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Abstract
For a minimal group (or monoid) presentation P , let us suppose that P satisfies the
algebraic property of either being efficient or inefficient. Then one can investigate
whether some generating functions can be applied to it and study what kind of new
properties can be obtained by considering special generating functions. To establish
that, we will use the presentations of infinite group and monoid examples, namely
the split extensions Zn �Z and Z2 �Z, respectively. This study will give an
opportunity to make a new classification of infinite groups and monoids by using
generating functions.
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1 Introduction and preliminaries
In the literature, although there are somany studies about figuring out the relationship be-
tween rings (or fields) and special generating functions (cf., for instance, [–]), there are
no such studies about the relationship between group (or monoid) presentations and gen-
erating functions. In fact, the studies on the efficient and inefficient (but minimal) group
and monoid presentations gave very important characterisations for groups and monoids
in the branch of combinatorial group theory ofmathematics (see, for instance, [–]). It is
known that generating functions are still interesting for many mathematicians and physi-
cians (see, for instance, [, , ] in addition to above). Thus, it would be quite interesting
for future studies to connect these two important areas and then search for possible prop-
erties.
In the light of this thought, in this paper, a connection between special (efficient and

inefficient) presentations defined on infinite groups (and monoids) and some generating
functions related to the special polynomials and numbers will be investigated. (These spe-
cial polynomials are chosen by their integer coefficients. Of course, one can choose some
other polynomials used in this paper.) Another aim of this paper is to try to make a clas-
sification of infinite groups and monoids.
This paper is divided into four sections. Main results are presented specially in Sec-

tions  and . In the remaining parts of this section, we will present some fundamental
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material related to the group or monoid presentations that will be needed in later sections
of this paper.
A group (or amonoid) presentation

P = 〈x; r〉 ()

is a pair where x is a set (generating symbols) and r is a set of non-empty, cyclically reduced
words (relators) on x. In monoids, each R ∈ r is actually an ordered pair (R+,R–), where R+

and R– are distinct, positive (one of them could be empty) words on x. We say that P is
finite if x and r are both finite. Further, all results in this paper are related to split extensions
and their presentations. In [], a split extension is also named a semidirect product and
detailed properties of this product can be found in elementary algebra textbooks. Here, we
will just remind the presentation of a semidirect product of arbitrary groups (or monoids).
Therefore, for arbitrary groups (or monoids) A and K with presentations PA = 〈x; r〉 and
PK = 〈y; s〉, the presentation of the group (or monoid) K �θ A is defined by

PK�θA = 〈x,y; r, s, t〉, ()

where t is the set of relators of the form

Tyx : yx = x(yθx)

for all x ∈ x and y ∈ y (cf. [, ]). We remind that the homomorphism θ is defined from A
toAut(K) for the semidirect product of groups, while it is defined fromA to End(K) for the
product of monoids. Further, θx is an isomorphism of the group K and a homomorphism
in a monoid case.
In the next two subsections, we will give some other preliminary material that will be

needed for the construction of the results in this paper by considering the presentation P
in ().

1.1 Efficiency
The subject under this title will be given over a group G with a presentation P as defined
in (). But we should note that the following material will be completely the same if the
group G is replaced by a monoidM.
For the presentation P , the Euler characteristic is defined by χ (P) = – |x|+ |r|. By [–

], there exists a lower bound δ(G) which is equal to  – rkZ(H(G)) + d(H(G)) with the
condition δ(G) ≤ χ (P), where rk(·) denotes the Z-rank of the torsion-free part and d(·)
denotes the minimal number of generators. Depending on these numbers, we define

χ (G) =min
{
χ (P) :P is a finite presentation for G

}
.

Therefore a presentationP is calledminimal if χ (P)≤ χ (P ′) for all presentationsP ′ ofG,
or is called efficient if χ (P) = δ(G). Moreover, G is called efficient if χ (G) = δ(G). In [, ],
Cevik recalled known results for efficiency of groups and monoids. (We should remark
that some authors also consider –|x|+ |r| and call this the deficiency of the presentationP .)

http://www.boundaryvalueproblems.com/content/2013/1/51


Cangül et al. Boundary Value Problems 2013, 2013:51 Page 3 of 17
http://www.boundaryvalueproblems.com/content/2013/1/51

Figure 1 Generating pictures ofPG as given in (6).

Remark  In both group and monoid cases, if the presentation P in () is efficient or
inefficient while it is minimal, then it always has a minimal number of generators. So,
this fact affects positively the use of generating functions for this type of presentations
since we have a great advantage to work with quite a limited number of variables in such
a generating function.

