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Abstract
The magnetohydrodynamic stability criterion of self-gravitating streaming fluid
cylinder under the combined effect of self-gravitating, magnetic, and capillary forces
has been derived. The results are discussed analytically and some data are verified
numerically for different parameters of the problem. The magnetic and capillary
forces are stabilizing, but the streaming is destabilizing while the self-gravitating is
stabilizing or destabilizing according to restrictions. The stable and unstable domains
are identified and, moreover, the influences of the magnetic and capillary forces on
the self-gravitating instability of the model have been examined. Including the
magnetic force together with self-gravitating force improves the instability of the
model. However, the self-gravitating instability will never be suppressed whatever the
effects of the MHD force stabilizing effects are.
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Introduction
The stability of a fluid cylinder under the action of the capillary or/and other forces has
received the attention of several researchers (Rayleigh [], Yuen [], Nayfeh and Hassan
[] and Kakutani et al. []. The effect of the electromagnetic Lorentz force on the capillary
instability has been examined in several texts by the Nobel prize winner () Chan-
drasekhar []. This has been done only for small axisymmetric perturbation and with a
constant magnetic field. Radwan et al. [–] extended such interesting works by study-
ing the magnetohydrodynamic stability of a liquid jet embedded into a tenuous medium
for all axisymmetric and non-axisymmetric modes of perturbation. The stability of differ-
ent cylindrical models under the action of self-gravitating force in addition to other forces
has been elaborated by Radwan and Hasan [] and []. They [] studied the gravitational
stability of a fluid cylinder under transverse time-dependent electric field for axisymmet-
ric perturbations. Hasan [] discussed the stability of oscillating streaming fluid cylinder
subject to the combined effect of the capillary, self-gravitating, and electrodynamic forces
for all axisymmetric and non-axisymmetric perturbationmodes. He [] studied the insta-
bility of a full fluid cylinder surrounded by self-gravitating tenuous medium pervaded by
transverse varying electric field under the combined effect of the capillary, self-gravitating,
and electric forces for all modes of perturbations. In [] Hasan et al. investigated the hy-
dromagntic stability of a self-gravitational oscillating streaming fluid jet pervaded by az-
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imuthal varying magnetic field for all axisymmetric and non-axisymmetric modes of per-
turbation. He [] discussed the stability of oscillating streaming self-gravitating dielectric
incompressible fluid cylinder surrounded by tenuous medium of negligible motion per-
vaded by transverse varying electric field for all modes of perturbations. He [] studied
themagnetodynamic stability of a fluid jet pervaded by a transverse varyingmagnetic field
while its surrounding tenuous medium is penetrated by uniform magnetic field.
The present work is devoted to studying the magnetogravitodynamic stability of a

streaming fluid cylinder and examining the influence of capillary and magnetic forces on
the self-gravitating instability of the present models. This may be carried out, for all ax-
isymmetric and non-axisymmetric modes of perturbation, analytically and the results will
be verified numerically.

1 Formulation of the problem
We consider a uniform cylinder of an incompressible inviscid fluid of radius R sur-
rounded by a tenuous medium of negligible motion. In the initial unperturbed state, the
model is assumed to be streaming uniformly with velocities

u = (,W ,U) ()

and pervaded internally and externally by the magnetic fields

H = (, ,H), Hex
 = (, ,αH). ()

Here W and U are (constants) the speed of the fluid, H is the intensity of the magnetic
field in the fluid, and α is some parameter. The components of u, H, Hex

 are consid-
ered along the cylindrical coordinates (r,ϕ, z) with the z-axis coinciding with the axis of
the cylinder as shown in Figure . The fluid matter of the cylinder is acted upon by the
combined effects of the self-gravitating, inertial, capillary, and magnetic forces. The sur-
rounding tenuous medium of the fluid cylinder is acted upon by the self-gravitating and
magnetic forces only.

