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Abstract
For a constructive analysis of the periodic boundary value problem for systems of
non-linear non-autonomous ordinary differential equations, a numerical-analytic
approach is developed, which allows one to both study the solvability and construct
approximations to the solution. An interval halving technique, by using which one
can weaken significantly the conditions required to guarantee the convergence, is
introduced. The main assumption on the equation is that the non-linearity is locally
Lipschitzian.
An existence theorem based on properties of approximations is proved. A relation

to Mawhin’s continuation theorem is indicated.
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Introduction
In this paper, we shall develop a numerical-analytic approach to the analysis of periodic
solutions of systems of non-autonomous ordinary differential equations using the idea
introduced in []. The method is numerical-analytic in the sense that its realisation con-
sists of two stages concerning, respectively, an explicit construction of certain equations
and their numerical analysis and is close in the spirit to the Lyapunov-Schmidt reductions
[, ]. However, neither a small parameter nor an implicit function argument is used.
We focus on numerical-analytic schemes based upon successive approximations. In the

context of the theory of non-linear oscillations, such types of methods were apparently
first developed in [–]. We refer the reader to [–] for the related bibliography.
For a boundary value problem, the numerical-analytic approach usually replaces the

problem by a family of initial value problems for a suitably perturbed system containing a
vector parameter whichmost often has themeaning of the initial value of the solution. The
solution of the Cauchy problem for the perturbed system is sought for in an analytic form
by successive approximations, whereas the numerical value of the parameter is determined
later from the so-called determining equations.
In order to guarantee the convergence, a kind of the Lipschitz condition is usually as-

sumed [–] and a smallness restriction of the type

r(K) ≤ qT (.)
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is imposed, where K is the Lipschitz matrix and qT depends on the period T . The im-
provement of condition (.) consists in maximising the value of the constant qT .
In this paper, which is a continuation of [], we provide a constructive approach to the

study of solvability of the periodic problem (.), (.), where the analysis of convergence
uses the interval halving technique. We shall see that, under fairly general assumptions,
this idea allows one to replace (.) by the weaker condition

r(K) ≤ qT (.)

and, thus, significantly improve the convergence conditions established, in particular, in
[–, ]. The restriction imposed on the width of the domain is likewise improved. Fi-
nally, an existence theorem based upon the properties of approximate solutions is proved.
The proofs use a number of technical facts from [], which are stated in the course of
exposition when appropriate.

1 Problem setting and basic assumptions
The method that we are interested in deals with T-periodic solutions of a system of non-
linear ordinary differential equations

u′(t) = f
(
t,u(t)

)
, t ∈ (–∞,∞), (.)

where f :Rn+ →R
n is a continuous function such that

f (t, z) = f (t + T , z) (.)

for all z ∈R
n and t ∈ (–∞,∞). Here, T is a given positive number.We restrict ourselves to

considering continuously differentiable solutions of system (.) and, furthermore, instead
of T-periodic solutions of (.), we shall always deal with the solutions u : [,T] → R

n of
the corresponding periodic boundary value problem on the bounded interval [,T],

u′(t) = f
(
t,u(t)

)
, t ∈ [,T], (.)

u() = u(T). (.)

The passage to problem (.), (.) is justified by assumption (.).
Our main assumption is that f : [,T] × R

n → R
n is Lipschitzian with respect to the

space variable in a certain bounded set D, which is the closure of a bounded and con-
nected domain inRn. For the sake of simplicity, we assume that there exists a non-negative
constant square matrix K of dimension n such that

∣∣f (t,x) – f (t,x)
∣∣ ≤ K |x – x| (.)

for all {x,x} ⊂D and t ∈ [,T].
Here and below, the obvious notation |x| = col(|x|, |x|, . . . , |xn|) is used, and the inequal-

ities between vectors are understood componentwise. The same convention is adopted
implicitly for the operations ‘max’ and ‘min’ so that, e.g., max{h(z) : z ∈ Q} for any h =
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(hi)ni= :Q → R
n, where Q ⊂ R

m, m ≤ n, is defined as the column vector with the compo-
nents max{hi(z) : z ∈Q}, i = , , . . . ,n.

