln<s
The proof is completed. d

Lemma 2.4 ([36] Schauder fixed point theorem) Let (D, d) be a complete metric space, U
be a closed convex subset of D, and T : D — D be the map such that the set Tu :u € U is
relatively compact in D. Then the operator T has at least one fixed point u" € U:

*

Tu =u .

3 Main results
In this section, we discuss the existence and uniqueness of solutions for boundary value
problem (1.1) and (1.2) by the Schauder fixed point theorem and the Banach contraction
principle.

For convenience, we define the Banach space X = {u|u € C[-r,1],DPu € C[-r,1],0 <
B < 1}. Also, if I is an interval of the real line R, by C(I) and C!(I) we denote the set of

continuous and continuously differentiable functions on /, respectively. Moreover, for u €

Page 5 of 15
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C(I), we define
llull; = rrtlEaIx|u(t)| + rrtlealx|CDﬁu(t)|. (3.1)
For uy = ¢, in view of the definitions of #; and ¢, we have
ug = u(®) =¢(0), for6el[-r0].
Thus, we have
u(t) = ¢(t), fortel[-r0].
Since f : [0,1] x C, x R — R is a continuous function, set f(t,u;, “DPu(t)) := h(t) in

Lemma 2.3. We have by Lemma 2.3 that a function « is a solution of boundary value prob-
lem (1.1) and (1.2) if and only if it satisfies

) fy Gt 9)f (5,15, “DPuls) ds, € (0,1),
|ew, te[-r0].

u(t)

We define an operator T : X — X as follows:

. [ G(t,5)f (s,us, CDPuls)) ds, t € (0,1),
e, tel-r,0],

Tu(t) =

and

1
= 5151?;(/(; |G(,5)g(9)] ds),

. g
! = max </ ds),
0<t<1 0

&G(t,s)g(s)
1 1+ an%t 1 Apetl+l
+ + =+ —.
2-8) TI'@-pQA-in o 2-2ip

Q=r

Theorem 3.1 Assume the following:

(Hi1) There exists a nonnegative function g € L[0,1] such that
[f(&,v,w)| <g(®) + alvl’™ + blw|*

foreachve C,,weR, where a,b € R are nonnegative constants and 0 < ki, ky < 1; or
(Hz) There exists a nonnegative function g € L[0,1] such that

f(t,v,w)| < g(t) +alv] + blw|®

foreachv e C,,weR, where a,b € R are nonnegative constants and ki, ky > 1.

Then boundary value problem (1.1) and (1.2) has a solution.

Page 6 of 15
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Proof Suppose (H;) holds. Choose

*

1

> max{3<l + F(2[7—,3)>’ (3aQ)TH, (SbQ)ﬁ } (3.3)

and define the cone U = {u € X|||u|| < w,w > 0}.

For any u € U, we have

1
|Tu(t)| = |/ G(t,s)f(s, us,cDﬁu(s)) ds
0

1 fE-9)!
151 ky
5/0 |Gt 5)g(s)| ds + (ale]™ + bl )</0 Fa

(0 =1)* 1 (1-s)*2 (=DA% [ (n—5)*2
T2 "oy /0 T “* 2 2m /0 @) ds)
tot t2 )Ltha—l
al(@) " @-22)l(@) * @2- 2M1)F(a)>
ky ko oa—
alo® + blw) (1 An 1+1>. (3.4)

<1+ (alw™ +b|a)|k2)<

<Il+ r@)

+
o 2-2ip

Also,

1a
’Tu’(t)’ 5/ ‘EG(I,S) [f(s, U, CD‘su(S))|ds
0

1 9 t(t_ )0!—2
< /0 5, G(6,5)g(s) ds+(“"”'k1+”"”'k2)<fo -

20—t [ (1-s5)*2 2@ -1t 7 (n—s)*2
* 2(—211)7/0 : r(oi) ds + (2—2x)n /0 (nr(oz) ds)

o1 ¢ Aty !
M) A=l (1—An)r<a)>
. alw|f + blwlk <1 . 1+,\na1)'