Figure 1 Sketch for a gravitational MHD fluid
cylinder.
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The required basic equations for such kind of study may be obtained by combining the
ordinary hydrodynamic equations and those ofMaxwell’s concerning the electromagnetic
field theory together with Newtonian gravitational field equations.
For the problem at hand, under the present circumstances, these equations are the fol-

lowing.
For the fluid, we have

ρ

[
∂u
∂t

+ (u · ∇u)
]
= –∇P + ρ∇V +

(
μ

π

)
(∇ ∧H)∧H , ()

∇ · u = , ()

∇ ·H = , ()
∂H
∂t

= ∇ ∧ (u∧H), ()

∇V = –πρG. ()

The curvature pressure due to the capillary force is

Ps = T(∇ ·Ns) ()

with

Ns = ∇F/|∇F|, ()

where

F(r,ϕ, z) =  ()

is the boundary surface equation at time t, while Ns is a unit outward vector normal to
the surface, T is surface tension, and Ps is pressure due to curvature.
For the surrounding tenuous medium, the basic equations are

∇ ·Hex = , ()

∇ ∧Hex = , ()

∇Vex = . ()

Here ρ , u, and P are the fluid mass density, velocity vector, and kinetic pressure, respec-
tively; H, Hex

 are the magnetic field intensities and V , Vex are self-gravitating potentials,
respectively, inside and outside the fluid cylinder, μ is the magnetic field permeability co-
efficient and G is the gravitational constant.

2 Unperturbed state
The unperturbed state is studied and the fundamental quantities of such state could be
obtained. Equation () together with equation () gives

ρ∇V –∇P +
(

μ

π

)
(H · ∇)H –

(
μ

π

)
∇(H ·H) = , ()

from which, taking into account equation (), we obtain ∇(ρV – P – ( μ

π )H

) = .
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By integrating this equation, we get

P = ρV –
(

μ

π

)
H

 +C, ()

where C is a constant of integration to be determined.
The surface pressure due to the capillary force (cf. Chandrasekhar []) is given by

Ps = T/R. ()

The self-gravitating potentials V and Vex
 of the unperturbed state satisfy

∇Vex
 = –πρG, ()

∇Vex
 = . ()

The non-singular solutions of equations () and () in the cylindrical coordinates
(r,ϕ, z) with cylindrical symmetries ( ∂

∂ϕ
) =  and ( ∂

∂z ) =  are given by

V = –πGρr +C, ()

Vex
 = C ln r +C, ()

where C, C, and C are constants of integration to be determined. By applying the con-
ditions that the self-gravitational potential V and its derivative must be continuous across
the unperturbed boundary surface at r = R and choosing C =  since the potential inside
the cylinder is zero, we get

C = –πGρR
, ()

C = –πGρR
 + πGρR

 ln r. ()

Therefore,

V = –πGρR
, ()

Vex
 = –πGρR


(
 +  ln(r/R)

)
. ()

Moreover, by applying the condition that the total pressure must be balanced across the
boundary surface at r = R, the distribution of the fluid pressure in the unperturbed state
is given by

P =
(
T
R

)
+ πGρ(R

 – r
)
+

(
μ

π

)
H


(
α – 

)
. ()

It is worth noting that in the absence of surface tension at the boundary surface

α ≥ , ()

in order that

P ≥ . ()
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3 Perturbation analysis
We consider small departures from an unperturbed right-cylindrical shape of an incom-
pressible fluid. Therefore a normal mode can be expressed uniquely in terms of the de-
formed surface. Hence we may assume that the deformed interface is described by

r = R + ε(t)R + · · · ()

with

R = exp
(
i(kz +mϕ)

)
. ()

Here R is the elevation of the surface wave measured from the unperturbed position,
k (real number) is the longitudinal wave number,m (integer) is the transverse wave num-
ber. The amplitude ε(t) of the perturbation is given by

ε(t) = ε exp(σ t), ()

where ε (= ε at t = ) is the initial amplitude and σ is the temporal amplification. If σ (= iω,
i =

√
–) is imaginary, then ω/π is the oscillation frequency of the propagating wave in

the fluid.
As the initial streaming state is perturbed, every physical quantity Q(r,ϕ, z; t) may be

expanded as

Q(r,ϕ, z, t) =Q(r) +Q(r,ϕ, z, t). ()

HereQ stands for P, u,V ,Vex,H ,Hex, andNs whileQ indicates the unperturbed quantity
and Q is a small increment of Q due to disturbances.
In view of the expansion (), the basic equations of motion ()-() in the perturbation

state give

ρ

(
∂u
∂t

+ (u · ∇u)
)
= –∇P + ρ∇V +

(
μ

π

)
(H · ∇)H

–
(

μ

π

)
∇(H ·H), ()

