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Abstract
In this paper we obtain exact solutions of the (1 + 1)-dimensional higher-order
Broer-Kaup system which was obtained from the Kadomtsev-Petviashvili equation by
the symmetry constraints. The methods used to determine the exact solutions of the
underlying system are the Lie group analysis and the simplest equation method. The
solutions obtained are the solitary wave solutions. Moreover, we derive the
conservation laws of the (1 + 1)-dimensional higher-order Broer-Kaup system by
employing the multiplier approach and the new conservation theorem.
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1 Introduction
In this paper we study the ( + )-dimensional higher-order Broer-Kaup system

ut + 
(
uxx + u – uux + uv

)
x = , (.a)

vt + 
(
vxx + uv + uvx + v

)
x = , (.b)

which was first introduced by Lou and Hu [] by considering the symmetry constraints of
the Kadomtsev-Petviashvili equation. The system (.a) and (.b) is in fact an extension
of the well-known ( + )-dimensional Broer-Kaup system [–]

ut – uxx + uux – vx = , (.a)

vt + vxx – (uv)x = , (.b)

which is used to model the bi-directional propagation of long waves in shallow water. In
[], Fan derived a unified Darboux transformation for the system (.a) and (.b) with
the help of a gauge transformation of the spectral problem and as an application obtained
some new explicit soliton-like solutions. Recently, Huang et al. [] presented a new N-
fold Darboux transformations of the ( + )-dimensional higher-order Broer-Kaup system
with the help of a gauge transformation of the spectral problem and found new explicit
multi-soliton solutions of the system (.a) and (.b).
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In the latter half of the nineteenth century, Sophus Lie (-) developed one of
themost powerful methods to determine solutions of differential equations. This method,
known as the Lie group analysis method, systematically unifies and extends well-known
ad hoc techniques to construct explicit solutions of differential equations. It has proved to
be a versatile tool for solving nonlinear problems described by the differential equations
arising in mathematics, physics and in other scientific fields of study. For the theory and
application of the Lie group analysis methods, see, e.g., the Refs. [–].
Conservation laws play a vital role in the solution process of differential equations. Find-

ing conservation laws of the system of differential equations is often the first step towards
finding the solution []. Also, the conservation laws are useful in the numerical integra-
tion of partial differential equations [], for example, to control numerical errors. The
determination of conservation laws of the Korteweg de Vries equation, in fact, initiated
the discovery of a number of methods to solve evolutionary equations []. Moreover,
conservation laws play an important role in the theories of non-classical transformations
[, ], normal forms and asymptotic integrability []. Recently, in [] the conserved
quantity was used to determine the unknown exponent in the similarity solution which
cannot be obtained from the homogeneous boundary conditions.
In this paper, we use the Lie group analysis approach along with the simplest equation

method to obtain exact solutions of the ( + )-dimensional higher-order Broer-Kaup sys-
tem (.a) and (.b). Furthermore, conservation lawswill be computed for (.a) and (.b)
using the two approaches: the new conservation theorem due to Ibragimov [] and the
multiplier method [, ].

2 Symmetry reductions and exact solutions of (1.1a) and (1.1b)
The symmetry group of the (+)-dimensional higher-order Broer-Kaup system (.a) and
(.b) will be generated by the vector field of the form

X = ξ (t,x,u, v)
∂

∂t
+ ξ (t,x,u, v)

∂

∂x
+ η(t,x,u, v)

∂

∂u
+ η(t,x,u, v)

∂

∂v
.

Applying the third prolongation pr()X [] to (.a) and (.b) and solving the resultant
overdetermined system of linear partial differential equations one obtains the following
three Lie point symmetries:

X =
∂

∂x
,

X =
∂

∂t
,

X = –t
∂

∂t
– x

∂

∂x
+ u

∂

∂u
+ v

∂

∂v
.