<l
=T I'a) 1-An

<0+ (alwh +b|a)|k2)<

Hence,

|“DP Tu(t)|
1 N
F(1_/8)/(;@—5) |Tu(s)|ds
. P (alw|M + blw|*2)t# ( et t Atne! )
<l + + +
1-pra-a) re2-p) M) A-anle) A-anl(a)
- r . alolM + blol* (1 N 1+ kn“‘1>
“Tre-p re-pr 1-anp )

=<

In view of (3.1) and (3.3), we obtain

*

/

alw|® + blo|* 1 1+Ane?! 1 ap*l+1
+ + +—+
INGY) re-p rE-pga-an) o 2-2ipy
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= 3+ (ol +bjol)Q
w w w
=3%3%3
<o, (3.5)

which implies that T': U — U. The continuity of the operator T follows from the conti-
nuity of f and G.
Now, if (H,) holds, we choose

0co<mnl3(le L)\ (18 3.6
<w‘mm{(+re—m)(§E> ’(%6> } (3:6)

and by the same process as above, we obtain

s

[
alw|® + blw|*2 1 1+Ane?! 1 ap*l+1
+ +—+
INC)) re-g) T2-p)1-in) o 2-2xpy
_§+@WW+MMWQ
w w w
S—-+-+=
3 3 3
< w,

which implies that T: U — U.

Now, we show that 7T is a completely continuous operator.

Let L = maxo<;<1 |f (¢, us, “DPu(t))| + 1. Then for u € U and t;,t; € [-r,1] with #; < t,, in
view of Lemma 2.3,if 0 < #; < £, <1, then

| Tu(tz) — Tu(t)|

1 1
G(t, s)f(s, U, CDﬁu(s)) ds — f G(ty, s)f(s, U, CDﬁu(s)) ds
0 0

t 1
5/0 |G(t2,s)—G(t1,s)|LdS+/ !G(tz,s)—G(tl,s)|Lds

5]

2
+/ |G(t2,s)—G(t1,s){Lds
51

L i -l _ -l
<t (=9t -0-9
(@-DA-9G 1) Mn-9 -0 -1))
" 2 -2y - 2- 2y ) s
a1 -1 (QA=9*2=n(n-25)*"?)ds
by 2-2M7 1

+ /ﬁl " -G -4) _21_)(3_ %) (152 = A= 5)°2) = (8 — 9" ds
_ L He-D@B-Ha-s*? / «-1NE - -9"?

() 2-2An 2-2hn
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5% ty
+ / (tp—s)*ds— / (8, — )% Lds
0 0

_ L |s-8 H-)a-an
+ .
“INa)| «@ 2 —2An

If -r <t <t; <0, then
| Tu(ty) — Tu(tr)| = |o(t) — p(t1)).
If-r<t <0<t <1, then
| Tu(ts) - Tu(tr)| < | Tu(tz) = Tu(0)| + | Tu(0) — Tu(t)|

1
< / |G(t2,5) — G(0,3)||f (s, 5, “DP us)) | ds + |(0) — o (11)|
0

L
')

5 H0-a*

< +
= a 2 -2

+o(t).

Hence, if 0 <t <t <1, we have
|CD’3 Tu(tz) - CDﬂ Tu(t1)|

_ F(%_'B)’/Oi’(tz—s)‘ﬂTu/(s)ds_/o1(t1_s)_ﬂTu/(S)ds

12}

(t, — )P T (s) ds — /tl (b — )P T (s)ds
0 0

_
T Ta-p)
1

r1- A 1(’:2 -8 P Tu/(s) dS—/ 1(t1 — ) PTu/(s)ds

0

? (ty — S)’ﬂ | Tu/(s)| ds + /tl ((t2 - s)’ﬁ —(t1 - s)’ﬁ) | Tu/(s)| ds
151 0

ty ~ 1 P

-9 ﬂ(/o ‘ge(s,z)
t 1

+/ ((tZ—S)_ﬁ_(tl—S)_ﬂ)<f 9 [f(z,uz,CDﬁu(z))‘dz)ds
0 0

as
o—1
< l“(Ll(2 /3))”17 +/)\LZ)F) / (82 —s) ﬁds‘f/ (=97 (1 -9)")ds
|t _tl ﬁ|

[f(z, u,, DP u(z)) | dz) ds

G(s,2)