∇ · u = , ()

∇ ·H = , ()(
∂H
∂t

)
= (H · ∇)u – (u · ∇)H, ()

∇V = , ()

Ps =
(
–T
R


)[
R +

(
∂R

∂ϕ

)
+ R



(
∂R

∂z

)]
, ()

∇ ·Hex
 = , ()

∇ ∧Hex
 = , ()

∇Vex
 = , ()
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where equations () and () have been used to obtain equation (). Based on the linear
perturbation technique, the linearized quantity Q(r,ϕ, z; t) may be expressed as

Q(r,ϕ, z; t) = εq(r) exp
(
σ t + i(kz +mϕ)

)
. ()

By means of the expansion (), equations () and () give the second-order ordinary
differential equation

(

r

)(
d
dr

)(
r
(
dφ(r)
dr

))
–

((
m

r

)
+ k

)
φ(r) = , ()

where φ(r) stands for V(r) and Vex
 (r). The solution of equation () is given in terms of

the ordinary Bessel functions of imaginary argument. For the problem under considera-
tion, apart from the singular solution, the solutions of equations () and () are finally
given by

V = εAIm(kr) exp
(
σ t + i(kz +mϕ)

)
, ()

Vex
 = εBKm(kr) exp

(
σ t + i(kz +mϕ)

)
. ()

Here Im(kr) and Km(kr) are the modified Bessel functions of the first and second kind of
orderm, while A and B are constants of integration to be determined.
Using the space-time dependence () for equation (), we get

(σ + imW + ikU)u – (iμk/πρ)HH = –∇� ()

with

� =
(
P

ρ

)
–V + (μ/πρ)(H ·H). ()

Also, equation () yields

H =
(

ikH

σ + imW + ikU

)
u. ()

By combining equations () and (), we get

u =
(

–(σ + imW + ikU)
((σ + imW + ikU) +�

A)

)
∇�, ()

where

�A =
(

μkH


πρ

)/

()

is the Alfven wave frequency defined in terms of H.
By taking the divergence of both sides of equation () and using equation (), we ob-

tain

∇� = . ()

http://www.boundaryvalueproblems.com/content/2013/1/48


Hasan and Abdelkhalek Boundary Value Problems 2013, 2013:48 Page 7 of 20
http://www.boundaryvalueproblems.com/content/2013/1/48

Using the space dependence () for equation () and following similar steps for the re-
sulting differential equation as has already been done for equations () and (), the
solution of equation () could be obtained. Therefore, the non-singular solution for
�(r,ϕ, z; t) is given by

� = CεIm(kr) exp
(
σ t + i(kz +mϕ)

)
, ()

where C is a constant of integration to be determined.
The pressure surface Ps in the perturbed state due to the capillary force is determined

from equation () along with () in the form

Ps =
(
–T
R


)(
 –m – x

)
exp

(
σ t + i(kz +mϕ)

)
, ()

where x (= kR) is the dimensionless longitudinal wavenumber.
Now, equation () means that the magnetic field intensity Hex

 in the perturbed state
may be derived from a scalar function, ψ ex

 say, such that

Hex
 = ∇ψ ex

 . ()

By combining equations () and (), we get

∇ψ ex
 = . ()

Similarly, as it has been done for equation (), equation () is solved and its finite solu-
tion is given by

ψ ex
 = CεKm(kr) exp

(
σ t + i(kz +mϕ)

)
, ()

where C is a constant of integration to be determined upon applying boundary condi-
tions.