1.2 Pictures
There exists a geometric method called spherical group (or monoid) pictures related to
the presentation P given in (). This method was constructed and first used by Pride [,
–] for both groups andmonoids, and since then it has still been in use for the solution
of many important combinatorial problems such as word problems (cf. [, ]). Here, we
will recall a brief description of pictures for groups and monoids in separate cases. Before
that, we express the following remark.

Remark Similarly to (undirected) graphs, this geometric configuration has a large appli-
cation area, especially in engineering sciences. For example, the plan of electrical network
for a city or the behaviour of DNA molecules in a human body can be figured out with
pictures (see Figures ,  and ).

Pictures for groups: As we depicted in Remark , a group picture P overP is a geometric
configuration consisting of the following:
• A disc D with a basepoint O on the boundary ∂D of D.
• Disjoint discs �,�, . . . ,�n in the interior of D. Each �i has a basepoint Oi on the
boundary ∂�i of �i.

• A finite number of disjoint arcs α,α, . . . ,αm, where each arc lies in the closure of
D –

⋃n
i= �i and is either a simple closed curve having trivial intersection with

∂D ∪ ∂� ∪ ∂� ∪ · · · ∪ ∂�n, or is a simple non-closed curve which joins two points
of ∂D ∪ ∂� ∪ ∂� ∪ · · · ∪ ∂�n, neither point being a basepoint. Each arc has a
normal orientation indicated by a short arrow meeting with the arc transversely and is
labelled by an element of x∪ x– which is called the label of the arc.

• If we travel around ∂�i once in the clockwise direction starting from Oi and read off
the labels on arcs encountered (if we cross an arc, labelled x say, in the direction of its

http://www.boundaryvalueproblems.com/content/2013/1/51
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Figure 2 The single generating picture ofPM
given in (9).

normal orientation, then we read x, whereas if we cross the arc in the direction of its
opposite orientation, then we read x–), then we obtain a word which belongs to
r∪ r–. We call this word the label of �i. If s is a subset of r, then a disc labelled by an
element of s∪ s– is called an s-disc.

When we refer to the discs of P, we in fact mean the discs �,�, . . . ,�n, and not the
ambient disc D. A closed arc which encircles neither a disc nor an arc of P is called a
floating circle.We define ∂P to be ∂D. The label on P (denoted byW (P)) is the word read
off by travelling around ∂P once in the clockwise direction starting from O. (In fact, this
fact on pictures implies the fundamentals of solving the word problem [, ].)
Further, P is called spherical if no arcs meet ∂P (i.e. if P is spherical, then ∂P is omitted).

A transverse path γ in a picture P is a path in the closure of D –
⋃n

i= �i which intersects
the arcs of P only finitely many times. Reading off the labels on the arcs encountered while
travelling along a transverse path from its initial point to its terminal point gives a word on
x denoted byW (γ ). Let γ be a simple closed transverse path in P. The part of P enclosed
by γ is called a subpicture of P. If γ intersects no arcs, then the part of P enclosed by γ

is called a spherical subpicture of P. A cancelling pair in P is a spherical subpicture with
exactly two discs whose basepoints lie in the same region.
A spray for P is a sequence γ = (γ,γ, . . . ,γn) of simple transverse paths satisfying the

following: for i = , , . . . ,n, γi starts at O and ends at the basepoint of �i, for  ≤ i < j ≤
n, γi and γj intersect only at O; travelling around O clockwise in P, we encounter these
transverse paths γ,γ, . . . ,γn, respectively.
There are some elementary operations (deletion and insertion of a floating circle, dele-

tion and insertion of a cancelling pair, bridgemove) on spherical pictures. Then two spher-
ical pictures are called equivalent if one can be obtained from the other by a finite number

http://www.boundaryvalueproblems.com/content/2013/1/51
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Figure 3 The single generating picture ofPM in (12).

of above operations. These operations imply an equivalence relation and the equivalence
class containing P which is denoted by 〈P〉. The set of all equivalence classes of spherical
pictures over P forms an abelian group. In addition, for a word W on x, a new spherical
picture over P denoted by PW can also be obtained fromW by surrounding P with a col-
lection of concentric arcs with total label W . Hence, there is a well-defined G(P)-action
on equivalence classes of spherical pictures given by W · 〈P〉 = 〈PW 〉 (where W ∈ G(P)).
We then obtain aZG(P)-module π(P) called the second homotopymodule ofP . LetX be
a set of spherical pictures. Then we say that X generates π(P) (or X is a set of generating
pictures) if the elements 〈P〉 (where P ∈X) generate π(P).
For any picture P over P and for any R ∈ r, the exponent sum of R in P, denoted by

expR(P), is the number of discs of P labelled by R minus the number of discs labelled by
R–. We remind that if pictures P and P are equivalent, then expR(P) = expR(P) for all
R ∈ r. Depending on the exponent sum, we have the following definition.