2.1 One-dimensional optimal system of subalgebras
In this subsection we present an optimal system of one-dimensional subalgebras for the
system (.a) and (.b) to obtain an optimal system of group-invariant solutions. The
method which we use here for obtaining a one-dimensional optimal system of subalge-
bras is that given in []. The adjoint transformations are given by

Ad
(
exp(εXi)

)
Xj = Xj – ε[Xi,Xj] +



ε

[
Xi, [Xi,Xj]

]
– · · · .
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Table 1 Commutator table of the Lie algebra of the system (1.1a) and (1.1b)

X1 X2 X3
X1 0 0 –X1
X2 0 0 –3X2
X3 X1 3X2 0

Table 2 Adjoint table of the Lie algebra of the system (1.1a) and (1.1b)

Ad X1 X2 X3
X1 X1 X2 X3 + εX1
X2 X1 X2 X3 + 3εX2
X3 e–εX1 e–3εX2 X3

Here [Xi,Xj] is the commutator given by

[Xi,Xj] = XiXj –XjXi.

The commutator table of the Lie point symmetries of the system (.a) and (.b) and the
adjoint representations of the symmetry group of (.a) and (.b) on its Lie algebra are
given in Table  and Table , respectively. Table  and Table  are used to construct an
optimal system of one-dimensional subalgebras for the system (.a) and (.b).
From Tables  and  one can obtain an optimal system of one-dimensional subalgebras

given by {νX +X,X,X}.

2.2 Symmetry reductions of (1.1a) and (1.1b)
In this subsection we use the optimal system of one-dimensional subalgebras calculated
above to obtain symmetry reductions that transform (.a) and (.b) into a system of or-
dinary differential equations (ODEs). Later, in the next subsection, we will look for exact
solutions of (.a) and (.b).
Case . νX +X

The symmetry νX +X gives rise to the group-invariant solution

u = F(z), v =G(z), (.)

where z = x – νt is an invariant of the symmetry νX + X. Substitution of (.) into (.a)
and (.b) results in the system of ODEs

F ′′′(z) – F(z)F ′′(z) + G(z)F ′(z) – νF ′(z)

+ F(z)F ′(z) – F ′(z) + F(z)G′(z) = , (.a)

G′′′(z) + F ′(z)G′(z) + F(z)G(z)F ′(z) + F(z)G′′(z)

+ F(z)G′(z) – νG′(z) + G(z)G′(z) = . (.b)

Case . X

The symmetry X gives rise to the group-invariant solution of the form

u = F(z), v =G(z), (.)

http://www.boundaryvalueproblems.com/content/2013/1/41
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where z = x is an invariant of X and the functions F and G satisfy the following system of
ODEs:

F ′′′(z) – F(z)F ′′(z) + G(z)F ′(z)

+ F(z)F ′(z) – F ′(z) + F(z)G′(z) = ,

G′′′(z) + F ′(z)G′(z) + F(z)G(z)F ′(z)

+ F(z)G′′(z) + F(z)G′(z) + G(z)G′(z) = .

Case . X

By solving the corresponding Lagrange system for the symmetry X, one obtains an
invariant z = xt–/ and the group-invariant solution of the form

u = t–/F(z), v = t–/G(z), (.)

where the functions F and G satisfy the following system of ODEs:

F ′(z)z – F ′(z)G(z) – F ′′′(z) – F ′(z)F(z)

– G′(z)F(z) + F(z) + F ′′(z)F(z) + F ′(z) = ,

–G′(z)F(z) + G(z) – F ′(z)G′(z) – G′(z)G(z)

– F ′(z)F(z)G(z) +G′(z)z – G′′′(z) – G′′(z)F(z) = .

2.3 Exact solutions using the simplest equation method
In this subsection we use the simplest equation method, which was introduced by
Kudryashov [, ] andmodified by Vitanov [] (see also []), to solve the ODE system
(.a) and (.b), and as a resultwewill obtain the exact solutions of our (+)-dimensional
higher-order Broer-Kaup system (.a) and (.b). Bernoulli and Riccati equations will be
used as the simplest equations.
Let us consider the solutions of the ODE system (.a) and (.b) in the form

F(z) =
M∑
i=

Ai
(
H(z)

)i, G(z) =
M∑
i=

Bi
(
H(z)

)i, (.)

whereH(z) satisfies the Bernoulli and Riccati equations,M is a positive integer that can be
determined by balancing procedure as in [] and A, . . . ,AM , B, . . . ,BM are parameters
to be determined. It is well known that the Bernoulli and Riccati equations are nonlinear
ODEs whose solutions can be written in terms of elementary functions.
We consider the Bernoulli equation

H ′(z) = aH(z) + bH(z), (.)

where a and b are constants. Its solution is given by

H(z) = a
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}
,

where C is a constant of integration.
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For the Riccati equation

H ′(z) = aH(z) + bH(z) + c, (.)

where a, b and c are constants, we will use the solutions

H(z) = –
b
a

–
θ

a
tanh

[


θ (z +C)

]

and

H(z) = –
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )
,

where θ = b – ac >  and C is a constant of integration.