4 Boundary conditions
The solution of the basic equations ()-() in the unperturbed state given by ()-()
together with (), () and () and in the perturbed state given by ()-() must satisfy
appropriate boundary conditions. These boundary conditions must be applied across the
perturbed interface () at the unperturbed boundary surface r = R.
Under the present circumstances, these boundary conditions may be stated as follows.
(i) Self-gravitating conditions.
The gravitational potential and its derivative must be continuous across the perturbed

fluid interface () at the unperturbed boundary r = R. These conditions at r = R read

V + R

(
∂V

∂r

)
= Vex

 + R

(
∂Vex


∂r

)
, ()

(
∂V

∂r

)
+ R

(
∂V

∂r

)
=

(
∂Vex


∂r

)
+ R

(
∂Vex


∂r

)
. ()
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By substituting from equations (), (), (), () and () into the conditions () and
(), we get

AIm(x) = BKm(x), ()

AkI ′m(x) = BkK ′
m(x) + πGρ, ()

from which we obtain

A = πρGRKm(x), ()

B = πρGRIm(x), ()

where x (= kR) is the dimensionless longitudinal wave number.
(ii) Kinematic condition.
The normal component of the velocity vector u must be compatible with the velocity of

the particles of the boundary surface () at the unperturbed surface r = R. This condition
reads

ur =
∂R

∂t
+U

∂R

∂z
+W

∂R

∂ϕ
. ()

Using equations (), () and () for the condition (), we obtain

C =
(
–(σ + imW + ikU) +�

A
)(
R/xI ′m(x)

)
. ()

(iii) Magnetodynamic condition.
The jump of the normal component of the magnetic field vanishes across the fluid per-

turbed interface at r = R. This means that

Ns ·H –Ns ·Hex =  at r = R, ()

from which we obtain

Hr –Hex
r = ikRH( – α). ()

Therefore, upon using equations (), (), (), (), and () for (), we get

C =
iαH

K ′
m(x)

. ()

5 Dispersion relation
Here we apply a compatibility condition known as the compatibility dynamical condition.
The normal component of the velocity vector u must be compatible with the velocity of

the particles of the boundary surface () at the unperturbed surface r = R.
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Mathematically, this condition could be given as

P + R
∂P

∂r
+

μ

π
(H ·H) –

μ

π
(H ·H)

ex = Ps. ()

This may be rewritten, on using equation (), in the form

ρ(� +V) = Ps +
μ

π
(H ·H)

ex – R
∂P

∂r
. ()

By substituting from equations (), (), (), (), ()-(), (), (), and () into
the condition (), the following dispersion relation is obtained:

(σ + imW + ikU) = πGρ
xI ′m(x)
Im(x)

[
Im(x)Km(x) –




]
+

T
ρR



(
 –m – x

)xI ′m(x)
Im(x)

+
μH


(πρR

)

[
–x + α xI ′m(x)Km(x)

Im(x)K ′
m(x)

]
. ()

6 Limiting cases
The relation () is the desired stability criterion of a streaming fluid cylinder under the
combined effects of the capillary, inertia, self-gravitating, andmagnetic forces. It is a linear
combination of the dispersion relations of a streaming fluid cylinder under the influence
of the self-gravitating force only, fluid cylinder under the effects of the capillary force only
and the one under the electromagnetic force only.
It contains the natural quantity (T/ρR

)–

 as well as (μH

/πρR
)–


 together with

(πGρ)– 
 , each as a unit of time. In reality the latter quantities are very interesting and

have very important task as we intend to rewrite the relation () in a dimensionless form
because σ has a unit of (time)–. This situation is exactly the same as the following cases
of Chandrasekhar [] which were performed for axisymmetric (m = ) perturbation of
nonstreaming fluid cylinder:

(T = ,G �= ,H �= ), (T �= ,G = ,H �= ) and (T �= ,G �= ,H = ).

The relation () relates the temporal amplification σ with the longitudinal wave num-
ber x; themodified Bessel functions Im(x) andKm(x) of the first and second kind of orderm
and with their derivatives, the magnetic field parameter α, the self-gravitating constantG,
the basic magnetic field intensity H, the fluid density ρ , the radius R of the cylinder and
with the coefficient μ of the magnetic permeability.
Since the stability criterion () is a general relation, we may obtain several published

works as limiting cases from it.
Some approximations (α = , H = , U = , W = , T =  and m = ) are required for

equation () to yield

σ  = πGρ
xI(x)
I(x)

[
I(x)K(x) –




]
, I ′(x) = I(x), ()

which is the same dispersion relation as that derived by Chandrasekhar and Fermi [].
In fact, the authors [] used a totally different method compared to the one used here.