Definition  For a non-negative integer n, P is said to be n-Cockcroft if expR(P) ≡
(modn) (where congruence (mod) is taken to be equality) for all R ∈ r and for all spher-
ical pictures P over P . Moreover, a group G is said to be n-Cockcroft if it admits an n-
Cockcroft presentation.

Actually, to verify that the n-Cockcroft property holds, it is enough to check it only for
pictures P ∈ X, where X is a set of generating pictures. Also, the -Cockcroft property
is usually just called Cockcroft, and in practice, n is taken as a prime p or . By [, ],

http://www.boundaryvalueproblems.com/content/2013/1/51
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Figure 4 An atomic monoid picture.

the presentation P is efficient if and only if it is p-Cockcroft for some prime p. So, this
connection between efficiency and p-Cockcroft property will be one of the main ideas
during the construction of this paper.
There is an embeddingμ ofπ(P) into the freemodule

⊕
R∈rZG(P)eR defined as follows

(see [, ]): Let 〈P〉 ∈ π(P) and suppose that P has discs �,�, . . . ,�n with the labels
Rε
 ,R

ε
 , . . . ,Rεn

n , respectively (Ri ∈ r, εi = ±, i = , , . . . ,n). Let γ = (γ, . . . ,γn) be a spray
defined previously. Then

μ
(〈P〉) =

n∑
i=

εiW (γi)eRi . ()

For simplicity, the notation μ(P) will be preferred instead of μ(〈P〉). For each spherical
picture P over P and for each R ∈ r, let λP,R be the coefficients of eR in μ(P). Let I(P) be
the two-sided ideal in ZG generated by the set {λP,R : P is a spherical picture, R ∈ r}. This
ideal is called the second Fox ideal of P . The concept of Fox ideals has been discussed in
[]. In fact, we need this concept for our studies in this paper as our main goal in this
paper is to establish a relationship between generating functions and presentations. For
the group case in Section , the generating functions will be labelled by εiW (γi) defined
in ().
Pictures for monoids. As we pointed out in the beginning of this section, some of the

followingmaterial may also be found in [, , , ]. For a monoidM, letP be amonoid
presentation as in (); and let F(x) be a free monoid on x. If we have an elementW =USεV
(where U ,V ∈ F(x), S ∈ r, ε = ±) of F(x), then we can replace Sε by S–ε to get a word
W ′ = US–εV . This can be represented by a geometric object called an atomic (monoid)
picture A = (U ,S, ε,V ) as depicted in Figure .
We remark that the disc labelled by S in an atomic picture A is said to be positive if ε = 

and is said to be negative if ε = –.
We have a graph � (= �(P)) associated withP , called the Squier graph, which is defined

as follows: The vertex set is F(x), and the edge set is the collection of all atomicmonoid pic-
tures. For an orientation of �, we will take all edges (U ,S, +,V ). For an atomic picture A,
as in Figure , the word we read off by travelling along the top of the atomic picture from
left to right gives the initial function, denoted by ι(A) =USεV , and the word we read off by
travelling along the bottom gives the terminal function, denoted by τ (A) = US–εV . Also,
the mirror image of A is denoted by A– = (U ,S, –ε,V ). A path P = AA · · ·An (where
each Ai is an atomic picture for i = , , . . . ,n) in � will also be called a monoid picture

http://www.boundaryvalueproblems.com/content/2013/1/51
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over P . If ι(A) = τ (An), then P is called a spherical monoid picture over P . Note that we
also have the term subpicture of monoid pictures.
There is a left action of F(x) on � defined as follows. Let C ∈ F(x).
(i) LetW be a vertex of �. Then we define CW to be C ·W (product in F(x)).
(ii) Let A, as in Figure , be an edge of �. Then C ·A = (CU ,S, ε,V ).
We can define a similar right action of F(x) on �. The left and right actions of F(x) on �

extend to actions on pictures. That is, if P is a picture and W ,V ∈ F(x), then W · P · V =
(W ·A ·V )(W ·A ·V ) · · · (W ·An ·V ).
For atomic monoid pictures A and B, one can introduce some operations (deletion and