.. Solutions of (.a) and (.b) using the Bernoulli equation as the simplest equation
The balancing procedure [] yieldsM = , so the solutions of (.a) and (.b) are of the
form

F(z) = A +AH +AH, G(z) = B + BH + BH. (.)

Substituting (.) into (.a) and (.b) and making use of (.) and then equating all co-
efficients of the functions Hi to zero, we obtain an algebraic system of equations in terms
of A, A, A and B, B, B. Solving the system of algebraic equations with the aid of
Mathematica, we obtain the following cases.
Case 

A =



(±a± √

√
–a + ν

)
,

A =
bA(a + ν – A

)
a(a – ν)

,

A = ,

B = ,

B =
–ab + abA – aA


b

,

B =
bB

a
.

Thus, a solution of our ( + )-dimensional higher-order Broer-Kaup system (.a) and
(.b) is

u(t,x) =A +Aa
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}

+Aa
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}

, (.a)

http://www.boundaryvalueproblems.com/content/2013/1/41
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v(t,x) =B + Ba
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}

+ Ba
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}

, (.b)

where z = x – νt and C is a constant of integration.
Case 

a = ±
√

ν


,

A = ±
√

ν


,

A =
abA ±

√
bν + abA

 – bνA


ν
,

A = ,

B = ,

B =
–ab + abA – aA


b

,

B =



(
–b + bA –A


)
,

and so a solution of the ( + )-dimensional higher-order Broer-Kaup system (.a) and
(.b) is

u(t,x) =A +Aa
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}

+Aa
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}

, (.a)

v(t,x) =B + Ba
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}

+ Ba
{

cosh[a(z +C)] + sinh[a(z +C)]
 – b cosh[a(z +C)] – b sinh[a(z +C)]

}

, (.b)

where z = x – νt and C is a constant of integration.

.. Solutions of (.a) and (.b) using Riccati equation as the simplest equation
The balancing procedure yieldsM = , so the solutions of theODE system (.a) and (.b)
are of the form

F(z) = A +AH +AH, G(z) = B + BH + BH. (.)

Substituting (.) into (.a) and (.b) and making use of (.), we obtain an algebraic
system of equations in terms of A, A, A, B, B, B by equating all coefficients of the
functions Hi to zero. Solving the algebraic equations, one obtains the following cases.
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Case 

A =



(±b± √

√
–b + ac + ν

)
,

A = –
a(–b + ac + ν – A

)
bA

,

A = ,

B =


(–ac + cA),

B =


(–ab + bA),

B =
aB

b
,

and hence the solutions of the ( + )-dimensional higher-order Broer-Kaup system (.a)
and (.b) are

u(t,x) =A +A

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

+A

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

, (.a)

v(t,x) =B + B

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

+ B

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

(.b)

and

u(t,x) =A +A

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

+A

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

, (.a)

v(t,x) =B + B

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

+ B

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

, (.b)

where z = x – νt and C is a constant of integration.
Case 

b = ±
√

ν


,

a = –
ν

c
,

A = ±
√

ν


,

http://www.boundaryvalueproblems.com/content/2013/1/41
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A =
aA + a

√
b +A



b
,

A = ,

B =
aν – νA + bAA

a
,

B =
A(ab + aA – bA)

a
,

B =



(
–a + aA –A


)
.

In this case the solutions of the (+ )-dimensional higher-order Broer-Kaup system (.a)
and (.b) are given by

u(t,x) =A +A

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

+A

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

, (.a)

v(t,x) =B + B

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

+ B

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

(.b)

and

u(t,x) =A +A

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

+A

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

, (.a)

v(t,x) =B + B

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

+ B

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

, (.b)

where z = x – νt and C is a constant of integration.
Case 

a =
b – ν

c
,

A = ±b,

A =
aA

b
,

A = ,

B =
–ab + aν + bA – νA + bAA

a
,

http://www.boundaryvalueproblems.com/content/2013/1/41
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B =
A(ab + aA – bA)

a
,

B =



(
–a + aA –A


)
.