http://www.boundaryvalueproblems.com/content/2013/1/48
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They used the method of representing solenoidal vectors in terms of poloidal and toroidal
quantities.
If we suppose that (α = , H = , U = , W = , G =  and m = ), the relation ()

yields

σ  =
T

ρR


xI(x)
I(x)

(
 – x

)
. ()

This relation coincides with that derived regarding the capillary instability of a full liquid
jet in a vacuum by Rayleigh [].
If we suppose that (α = , U = ,W = , T =  andm = ), the relation () reduces to

σ  = πGρ
xI(x)
I(x)

[
I(x)K(x) –




]
+

μH


σR


[
–x +

xI(x)K(x)
I(x)(–K(x))

]
, ()

from which we obtain

σ  = πGρ
xI(x)
I(x)

[
I(x)K(x) –




]
+

μH


ρR


x
I(x)K(x)

, ()

where use has been made of the Wronskian

Im(x)K ′
m(x) – I ′m(x)Km(x) = –x– ()

for m = . The relation () was established by Chandrasekhar [] for axisymmetric dis-
turbances.

7 Stability discussions
7.1 Capillary instability
In the absence of the magnetic field, we assume that the streaming fluid is acted upon only
by the capillary force. In such a case, the dispersion relation of this model is given from
the relation () in the form

(σ + imW + ikU) =
T

ρR


xI(x)
I(x)

(
 –m – x

)
. ()

By using the fact, for each non-zero real value of x andm≥ , that

Im(x) > , ()

I ′m(x) > , ()

the analytical and numerical discussions of the relation () reveal the following results.
In the computer for different values ofM and different cases of U* andW *.
In the most important sausage modem = .
The dimensionless dispersion relation is

(σ + imW + ikU)

πGρ
=
xI ′m(x)
Im(x)

[
Im(x)Km(x) –




]
+M

[(
 –m – x

)xI ′m(x)
Im(x)

]
, ()
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Figure 2 Stable and unstable domains for γ = 0, U* =W* = 0.2.

where

M =
[

T
(πGρR

)

]
, U* =

[
–ikU

(πGρ)/

]
, W * =

[
–imW

(πGρ)/

]
.

The numerical data associated with σ /(πGρ)  correspond to the unstable states, while
those associated with ω/(πGρ)  correspond to the stable domains. It has been found
that there are many features of interest in this numerical analysis as we see in the follow-
ing.
(i) ForM = ., ., ., ., ., ., see Figure .
Corresponding to U* =W * = .. It has been found that the unstable domains are

 < x < .,  < x < .,  < x < .,

 < x < .,  < x < ., and  < x < .,

while the neighboring stable domains are

. ≤ x < ∞, .≤ x < ∞, . ≤ x < ∞,

. ≤ x <∞, .≤ x < ∞, and . ≤ x < ∞,

where the equalities correspond to the marginal stability states.
(ii) ForM = ., ., ., ., ., ., see Figure .
Corresponding to U* =W * = .. It has been found that the unstable domains are

 < x < .,  < x < .,  < x < .,

 < x < .,  < x < ., and  < x < .,

http://www.boundaryvalueproblems.com/content/2013/1/48
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Figure 3 Stable and unstable domains for γ = 0, U* =W* = 0.5.

Figure 4 Stable domains for γ = 0, U* =W* = 0.2.

while the neighboring stable domains are

. ≤ x < ∞, .≤ x <∞, .≤ x <∞,

. ≤ x < ∞, .≤ x <∞, and . ≤ x < ∞,

where the equalities correspond to the marginal stability states.
(iii) ForM = ., ., ., ., ., ., see Figure .
Corresponding to U* =W * = .. It has been found that stable domains are ≤ x <∞.
(iv) ForM = ., ., ., ., ., ., see Figure .
Corresponding to U* =W * = .. It has been found that stable domains are ≤ x < ∞.

http://www.boundaryvalueproblems.com/content/2013/1/48
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Figure 5 Stable domains for γ = 0, U* =W* = 0.5.

We conclude that the streaming full fluid cylinder has stable and unstable domain forM
less than . and stable domain only for M greater than this value whatever the values of
velocities are. Increasing the value ofM, the unstable domain is decreasing. The effect of
changing velocities cases on the capillarity effect is such small that it may be considered
as no effect.