insertion of inverse pairs of atomic pictures and a replacement operation (cf. [, ]))
on spherical monoid pictures. These operations imply an equivalence relation on paths.
Therefore the graph � with this equivalence relation on paths is called the Squier complex
of P denoted byD(P). Let Y be a set of spherical monoid pictures. Two spherical monoid
pictures will be said to be equivalent (relative toY) if one can be transformed into the other
by a finite number of above operations. By [], the set Y is called a trivializer of D(P) if
every spherical picture is equivalent to an empty picture (relative to Y). Some examples
and the details of the trivializer can be found, for instance, in [, ]. Similarly as in the
group case, for any monoid picture P over P and for any S ∈ r, the exponent sum of S in P

is the number of positive discs labelled by S minus the number of negative discs labelled
by S. Then themonoid version of Definition  can be obtained in completely the same way
by replacing the term group withmonoid. To verify that the n-Cockcroft (in fact n is taken
as a prime p or ) property holds, it is enough to check it for pictures P ∈ Y, where Y is a
trivializer of D(P).
LetM be a monoid with the presentation P as in (). Let

P(l) =
⊕
S∈r

ZMeS

be a free left ZM-module with basis {eS : S ∈ r}. For an atomic picture A = (U ,S, ε,V )
with U ,V ∈ F(x), S ∈ r, ε = ±, we define eval(l)(A) = εUeS ∈ P(l), where U ∈ M(P) as in
Figure . For any spherical monoid picture P, we define

eval(l)(P) =
n∑
i=

eval(l)(Ai) ∈ P(l). ()

Let λP,S be the coefficient of eS in eval(l)(P). So, we can write

eval(l)(P) =
∑
S∈r

λP,SeS ∈ P(l). ()

Let I(l) (P) be the two-sided ideal ofZM generated by the elements λP,S , where P is a spher-
ical monoid picture and S ∈ r. Then this ideal is called the second Fox ideal of P . More
specifically, for a trivializer Y of D(P), the set I(l) (P) is generated (as two-sided ideal) by
the elements λP,S , where P ∈ Y and S ∈ r. We note that all this above material given with
the consideration ‘left’ can also be applied to ‘right’ for a monoidM.
In Section , the generating functions will be connected to the

∑n
i= εUi part in () or,

equivalently, to the λP,S in ().

http://www.boundaryvalueproblems.com/content/2013/1/51
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2 The group case Zn �θ1 Z

Let us consider the split extension G = Zn �θ Z, where Z = 〈b〉 is the a group with rank
one, Zn = 〈a〉 is a cyclic group of order n and θ : Z →Aut(Zn) is a homomorphism. Then,
by (), G has the presentation

PG =
〈
a,b;an,aba–kb–

〉
, ()

where k ∈ Z+, gcd(k,n) =  and k < n. In [, Theorem ..], the generating set of the
second homotopy module π(PG) has been constructed as drawn in Figure . In this gen-
erating set, there are two spherical pictures P and P. In P, we have two an-discs (one
of them is positive and the other is negative), and in P we have a negative an-disc and
k-times positive an-discs. Furthermore, again in P, there is a total of n-times aba–kb–-
discs. Then, by considering the number of discs in these pictures, Baik [, Theorem ..]
proved the following result.

Proposition  The presentation PG in () is efficient (equivalently, p-Cockcroft for any
prime p) if and only if gcd(k – ,n) 
= .

Therefore, if we suppose gcd(k – ,n) = , then we obtain an inefficient presentation.
Clearly, n must be an odd prime and the PG given in () be an inefficient presentation.
Otherwise, by setting n =  in this inefficient case, we obtain the direct product Zn × Z

which is a special case of the semidirect products and will not be considered in this paper.
By Remark , it is always true that efficient presentations (even for groups or monoids) are
minimal. But to check the minimality of a presentation while it is inefficient is important,
because in this case we obtain the inefficiency of the related group that has this presenta-
tion (see [–]). For the group case, this important subject is investigated by the following
‘minimality test’ due to Lustig [].

Lemma  ([]) For any group G with a presentation P as in (), suppose there is a ring
homomorphism ψ from ZG into the matrix ring of all m×m-matrices (m ≥ ) over some
commutative ringR with . Suppose also that ψ() = Im×m. If ψ maps the second Fox ideal
I(P) to  (in other words, if I(P) is contained in the kernel of ψ ), then P is minimal.

By considering Proposition , the first main result of this paper is presented as follows.