The solutions in this case are

u(t,x) =A +A

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

+A

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

, (.a)

v(t,x) =B + B

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

+ B

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

(.b)

and

u(t,x) =A +A

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

+A

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

, (.a)

v(t,x) =B + B

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

+ B

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

, (.b)

where z = x – νt and C is a constant of integration.
Case 

a =
b – ν

c
,

A = ,

A = ±a,

A = ,

B =


(
–b + ν + cA

)
,

B =


(–ab + bA),

B =
aB

b
,

http://www.boundaryvalueproblems.com/content/2013/1/41
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and so the solutions are

u(t,x) =A +A

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

+A

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

, (.a)

v(t,x) =B + B

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

+ B

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

(.b)

and

u(t,x) =A +A

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

+A

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

, (.a)

v(t,x) =B + B

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

+ B

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

, (.b)

where z = x – νt and C is a constant of integration.
Case 

a =
b – ν

c
,

A =


(±b± √

ν),

A =
a(b – ν + A

)
bA

,

A = ,

B =
–ab + aν + bA – νA – cA


a

,

B = bA,

B =
aB

b
.

The solutions are

u(t,x) =A +A

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

+A

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

, (.a)

http://www.boundaryvalueproblems.com/content/2013/1/41
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Figure 1 Profile of solitary waves (2.21a) and (2.21b).

v(t,x) =B + B

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

+ B

{
–
b
a

–
θ

a
tanh

[


θ (z +C)

]}

(.b)

and

u(t,x) =A +A

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

+A

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

, (.a)

v(t,x) =B + B

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

+ B

{
–
b
a

–
θ

a
tanh

(


θz

)
+

sech( θz
 )

C cosh( θz
 ) –

a
θ
sinh( θz

 )

}

, (.b)

where z = x – νt and C is a constant of integration.
A profile of the solution (.a) and (.b) is given in Figure .

3 Conservation laws of (1.1a) and (1.1b)
In this section, we derive conservation laws for the (+)-dimensional higher-order Broer-
Kaup system (.a) and (.b). Two different approaches will be used. Firstly, we use the
new conservation method due to Ibragimov [] and then employ the multiplier method
[, ]. We now present some preliminaries that we will need later in this section.

3.1 Preliminaries
In this subsection we briefly present the notation and pertinent results which we utilize
below. For details the reader is referred to [–, –, ].

.. Fundamental operators and their relationship
Consider a kth-order system of PDEs of n independent variables x = (x,x, . . . ,xn) and m
dependent variables u = (u,u, . . . ,um)

Eα(x,u,u(), . . . ,u(k)) = , α = , . . . ,m, (.)

http://www.boundaryvalueproblems.com/content/2013/1/41
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where u(),u(), . . . ,u(k) denote the collections of all first, second, . . . , kth-order partial
derivatives, that is, uα

i = Di(uα), uα
ij = DjDi(uα), . . . , respectively, with the total derivative

operator with respect to xi given by

Di =
∂

∂xi
+ uα

i
∂

∂uα
+ uα

ij
∂

∂uα
j
+ · · · , i = , . . . ,n, (.)

where the summation convention is used whenever appropriate.
The Euler-Lagrange operator, for each α, is given by [–]

δ

δuα
=

∂

∂uα
+

∑
s≥

(–)sDi · · ·Dis
∂

∂uα
ii···is

, α = , . . . ,m, (.)

and the Lie-Bäcklund operator is

X = ξ i ∂

∂xi
+ ηα ∂

∂uα
, ξ i,ηα ∈A, (.)

whereA is the space of differential functions. The operator (.) is an abbreviated form of
the infinite formal sum

X = ξ i ∂

∂xi
+ ηα ∂

∂uα
+

∑
s≥

ζ α
ii···is

∂

∂uα
ii···is

, (.)

where the additional coefficients are determined uniquely by the prolongation formulae

ζ α
i =Di

(
W α

)
+ ξ juα

ij ,

ζ α
i···is =Di · · ·Dis

(
W α

)
+ ξ juα

ji···is , s > , (.)

in whichW α is the Lie characteristic function given by

W α = ηα – ξ iuα
j . (.)