7.2 Self-gravitating instability
Consider only the self-gravitating force effect, and then the dispersion relation of the
model is given from equation () as follows:

(σ + imW + ikU) = πGρ
xI ′m(x)
Im(x)

[
Im(x)Km(x) –




]
. ()

Consider the inequalities () and () and, for each non-zero real value of x, that

Km(x) >  ()

the analytical and numerical discussion of the relation () reveal the following.
For U = , W = , it has been found that the model is gravitationally unstable in the

domain ( < x < . form =  mode) while it is stable in the domains (.≤ x ≤ ∞
form =  mode) and (≤ x ≤ ∞ form ≥  modes).
For U �= , W �= , it has been found that the axial flow has a strong destabilizing influ-

ence. That effect does not rely on the kind of perturbation and it is so for all short and
long wavelengths. Therefore, the streaming has the effect of increasing the axisymmetric
stable domain .≤ x≤ ∞ and the non-axisymmetric domains  < x < ∞.
We conclude that the streaming self-gravitating fluid cylinder is unstable not only for

the axisymmetric mode m = , but also for non-axisymmetric modesm ≥ .

http://www.boundaryvalueproblems.com/content/2013/1/48
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Figure 6 Stable and unstable domains forM = 0, U* =W* = 0.2.

7.3 Magnetogravitodynamic stability
This is the case in which the streaming fluid cylinder is acted upon by the combined effects
of the self-gravitating and magnetic forces. It is difficult to determine exactly in analytical
ways the (un-) stable domains in such a general case. However, we could determine them
via the numerical discussions. Also, by means of such discussion, we may find out the
effects of the magnetic field on the self-gravitating force. This could be carried out by
calculating the dimensionless dispersion relation

(σ + imW + ikU)

πGρ
=
xI ′m(x)
Im(x)

[
Im(x)Km(x) –




]
+ γ

[
–x + α xI ′m(x)Km(x)

Im(x)K ′
m(x)

]
()

in the computer for different values of

γ
(
=

(
μ/πG

)
(H/ρR)

)
and U* =

[
–ikU

(πGρ)/

]

in the most important sausage mode m = .
The numerical data associated with σ /(πGρ)  correspond to the unstable states, while

those associatedwithω/(πGρ)  correspond to the stable domains. It has been found that
there are many features of interest in this numerical analysis as we see in the following.
(i) For γ = ., ., ., ., ., ., see Figure .
Corresponding to U* =W * = .. It has been found that the unstable domains are

 < x < .,  < x < .,  < x < .,

 < x < .,  < x < ., and  < x < .,

while the neighboring stable domains are

. ≤ x < ∞, .≤ x < ∞, .≤ x < ∞,

. ≤ x <∞, .≤ x <∞, and .≤ x < ∞,

where the equalities correspond to the marginal stability states.
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Figure 7 Stable and unstable domains forM = 0, U* =W* = 0.5.

(ii) For γ = ., ., ., ., ., ., see Figure .
Corresponding to U* =W * = .. It has been found that the unstable domains are

 < x < .,  < x < .,  < x < .,

 < x < .,  < x < ., and  < x < .,

while the neighboring stable domains are

.≤ x < ∞, . ≤ x < ∞, . ≤ x < ∞,

.≤ x < ∞, .≤ x < ∞, and .≤ x <∞,

where the equalities correspond to the marginal stability states.
(iii) For γ = ., ., ., ., ., ., see Figure .
Corresponding to U* =W * = .. It has been found that stable domains are ≤ x <∞.
(iv) For γ = ., ., ., ., ., ., see Figure .
Corresponding to U* =W * = .. It has been found that stable domains are ≤ x < ∞.
We conclude that the streaming full fluid cylinder has stable and unstable domain for γ

less than . and stable domain only. Increasing the value of magnetic field, the unstable
domains are decreasing. The effect of changing velocities cases on magnetic effect is such
small that it may be considered asno effect. If we compare these results with those of
chapter two (only velocity in z direction), we observe that the existance of another velocity
W in ϕ direction decreases the unstable domain.