Theorem  Let us consider the presentationPG as in () for the group G = Zn�θ Z,where
k < n and gcd(k,n) =  but gcd(k – ,n) 
= . Then PG has a set of generating functions

p(a) = a – , p(b) = kb – , p(a) = φn(a),

where φn denotes the nth cyclotomic polynomial over Q defined by

φn(x) =
xn – 
x – 

()

having a degree n – .

http://www.boundaryvalueproblems.com/content/2013/1/51
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Proof We first note that since PG is presented as in (), the action in Aut(Zn) is defined by
a θ(b)–→ θ(b) = ak , where hcf (k,n) =  and k < n.
Assume that hcf (k –,n) 
= . Then, by Proposition , PG is an efficient presentation and

so, by Remark , is minimal (i.e. has a minimal number of generators). Let us consider the
pictures P and P in Figure . Now, by (), we have

μ(P) = (a – )ean and

μ(P) = (– + b + b + · · · + b)ean +
(
 + a + a + · · · + an–

)
eaba–kb–

= (– + kb)ean +
(
 + a + a + · · · + an–

)
eaba–kb– ,

where hcf (k,n) = , but hcf (k – ,n) 
=  and k < n. For simplicity, by omitting the overlines
on the elements in the above equalities, we obtain that the second Fox ideal is generated
by the polynomial elements a–, kb– and +a+a + · · ·+an–. Now, we can reformulate
these polynomial elements as generating functions. It is clear that p(a) has the root a = .
On the other hand, since we have

p(b) = kb –  ≡ (modn) ⇒ t(kb – ) ≡ (modn)

⇒ b – t ≡ (modn)

⇒ b≡ t(modn),

p(b) has a root t, where t is the multiplicative inverse of k.
Finally, p(a) =  + a + a + · · · + an– ≡ (modn) has a root a =  modulo n which gives

() directly. �

Let us take n as an odd prime p. Then, by Proposition  and Lemma , we get an ineffi-
cient but minimal presentation. Thus we have the following corollary.

Corollary  For an odd prime p and a positive integer k < p, the presentation PG in ()
has a set of generating functions

p(a) = a – , p(b) = kb – , p(a) = φp(a) =
xp – 
x – 

,

where φp has a degree of an even number p – .

Remark  Theorem  and Corollary  imply that by choosing the efficient or inefficient
minimal presentations, we can get different constants (i.e. the cases of k in both results)
and different powers (i.e. n to be a positive integer or an odd prime) in the set of generating
functions. Therefore, the structure of the presentation (i.e. efficient or inefficient) affects
getting different types of generating functions.

The following consequence of Theorem  points out another connection between the
presentation in () as defined in either Theorem  or Corollary  and generating functions.

Corollary  The polynomial p(a) in Theorem  (or Corollary ) is actually a ‘locally con-
stant function’.

http://www.boundaryvalueproblems.com/content/2013/1/51
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Proof We recall that the family of locally constant functions [] is defined as

f (x) = ζ x and ζ n =  (n ∈ Z)

for which f ′(x) =  holds.Moreover, in themeaning of group homomorphisms, each func-
tion in this family satisfies

f : (R, +) –→ (C, ·), f (x + y) = f (x) · f (y).

Now, by replacing ζ x with

p(ζ ) =
ζ n – 
ζ – 

, ()

it is clear that we get a locally constant function, as required. �

After Theorem , Corollary  and Corollary , we can express the following connection
between the generating functions and (twisted) Bernoulli numbers.

Remark  The locally constant function corresponding to the generating function p(a)
of the presentation PG given in () is related to the twisted Bernoulli numbers and poly-
nomials. (We may refer the reader, for example, to [, , , ] for the twisted Bernoulli
numbers and polynomials.) In the next paragraph, we give a brief description.
According to [, , ], for each integer N ≥ , CpN denotes the multiplicative group of

the primitive pN th roots of unity in C∗
p =Cp – {}. Let

Tp =
{
ξ ∈Cp : ξpN = , for N ≥ 

}
=

⋃
N≥

CpN = lim
N→∞CpN .

The dual ofZp in the sense of p-adic Pontryagin duality isTp = Cp∞ , the direct limit (under
inclusion) of cyclic groups CpN of order pN withN ≥ , with discrete topology. The Tp ad-
mits a naturalZp-module structure which is written as ξ x for ξ ∈ Tp and x ∈ Zp. Moreover,
Tp can be embedded discretely in Cp as the multiplicative p-torsion subgroup. If ξ ∈ Tp,
then ω : (Zp, +) –→ (Cp, ·), x �–→ ξ x, is a locally constant character which is actually a lo-
cally analytic character if ξ ∈ {ξ ∈ Cp : vp(ξ – ) > }. Then, by [, , , , ], ωξ has
a continuation to a continuous group homomorphism from (Zp, +) to (Cp, ·). We further
remind that if ξ ∈C, then ξ will be assumed to have an rth root of unity with r ∈ Z+.