The Lie-Bäcklund operator (.) can be written in a characteristic form as

X = ξ iDi +W α ∂

∂uα
+

∑
s≥

Di · · ·Dis
(
W α

) ∂

∂uα
ii···is

. (.)

The Noether operators associated with the Lie-Bäcklund symmetry operator X are given
by

Ni = ξ i +W α δ

δuα
i
+

∑
s≥

Di · · ·Dis
(
W α

) δ

δuα
iii···is

, i = , . . . ,n, (.)

where the Euler-Lagrange operators with respect to derivatives of uα are obtained from
(.) by replacing uα by the corresponding derivatives. For example,

δ

δuα
i
=

∂

∂uα
i
+

∑
s≥

(–)sDj · · ·Djs
∂

∂uα
ijj···js

, i = , . . . ,n,α = , . . . ,m, (.)

http://www.boundaryvalueproblems.com/content/2013/1/41
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and the Euler-Lagrange , Lie-Bäcklund and Noether operators are connected by the oper-
ator identity

X +Di
(
ξ i) =W α δ

δuα
+DiNi. (.)

The n-tuple vector T = (T ,T, . . . ,Tn), Tj ∈ A, j = , . . . ,n, is a conserved vector of (.) if
Ti satisfies

DiTi|(.) = . (.)

The equation (.) defines a local conservation law of the system (.).

.. Multiplier method
A multiplier �α(x,u,u(), . . .) has the property that

�αEα =DiTi (.)

hold identically. We consider multipliers of the third-order, that is,

�α = �α(t,x,u, v,ux, vx,uxx, vxx,uxxx, vxxx).

The right-hand side of (.) is a divergence expression. The determining equation for the
multiplier �α is

δ(�αEα)
δuα

= . (.)

The conserved vectors are calculated via a homotopy formula [, , ] once the multi-
pliers are obtained.

.. Variational method for a system and its adjoint
A system of adjoint equations for the system of kth-order differential equations (.) is
defined by []

E*
α(x,u, v, . . . ,u(k), v(k)) = , α = , . . . ,m, (.)

where

E*
α(x,u, v, . . . ,u(k), v(k)) =

δ(vβEβ )
δuα

, α = , . . . ,m, v = v(x) (.)

and v = (v, v, . . . , vm) are new dependent variables.
The following results are given in Ibragimov [] and recalled here.
Assume that the system of equations (.) admits the symmetry generator

X = ξ i ∂

∂xi
+ ηα ∂

∂uα
. (.)

http://www.boundaryvalueproblems.com/content/2013/1/41
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Then the system of adjoint equations (.) admits the operator

Y = ξ i ∂

∂xi
+ ηα ∂

∂uα
+ ηα

*
∂

∂vα
, ηα

* = –
[
λα

βv
β + vαDi

(
ξ i)], (.)

where the operator (.) is an extension of (.) to the variable vα and the λα
β are obtain-

able from

X(Eα) = λβ
αEβ . (.)

Theorem  [] Every Lie point, Lie-Bäcklund and nonlocal symmetry (.) admitted
by the system of equations (.) gives rise to a conservation law for the system consisting of
equation (.) and adjoint equation (.),where the components Ti of the conserved vector
T = (T , . . . ,Tn) are determined by

Ti = ξ iL +W α δL
δuα

i
+

∑
s≥

Di · · ·Dis
(
W α

) δL
δuα

iii···is
, i = , . . . ,n, (.)

with Lagrangian given by

L = vαEα(x,u, . . . ,u(k)). (.)

3.2 Construction of conservation laws for (1.1a) and (1.1b)
We now construct conservation laws for the ( + )-dimensional higher-order Broer-Kaup
system (.a) and (.b) using the two approaches.

.. Application of the multiplier method
For the ( + )-dimensional higher-order Broer-Kaup system (.a) and (.b), after some
lengthy calculations, we obtain the third-order multipliers

� = �(t,x,u, v,ux, vx,uxx, vxx,uxxx, vxxx)

and

� = �(t,x,u, v,ux, vx,uxx, vxx,uxxx, vxxx)

that are given by

� =C(tuv + tvx)

+C
(
vxu + vxxu + uxxv + vxv + uv + uv + uxvx + vxxx

)
+C

(
vxu + uv + v + vxx

)
+C(uv + vx) +Cv +C, (.)