L(2-An+An* 1
T (-T2 -B)lra)

If —-r < t; <t <0, in view of the definition of ¢, we have
|“DP Tu(ty) - “DP Tu(tr)| = |“DP o () - “DP o(t1)| =
If -r<t <0<t <1, then
|“DP Tu(t,) - “DF Tu(ty)|

= 1“(1;_13)’/02(t2—s)“[3Tu’(s)0ls -0

Page 9 of 15
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S—

ra-p)
Iy’
“Ir2-p)

—G(s,2)

[ ([

If (z, 2, “DP u(z)) | dz) ds

Hence, if 0 < £ < t, <1, we have

| Tu(t2) — Tu(s) ||

L (8-t &B-)1-an*) L2-in+An*Y) 145 g
S}F(a)( « | 2-2im )‘+ mre—pr@ > )‘

L [(|t8-t &B-tH1-rn*D) 2=+ A*N s 1p
SF(oz)( « T 2-2u +‘(1—kn)F(2—ﬂ)(t2 h )D

If -r <t <ty <0, we have

| Tu(ts) - Tu®) || = [|e(&) - o@)|.

If -r<t <0<t <1,then

7’

L
+ o] + Te_p)

1|6 8-
| Tuts) - Tu(t)| < T |a " 2-2r1

In any case, it implies that || Tu(t;) — Tu(t)|| — 0 as £, — ¢y, i.e., for any € > 0, there exists
8 > 0, independent of #,t, and u, such that |Tu(t,) — Tu(t)| < €, whenever |t, — 1| < 6.

Therefore T : X — X is completely continuous. The proof is completed. g

For convenience, we denote

1 /1 1 An®2
M= —+ + ,
Ma)\a 2-2in 2-2in
1 1+ A%t
N = 1+ .
re-par) 1-An

Theorem 3.2 Assume that

(Hs) There exists a constant p > 0 such that |f(¢t, u,v) —f(t, i1, V)| < p(|u — ft] + v = v|) for
each u,pp € C,, v, v e R If

p<M+N)",
then boundary value problem (1.1) and (1.2) has a unique solution.
Proof Consider the operator T : X — X defined by (3.2). Clearly, the fixed point of the

operator T is the solution of boundary value problem (1.1) and (1.2). We will use the Ba-

nach contraction principle to prove that T has a fixed point. We first show that T is a
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contraction. For each ¢ € [0,1],

1
|Tu(t) - Tit(t)| < / |G(t,s)| [f(s, U, CDBu(s)) —f(s, ils, CDﬂit(s)) | ds

1)¢

_P”u I/l” f(t_ )a 1d O[ ) /(1_ )a st

() 2-21

Ao = 1)¢2 o
Y o e /(n s) st)
o plu—al (e £ +t2)\n‘“
- T(x) a 2-2xn 2-2n
_plu-all 1
- I'(a) a 2-2An 2-2Ap

<pllu-ul|M. (3.7)

By a similar method, we get

F(ll— 5 /Ot(t - 8)P(Tu/(s) - Til'(s)) ds

1 ¢ i 1
<t f (]
—f(Z, Uz CDﬂL_t(Z)) | dz) ds
_plu- uﬁ/ i ﬂ<
“Ta-p b
In view of the definition of G(t,s), we obtain
19G(t,s)
s
(t _ S)ot—2

t 2w -1t !
5/0 Fla—1) +2—2An/0

gl ¢ tan®t
= + +
M) A-anle) Q-inl(a)

1 14 An*t
< 1+ .
') 1-An

Hence,

|“DP Tu(t) - “DP T(t)| = ‘

%G(s, 2| |f (2 1z “DP u(2))

dz) ds. (3.8)

—G(s,2)
s

ds

(n-s)*2

I'(a)