3 Themonoid case Z2 �θ2 Z

Before presenting this special case, let us first discuss a more general situation for the p-
Cockcroft property of semidirect products of monoids. In [, ], by considering a similar
version of the picture PS,x in Figure , the second author investigated the p-Cockcroft
property by using the trivializer for the semidirect product M = K �θ A, where K and
A are arbitrary monoids. (It is seen that there is a single non-spherical subpicture BS,x in
PS,x. In fact, BS,x contains only S-discs. For an illustration, see Figure .) As a special case
of it, let us assume that K is a one-relator monoid and A is an infinite cyclic monoid Z

with presentations

PK = 〈y;S+ = S–〉 and PA = 〈x; :〉,

http://www.boundaryvalueproblems.com/content/2013/1/51
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respectively. Suppose ψ is an endomorphism of K . Then the mapping x �→ ψ induces a
homomorphism θ : A → End(K), and we can form the semidirect product M = K �θ A.
By (), this product has a presentation

PM = 〈y,x;S+ = S–, t〉, ()

where, for all y ∈ y, the set t is the set of relators

Tyx : yx = x(yθx)

such that the relator S satisfies the condition ι(S+) 
= ι(S–) (or τ (S+) 
= τ (S–)). In [], the
necessary and sufficient conditions for PM to be efficient are determined.
In the special case above, let us take K as a free abelian monoid of rank two (i.e. K = Z)

presented byPK = 〈y, y; yy = yy〉, and letψ be the endomorphismψM, whereM is the
matrix

[
α α′
β β ′

]
(α,α′,β ,β ′ ∈ Z+) given by [y] �–→ [yα

 yα′
 ] and [y] �–→ [yβ

 y
β ′
 ]. As a special

case of the presentation in (), we obtain

PM =
〈
y, y,x; yy = yy, yx = xyα

 y
α′
 , yx = xyβ

 y
β ′


〉
()

for the monoid M = Z �θ Z (see []). Again, in the same reference, the second author
figured out the efficiency of the above presentation as in the following proposition.

Proposition  ([]) For any prime p, the presentationPM in () is p-Cockcroft if and only
if detM≡ (modp).

According to Proposition , in particular, PM is not efficient if detM =  or . Therefore
the following proposition is proved in the same manner.

Proposition  ([]) The presentation PM in () is minimal but inefficient if detM = .

The proof of Proposition  is based on the following Pride result, which is a monoid
version of Lemma . Although this result has not been published yet, it has been used in
many papers (see, for instance, [–]).

Lemma  (Pride) For any monoid M with a presentation P as in (), let ψ be a ring ho-
momorphism from ZM into the ring of all m×m-matrices (m≥ ) over some commutative
ring R with , and suppose ψ() = Im×m. If the second Fox ideal I(l) (P) is contained in the
kernel of ψ , then P is minimal.

From now on, by considering Propositions  and , we will reach our main aim of this
paper for monoids.
Our first result in this section gives the connection between a monoid presentation and

array polynomials. In fact the array polynomials Snk (x) are defined by means of the follow-
ing generating function:

(et – )ketx

x!
=

∞∑
n=

Snk (x)
tn

n!
,

http://www.boundaryvalueproblems.com/content/2013/1/51
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(cf. [–]). According to the same references, array polynomials can also be defined in
the form

Snk (x) =

k!

k∑
j=

(–)k–j
(
k
j

)
(x + j)n. ()

Since the coefficients of array polynomials are integers, these polynomials find a very large
application area, especially in engineering. Array polynomials are used, for instance, in
system control (cf. []).
In fact these integer coefficients give us an opportunity to use these polynomials in our

case. We should note that there also exist some other polynomials, namely Dickson, Bell,
Abel,Mittag-Leffler etc., which have integer coefficients. But, since array polynomials have
a larger application area in science, we have preferred them. Hence, by considering Propo-
sition , we obtain the following theorem as another main result.

Theorem  Let us consider the monoid M = Z �θ Z with a presentation

PM =
〈
b,b,a;bb = bb,ba = ab ,ba = abb

〉
. ()

Then PM has a set of generating functions

p(a) = Snn(a) – S(a)

p(b) = Snn(b) – S(b)

p(b) = S(b) – Snn(b)

⎫⎪⎪⎬
⎪⎪⎭
, ()

where Snk (x) is defined as in ().