� =C
(
tu + tv – tux – x

)
+C

(
–uxv – uxu + uxxu + uv + u + v + ux – uxxx + vxx

)
+C

(
–uxu + uv + u + uxx

)
+C

(
u + v – ux

)
+Cu +C, (.)
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where Ci, i = , , , , , ,  are arbitrary constants. Corresponding to the above multi-
pliers, we obtain the following seven local conserved vectors of the ( + )-dimensional
higher-order Broer-Kaup system (.a) and (.b):

�t
 = tvxu – tuxv + tuv + tv – xv,

�x
 =

{
tvxu – tuxuv + tvxxu – xvxu + tvxuv

– tuxvxu + tuxxuv – tvtu – tuxv + tutv + tvxxv

+ tuv + tuv – xuv + uv + tv – xv + tuxxvx

– tuxvxx – tvx + vx – xvxx
}
,

�t
 =




{
vu + vxu + vu – vuxu + vxxu + vvxu

+ uxvxu + vuxxu + vxxxu + v + vux – vux

+ vvxx – vuxxx
}
,

�x
 =




{
vu + vxu + vu – vuxu + vxxu

+ vvxu – uxvxu + vuxxu – vtu + vu

+ vuxu + vxu – vuxu + vxuxxu + vvxxu

– uxvxxu + vutu – vtxu + vvxu + uxvxu – vuxvxu

+ vuxxu – vuxuxxu + vxvxxu + uxxvxxu + vxutu – vvtu

+ uxvtu – vutxu – vtxxu + v + vuxx + vxx – uxvxuxx

+ vvxx + vut + vxxut + vxvt – uxxvt

– vxutx – vvtx + uxvtx + vutxx
}
,

�t
 =



{
vxu – uxuv + vxxu + uxxv + uv + uv

}
,

�x
 =



{
vxu – uxuv + vxxu + vxuv – uxvxu + uxxuv

– vtu – uxuv + uxxvxu + vxxuv – uxvxxu + utuv – uvtx

+ uxxv – vutx + uv + uv + uv + utvx + vtux + uxxvxx
}
,

�t
 = u,

�x
 = 

{
–uxu + uv + u + uxx

}
,

�t
 = uv,

�x
 = 

{
vxu – uxuv + vxxu + uxxv + uv + uv – uxvx

}
,

�t
 =



{
vxu – uxv + uv + v

}
,

�x
 =



{
vxu – uxuv + vxxu + vxuv – uxvxu + uxxuv

– vtu – uxv + utv + vxxv + uv + uv + v + uxxvx – uxvxx – vx
}
,
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�t
 = v,

�x
 = 

{
vxu + uv + v + vxx

}
.

Remark  Higher-order conservation laws of (.a) and (.b) can be computed by in-
creasing the order of multipliers.

.. Application of the new conservation theorem
The adjoint equations of (.a) and (.b), by invoking (.), are given by

–ψxuv – φxu – φxxu – φxv – φt – vxψx – φxxx = , (.a)

–ψxu + ψxxu – φxu – ψxv –ψt + uxψx – ψxxx = , (.b)

where φ = φ(t,x) and ψ = ψ(t,x) are the new dependent variables. By recalling (.), we
get the following Lagrangian for the system of equations (.a) and (.b) and (.a) and
(.b):

L =φ(t,x)
{
ut + 

(
uxx + u – uux + uv

)
x

}
+ψ(t,x)

{
vt + 

(
vxx + uv + uvx + v

)
x

}
. (.)

Because of the three Lie point symmetries of the ( + )-dimensional higher-order Broer-
Kaup system (.a) and (.b), we have the following three cases to consider:
(i) We first consider the Lie point symmetry generator X = ∂x of the ( + )-dimensional

higher-order Broer-Kaup system (.a) and (.b). Corresponding to this symmetry, the
Lie characteristic function isW = –(ux + vx). Thus, by using (.), the components of the
conserved vector are given by

Tt
 = –uxφ – vxψ ,

Tx
 = vxψxu – uxφxu + utφ + vtψ(t,x) + uxxφx – uxφxx + vxxψx – vxψxx.