(1 _ S)a—Z
[(a)

ds

W — 1)t /"
+
2—2)\,7] 0

0| < pllu— i (—S)"g <1+1+M7“‘1>ds
- I1-p) IM(a) 1-An

<p||l,t—u|| 1 1 <1+1+M]"“1)
STA-B) T@1-p 1= A7

< pllu—ul <1+1+)»77°‘1>
re-par 1-An

<pllu—u|N. (3.9)

|“DP Tu(t) - “DP T
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Clearly, for each t € [-r,0], we have |Tu(t) — Tu(t)| = 0. Therefore, by (3.7) and (3.9), we
get

I Tu — Tull < pllu—ullM + pllu—ullN < pllu—ul(N +M) < |lu—-ull

and T is a contraction. As a consequence of the Banach contraction principle, we get that
T has a fixed point which is a solution of boundary value problem (1.1) and (1.2). O

4 Example
In this section, we will present some examples to illustrate our main results.

Example 4.1 Consider boundary value problems of the following fractional functional

differential equations:

t —t —t
C e e—-1 e h, € |cn ky
Du(t) = — + — L+ —|~"DFul(t)| -, 4.1
w(t) = — =+ 775l +143| u(t)| (4.1)
/ / 6 / 1
u(0) =u'(0) =0, u(l)-gu 3) (4.2)

where D%, D denote Caputo fractional derivatives, 2 <o <3,0< 8 <1,£ € (0,1).

6 -1 - -
Choose A = £,n=3,6() = 5z, a={5, b=

=mand

t_ —t —t
Ft, CDPu(t)) = = + S+ S |CDPu(e)|.

36 110 143

Then, for ¢ € (0,1), we have
I (£, 40, DP ()| < (1) + alugl*t + b|°DPue)|.

For 0 < ki, k2 <1, (Hy) is satisfied and for ki, k; > 1, (Hy) is satisfied. Therefore, by Theo-
rem 3.1, boundary value problem (4.1) and (4.2) has a solution.

Example 4.2 Consider boundary value problems of the following fractional functional

differential equations:

|e| + [“DPul?)|

C o _

Druld) = G o s 5 DA (4.3)
i iy o3

u(0) =u'(0) =0, u' ()= 6u (8)' (4.4)

where D%, €D denote Caputo fractional derivatives, 2 <@ <3,0< 8 <1,t € (0,1).
Choose A = %, n= % and

|ue| + 1“DP ()]

Chp -
f(tu, “Du() = (6 +9et)(1 + |ug| + [CDPu(t)])’

Set

Il + v

St v) = (6+9e)(L+ || +|v])
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Let u, 1 € C,, v,v € R. Then for each ¢ € [0,1],

lal+ vl gl + (V]
6+9e |1+ |ul+ vl 1+|al+]|v|

[f (& 1) = £t 1, D)| =

) e+ il - v =7
6+ 9¢) L+ [l + [PD(A+ 1l + V)
1 _ _
§6+9et(|M+M|—|V—V|)
< L(uw+al-w-n)
— (e + | = v -1|).
=15 M+ un

For each t € [-1,0],

1 ] + v |l + 1]

t’ » - ty_,_ - — —
e =6 0] = o5 T+l + v 1+ 1@l + 19l

lw+ | —v -l
(6 +9e)(1+ ] + V)L + | + [v])

(I + a2l = v =9l)

1 1 1
= S +
IMNa)\ o 2—2><%><% 2—2><%><%

1 (1 8 28 (3)“‘2)
=—|—+t=-+—=|= ,
Ma)\a 9 27\8
~ 1 1+é(%)0"1
N= r(z—mr(a)(“ 1-Zx2 )

1 1+%(%)""1
zr(z—mr(a)(“ El )

By2<w<3,0<p<1,wehave

1 1 1
<<=
37 o 2
and
1 131 N 32
> —— >
[ («) 54 9r(2- Bl (a)

It implies that

1 -1
p:E<O.167<(M+N) .

Then by Theorem 3.2, boundary value problem (4.3) and (4.4) has a unique solution.
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