Proof Let us consider the spherical picture PS,a with its non-spherical subpicture BS,a as
drawn in Figure . In fact, by [], this is the only picture in the trivializer of D(PM).
In presentation (), let us label the relators bb = bb, ba = ab and ba = abb by S,

Tb,a and Tb,a, respectively. It is clear that expS(PS,a) =  –  = –, expTb,a (PS,a) =  –  = 
and expTb,a

(PS,a) =  –  = . In the calculation of these exponent sums, we included the
exponent sums of S-discs in the non-spherical picture BS,a. Actually, a simple calculation
shows that detM = expS(BS,a) and so, by our assumption about PM that is not efficient, we
expect expS(BS,a) to be .
Now, by () and (), the evaluation of PS,a is determined as follows:

eval(l)(PS,a) = ( – a)eS + ( – b)eTb,a + (b – )eTb,a .

Therefore, by the definition, the second Fox ideal I(l) (PM) of the presentation PM in ()
is generated by the polynomial elements

 – a,  – b, b – .

For simplicity, let us replace each of a, b and b by a, b and b, respectively. In [], by
considering Lemma , it has been showed that this presentation in () is minimal.

http://www.boundaryvalueproblems.com/content/2013/1/51
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Now, by using () and keeping in our mind that the coefficients of array polynomials
are integer, we clearly have

Snk (x) =

⎧⎪⎪⎨
⎪⎪⎩
xn; k = ,

x; k =  and n = ,

; k = n or n = k = .

Then, by reformulating the elements of the second Fox ideal I(l) (PM), we arrive at the
functions in () as desired. �

By considering Proposition , if we take detM 
= , then we get an efficient presentation.
So, for an even prime p, let detM = . Then one of the presentations of the similar form
PM as in () can be taken as

PM =
〈
b,b,a;bb = bb,ba = ab ,ba = abb

〉
, ()

which will be efficient. The same procedure in the proof of Theorem  gives us the
set of generating functions of PM in () in the form p(a), p(b) and p(b), where
p(a) = Snn(a) – S(a) and the others are defined in () such that Snk (x) is given in ().
Nevertheless, by induction steps, we can generalise this last presentation as follows:

PM =
〈
b,b,a;bb = bb,ba = abdetM ,ba = abb

〉
. ()

Hence we get the following version of Theorem  which deals with efficient presenta-
tions.

Theorem Let us consider the presentationPM in () for themonoidM = Z�θ Z.Then
PM has a set of generating functions

p(a) = Snn(a) – detMS(a)

p(b) = Snn(b) – S(b)

p(b) = S(b) – Snn(b)

⎫⎪⎪⎬
⎪⎪⎭
, ()

where detM 
=  and Snk (x) is defined as in ().

Remark  According to the expression in Remark , presentations given in (), () or
() have aminimal number of generators. But we classified these presentations according
to their efficiency status separately in Theorem  and Theorem . The aim of this separa-
tion is to find a solution for a general remark depicted in the final section about obtaining
a method for a minimality test by using generating functions (see Section  below).

At this point, we should note that for t 
= t ∈ R+, λ ∈ C, k ∈ N, generalised array
type polynomials Sn

k (x; t, t;λ) which are related to the non-negative real parameters have
been recently developed and some elementary properties including recurrence relations
of these polynomials have been obtained []. In fact, by setting t = λ =  and t = e, the
equation () is obtained.

http://www.boundaryvalueproblems.com/content/2013/1/51
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Remark  One can try to study the generalisation of Theorem  by using Sn
k (x; t, t;λ).

The remaining goal of this section is to establish a connection between the presentation
PM in () or () and Stirling numbers of the second kind (cf. [, , –]). In fact, Stir-
ling numbers of the second kind S(n,k) are defined by means of the following generating
function:

(et – )k

k!
=

∞∑
n=

S(n,k)
tn

n!

(see [, ]). According to [, Theorem , Remark ], Stirling numbers can also be defined
by

S(n,k) =

k!

k∑
j=

(–)j
(
k
j

)
(k – j)n.