(ii) The Lie point symmetry generator X = ∂t has the Lie characteristic function W =
–(ut +vt). Hence using (.), one can obtain the conserved vector whose components are

Tt
 =

(
vxuψ + uxuvψ + vxxuψ + uxvxψ + vxuφ + uxvφ

+ uxuφ – uxxuφ – uxφ + uxxxφ + vxvψ + vxxxψ
)
,

Tx
 = – 

(
vtuψ + utuvψ – vtψxu + uψvtx + utvxψ + vtuφ

+ utvφ + utuφ + utφxu – uφutx – utuxφ + φutxx + vtvψ

+ψvtxx + utφxx – φxutx + vtψxx –ψxvtx
)
.

(iii) Finally, we consider the symmetry generator X = –t∂t – x∂x + u∂u + v∂v. For this
case, the Lie characteristic functionW = u+v+tut +tvt +xux+xvx, and by using (.),
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the components of the conserved vector are given by

Tt
 = – tφuxu – tψvxu + φu – tvψuxu – tφvxu + tφuxxu

– tψvxxu + tφux + vψ + xφux – tvφux + xψvx – tvψvx

– tψuxvx – tφuxxx – tψvxxx,

Tx
 =φu

 + vψu + φxu + tφutu + tψvtu + vφu – φuxu

+ ψvxu + xuxφxu – vψxu – xvxψxu + φxxu + tvψutu + tφxutu

+ tφvtu – tψxvtu – tφutxu + tψvtxu

+ vψ – uxφx – vxψx + φuxx

– xφxuxx + ψvxx – xψxvxx + xuxφxx + vψxx + xvxψxx – xφut + tvφut

– tφuxut + tψvxut + tφxxut – xψvt + tvψvt

+ tψxxvt – tφxutx – tψxvtx

+ tφutxx + tψvtxx.

Remark The components of the conserved vectors contain the arbitrary solutionsφ and
ψ of adjoint equations (.a) and (.b), and hence one can obtain an infinite number
of conservation laws.

4 Concluding remarks
In this paper we have studied the ( + )-dimensional higher-order Broer-Kaup system
(.a) and (.b). Similarity reductions and exact solutions, with the aid of the simplest
equation method, were obtained based on optimal systems of one-dimensional subalge-
bras for the underlying system.We have verified the correctness of the solutions obtained
here by substituting them back into the system (.a) and (.b). Furthermore, conserva-
tion laws for the system (.a) and (.b) were derived by using the multiplier method and
the new conservation theorem.

Competing interests
The author declares that he has no competing interests.

Acknowledgements
This paper is dedicated to Prof. Ravi P. Agarwal on the occasion of his 65th birthday.
CMK would like to thank the Organizing Committee of ‘International Conference on Applied Analysis and Algebra
(ICAAA2012)’ for their kind hospitality during the conference.

Received: 12 September 2012 Accepted: 8 February 2013 Published: 28 February 2013

References
1. Lou, SY, Hu, XB: Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys. 38, 6401-6427

(1997)
2. Broer, LJF: Approximate equations for long water waves. Appl. Sci. Res. 31, 377-395 (1975)
3. Kaup, DJ: A higher-order water wave equation and the method for solving it. Prog. Theor. Phys. 54, 396-408 (1975)
4. Kaup, DJ: Finding eigenvalue problems for solving nonlinear evolution equations. Prog. Theor. Phys. 54, 72-78 (1975)
5. Fan, EG: Solving Kadomtsev-Petviashvili equation via a new decomposition and Darboux transformation. Commun.

Theor. Phys. 37, 145-148 (2002)
6. Huang, D, Li, D, Zhang, H: Explicit N-fold Darboux transformation and multi-soliton solutions for the

(1 + 1)-dimensional higher-order Broer-Kaup system. Chaos Solitons Fractals 33, 1677-1685 (2007)
7. Bluman, GW, Kumei, S: Symmetries and Differential Equations. Applied Mathematical Sciences, vol. 81. Springer, New

York (1989)
8. Ibragimov, NH: CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1. CRC Press, Boca Raton (1994)

http://www.boundaryvalueproblems.com/content/2013/1/41


Khalique Boundary Value Problems 2013, 2013:41 Page 18 of 18
http://www.boundaryvalueproblems.com/content/2013/1/41

9. Ibragimov, NH: CRC Handbook of Lie Group Analysis of Differential Equations, vol. 2. CRC Press, Boca Raton (1995)
10. Ibragimov, NH: CRC Handbook of Lie Group Analysis of Differential Equations, vol. 3. CRC Press, Boca Raton (1995)
11. Olver, PJ: Applications of Lie Groups to Differential Equations, 2nd. edn. Graduate Texts in Mathematics, vol. 107.