7.4 Magnetogravitodynamic capillary stability
This is the general case in which the streaming fluid cylinder is acted upon by the com-
bined effects of the self-gravitating, capillary, andmagnetic forces. The dispersion relation
is given in its general form by equation (). It is difficult to determine exactly in analytical

http://www.boundaryvalueproblems.com/content/2013/1/48
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Figure 8 Stable domains forM = 0, U* =W* = 0.2.

Figure 9 Stable domains forM = 0, U* =W* = 0.5.

ways the (un-) stable domains in such a general case. However, we could determine them
via the numerical discussions. Also, by means of such discussion, we may find out the ef-
fects of capillary with a constant magnetic field on the self-gravitating force. This could
be carried out by calculating the dimensionless dispersion relation

(σ + imW + ikU)

πGρ
=
xI ′m(x)
Im(x)

[
Im(x)Km(x) –




]
+M

[(
 –m – x

)xI ′m(x)
Im(x)

]

+ γ

[
–x + α xI ′m(x)Km(x)

Im(x)K ′
m(x)

]
()
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Figure 10 Stable and unstable domains for γ = 0.5, U* =W* = 0.2.

in the computer for different values of

M =
[

T
(πGρR

)

]
, γ

(
=

(
μ/πG

)
(H/ρR)

)
and U* =

[
–ikU

(πGρ)/

]

in the most important sausage mode m = .
The numerical data associated with σ /(πGρ)  correspond to the unstable states, while

those associatedwithω/(πGρ)  correspond to the stable domains. It has been found that
there are many features of interest in this numerical analysis as we see in the following.
(i) ForM = ., ., ., ., ., ., see Figure .
Corresponding to γ = . and U* = W * = .. It has been found that the unstable do-

mains are

 < x < .,  < x < .,  < x < .,

 < x < .,  < x < ., and  < x < .,

while the neighboring stable domains are

.≤ x < ∞, .≤ x <∞, .≤ x < ∞,

. ≤ x < ∞, .≤ x < ∞, and .≤ x < ∞,

where the equalities correspond to the marginal stability states.
(ii) ForM = ., ., ., ., ., ., see Figure .
Corresponding to γ = . and U* = W * = .. It has been found that the unstable do-

mains are

 < x < .,  < x < .,  < x < .,

 < x < .,  < x < ., and  < x < .,

http://www.boundaryvalueproblems.com/content/2013/1/48
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Figure 11 Stable and unstable domains for γ = 0.5, U* =W* = 0.5.

Figure 12 Stable domains for γ = 0.5, U* =W* = 0.2.

while the neighboring stable domains are

. ≤ x < ∞, .≤ x < ∞, . ≤ x < ∞,

.≤ x < ∞, .≤ x < ∞, and .≤ x < ∞,

where the equalities correspond to the marginal stability states.
(iii) ForM = ., ., ., ., ., ., see Figure .
Corresponding to γ = . and U* =W * = .. It has been found that stable domains are

 ≤ x < ∞.

(iv) ForM = ., ., ., ., ., ., see Figure .
Corresponding to γ = . and U* =W * = .. It has been found that stable domains are

 ≤ x < ∞.

http://www.boundaryvalueproblems.com/content/2013/1/48
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Figure 13 Stable domains for γ = 0.5, U* =W* = 0.5.

We conclude that the streaming full fluid cylinder has stable and unstable domains for
M less than . and stable domain only for M greater than this value whatever the values
of velocities are. The effect of changing velocities cases on capillarity effect is such small
that it may be considered as no effect. IncreasingM with constantmagnetic field increases
the unstable domain.

8 Conclusion
From the foregoing numerical results, we may deduce the following:
() The velocity has a strong destabilizing influence on the self-gravitating instability of

the model.
() The capillary force has a strong stabilizing influence on the self-gravitating

instability of the model.
() The capillary and self-gravitating modified a lot the instability of the model for all

short and long wavelengths.
() The velocity has a strong destabilizing influence on the self-gravitating instability of

the model.
() The magnetic force has a strong stabilizing influence on the self-gravitating

instability of the model.
() The self-gravitating instability character has disappeared and has been dispersed,

and the model has become completely stable.
() The velocities in two directions have a strong destabilizing influence on the

self-gravitating instability of the model.
() The magnetic force has a strong stabilizing influence on the self-gravitating capillary

instability of the model.
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