We remind that these numbers satisfy the well-known properties

S(n,k) =

⎧⎪⎪⎨
⎪⎪⎩
; k =  or k = n,(n

)
; k = n – ,

δn,; k = ,

where δn, denotes the Kronecker symbol (see [, ]). It is known that Stirling numbers
are used in combinatorics, in number theory, in discrete probability distributions for find-
ing higher-order moments, etc.We finally note that since S(n,k) is the number of ways to
partition a set of n objects into k groups, these numbers find an application area in com-
binatorics and in the theory of partitions.
In addition to the above formulas for S(n,k), by [, , ], we have

xn =
n∑

k=

(
x
k

)
k!S(n,k) ()

as a formula for Stirling numbers. Therefore, in equation () by replacing xwith a, b and
b, respectively, and taking n = , n = , the polynomial elements of the second Fox ideal
I(l) (PM) of the presentation PM in () can be restated as follows:

a – a =
∑

k=

(
a
k

)
k!S(,k) – 

∑
k=

(
a
k

)
k!S(,k)

b – b =
∑

k=

(
b
k

)
k!S(,k) –

∑
k=

(
b
k

)
k!S(,k)

b – b =
∑

k=

(
b
k

)
k!S(,k) –

∑
k=

(
b
k

)
k!S(,k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. ()

As a different version of Theorem , we express the following corollary.

Corollary  The presentation PM in () has a set of generating functions in terms of Stir-
ling numbers as given in ().
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We note that the above corollary can also be stated for the presentation PM in ().
Furthermore, in a recent work, Simsek [] has constructed the generalised λ-Stirling

numbers of the second kind S(n, v;a,b;λ) related to non-negative real parameters (a,b ∈
R+, a 
= b, λ is a complex number and v ∈ N). In fact, this new generalisation is defined
by the generating function

fS,v(t;a,b;λ) =
(λbt – at)v

v!
=

∞∑
n=

S(n, v;a,b;λ) t
n

n!
. ()

By setting a =  and b = e in (), one can obtain the λ-Stirling numbers of the second kind
S(n, v;λ) which are defined by the generating function

(λet – )v

v!
=

∞∑
n=

S(n, v;λ)
tn

n!

(see [, ]). By substituting λ =  into the above equation, the Stirling numbers of the
second kind S(n, v)are obtained.
By considering this new generalisation S(n, v;a,b;λ), in [, Theorem ], it has been

obtained that

S(n, v;a,b;λ) = 
v!

n∑
j=

(–)j
(
v
j

)
λv–j(j lna + (v – j) lnb

)n, ()

for λ-Stirling numbers of the second kind. In fact, by setting a =  and b = e in (), one
can get the following equality on λ-Stirling numbers:

S(n, v;λ) =

v!

v∑
j=

(
v
j

)
λ(v–j)(–)j(v – j)n ()

(see [, ]).
Hence we can present the following notes about this section:

Remark  It is clearly seen that in Theorems ,  and Corollary , only Stirling numbers
are considered. However, one can also study the λ-Stirling numbers S(n, v;λ) defined in
() and generalised λ-Stirling numbers S(n, v;a,b;λ) defined in () as stated in these
theorems and corollaries.

Remark  For a suitable Mn×n matrix, it is possible to define the presentation PM in ()
(or in ()) for the monoid Zn�θ Z. Thus one can try to transform all studies in Section 
to this general case.

4 Final remarks
In this section we will express some other remarks depicted in the previous sections. We
hope that the following material will be used as new study areas:
- The first general note would be as follows. The studies here can be thought of as the
initial step of a general idea, namely constructing a new method (or a test) for the
minimality (while the inefficiency holds) of group (in Section ) and monoid (in
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Section ) presentations other than the methods presented in Lemma  and Lemma ,
respectively. Especially for the monoid case, although Lemma  has not been
published, the theory of it has been used widely in last ten years. Therefore, by using
generating functions, to obtain a new test on the minimality of monoids would be an
interesting and important result.

- As we noted in Remark , to study with the minimal presentations has an advantage
for our aim in this paper. Conversely, the use of generating functions to obtain a
presentation with a minimal number of generators is still an open question.

- Until now, any result to check whether a semigroup presentation is minimal while it is
inefficient has not been published. Therefore the whole idea of this paper can also be
used for this case.

- It is known that the chemical energy is one of most important application areas of
graph theory (cf. []). So, as a next step of the expressions in Remark , it is worth
studying whether this chemical energy can also be obtained from pictures.

- We believe that the same approximation between presentations and generating
functions as done in this paper can also be applied to some other special cases of
groups and monoids other than Zn �θ Z and Z �θ Z. Moreover, one can investigate
which type of polynomials (other than depicted in here) can be used for the general
case.

- Here we used exponent sums of pictures as a method to obtain constants of functions.
What other methods other than this geometric way can be used could be studied.
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