Springer, Berlin (1993)
12. Ovsiannikov, LV: Group Analysis of Differential Equations. Academic Press, New York (English translation by W.F. Ames)

(1982)
13. Leveque, RJ: Numerical Methods for Conservation Laws. Birkhäuser, Basel (1992)
14. Newell, AC: The history of the soliton. J. Appl. Mech. 50, 1127-1137 (1983)
15. Mikhailov, AV, Shabat, AB, Yamilov, RI: On an extension of the module of invertible transformations. Sov. Math. Dokl.

295, 288-291 (1987)
16. Mikhailov, AV, Shabat, AB, Yamilov, RI: Extension of the module of invertible transformations and classification of

integrable systems. Commun. Math. Phys. 115, 1-19 (1988)
17. Kodama, Y, Mikhailov, AV: Obstacles to asymptotic integrability. In: Gelfand, IM, Fokas, A (eds.) Algebraic Aspects of

Integrability, pp. 173-204. Birkhäuser, Basel (1996)
18. Naz, R, Mahomed, FM, Mason, DP: Comparison of different approaches to conservation laws for some partial

differential equations in fluid mechanics. Appl. Math. Comput. 205, 212-230 (2008)
19. Ibragimov, NH: A new conservation theorem. J. Math. Anal. Appl. 333, 311-328 (2007)
20. Anco, SC, Bluman, GW: Direct construction method for conservation laws of partial differential equations. Part I:

examples of conservation law classifications. Eur. J. Appl. Math. 13, 545-566 (2002)
21. Hereman, W: Symbolic computation of conservation laws of nonlinear partial differential equations in

multi-dimensions. Int. J. Quant. Chem. 106, 278-299 (2006)
22. Kudryashov, NA: Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos

Solitons Fractals 24, 1217-1231 (2005)
23. Kudryashov, NA: Exact solitary waves of the Fisher equation. Phys. Lett. A 342, 99-106 (2005)
24. Vitanov, NK: Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave

solutions for a class of PDEs with polynomial nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 15, 2050-2060
(2010)

25. Vitanov, NK, Dimitrova, ZI: Application of the method of simplest equation for obtaining exact traveling-wave
solutions for two classes of model PDEs from ecology and population dynamics. Commun. Nonlinear Sci. Numer.
Simul. 15, 2836-2845 (2010)

26. Anthonyrajah, M, Mason, DP: Conservation laws and invariant solutions in the Fanno model for turbulent
compressible flow. Math. Comput. Appl. 15, 529-542 (2010)

27. Atherton, RW, Homsy, GM: On the existence and formulation of variational principles for nonlinear differential
equations. Stud. Appl. Math. 54, 31-60 (1975)

doi:10.1186/1687-2770-2013-41
Cite this article as: Khalique: On the solutions and conservation laws of the (1 + 1)-dimensional higher-order
Broer-Kaup system. Boundary Value Problems 2013 2013:41.

http://www.boundaryvalueproblems.com/content/2013/1/41

	On the solutions and conservation laws of the (1+1)-dimensional higher-order Broer-Kaup system
	Abstract
	Keywords

	Introduction
	Symmetry reductions and exact solutions of (1.1a) and (1.1b)
	One-dimensional optimal system of subalgebras
	Symmetry reductions of (1.1a) and (1.1b)
	Exact solutions using the simplest equation method
	Solutions of (1.1a) and (1.1b) using the Bernoulli equation as the simplest equation
	Solutions of (1.1a) and (1.1b) using Riccati equation as the simplest equation


	Conservation laws of (1.1a) and (1.1b)
	Preliminaries
	Fundamental operators and their relationship
	Multiplier method
	Variational method for a system and its adjoint

	Construction of conservation laws for (1.1a) and (1.1b)
	Application of the multiplier method
	Application of the new conservation theorem


	Concluding remarks
	Competing interests
	Acknowledgements
	References