2 Notation and symbols
We fix an n ∈N and a bounded setD ⊂R

n. The following symbols are used in the sequel:
. n is the unit matrix of dimension n.
. r(K) is the maximal, in modulus, eigenvalue of a matrix K .
. Given a closed interval J ⊆R, we define the vector δJ ,D(f ) by setting

δJ ,D(f ) := max
(t,z)∈J×D

f (t, z) – min
(t,z)∈J×D

f (t, z). (.)

. ek , k = , , . . . ,n: see (.).
. ∂� is the boundary of a domain �.
. �S : see Definition ..
The notion of a set D(r) associated with D, which could have been called an inner r-

neighbourhood of D, will often be used in what follows.

Definition . For any non-negative vector r ∈R
n, we put

D(r) :=
{
z ∈D : B(z, r) ⊂D

}
, (.)

where

B(z, r) :=
{
ξ ∈R

n : |ξ – z| ≤ r
}
. (.)

One of the assumptions to be used belowmeans that the inner r-neighbourhood of D is
non-empty for r sufficiently large.
Finally, let the positive number �∗ be determined by the equality

�–
∗ = inf

{
q >  : q– =

∫ 



exp

(
τ (τ – )q

)
dτ

}
. (.)

We refer, e.g., to [, ] for the discussion of other ways of introducing the constant �∗
and for its meaning. What is important for us here is that �∗ is the constant appearing in
Lemma .. One can show by computation that

�∗ ≈ .. (.)

3 p-periodic successive approximations
The method suggested by Samoilenko in [, ], originally called numerical-analytic
method for the investigation of periodic solutions, was also referred to later as the method
of periodic successive approximations [–]. Its scheme, which is described in a suitable
for us form by Propositions . and . below, is quite simple and deals with the investi-
gation of the parametrised equation

u(t) = z +
∫ t


f
(
s,u(s)

)
ds –

t
T

∫ T


f
(
s,u(s)

)
ds, t ∈ [,T], (.)
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where z ∈D is a parameter to be chosen later. For convenience of reference, we formulate
the statements for the p-periodic problem

u′(t) = g
(
t,u(t)

)
, t ∈ [t, t + p], (.)

u(t) = u(t + p), (.)

where g : [t, t + p]×R
n →R

n and t ∈ (–∞,∞) is arbitrary but fixed.
Following [], we now describe the original, unmodified, periodic successive approxi-

mations scheme for the p-periodic problem (.), (.) which we are going to modify and
which is constructed as follows. With problem (.), (.), one associates the sequence of
functions um(·, z),m ≥ , defined according to the rule

u(t, z) := z,

um(t, z) := z +
∫ t

t
g
(
s,um–(s, z)

)
ds –

t – t
p

∫ t+p

t
g
(
s,um–(s, z)

)
ds

(.)

for t ∈ [t, t + p] and m = , , . . . , where the vector z = col(z, z, . . . , zn) is regarded as a
parameter, the value of which is to be determined later.

Proposition . ([, Theorem.]) Let the function f satisfy the Lipschitz condition (.)
with a matrix K for which the inequality

r(K) <


p�∗
(.)

holds and,moreover,

D
(
p


δ[t,t+p],D(g)
)

�=∅. (.)

Then, for any fixed z ∈D( pδ[t,t+p],D(g)), the following assertions are true:
. Sequence (.) converges to a limit function

u∞(t, z) = lim
m→∞um(t, z) (.)

uniformly in t ∈ [t, t + p].
. The limit function (.) satisfies the p-periodic boundary conditions

u∞(t, z) = u∞(t + p, z).

. The function u∞(·, z) is the unique solution of the Cauchy problem

u′(t) = g
(
t,u(t)

)
– p–�(z), t ∈ [t, t + p], (.)

u(t) = z, (.)

where

�(z) :=
∫ t+p

t
g
(
τ ,u∞(τ , z)

)
dτ . (.)
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. Given an arbitrarily small positive ε, one can choose a number mε ≥  such that the
estimate

∣∣um(t, z) – u∞(t, z)
∣∣ ≤ 


αmε (t)K

mε–(�εpK)m–mε+(n – �εpK)–δ[t,t+p],D(g)

holds for all t ∈ [t, t + p] andm ≥ mε , where

�ε := �∗ + ε. (.)

Recall that, according to (.), condition (.) means the non-emptiness of the inner
p
δ[t,t+p],D(g)-neighbourhood of the set D, where δ[t,t+p],D(g) is the vector given by for-
mula (.). This agrees with the natural supposition that, for an approximation technique
to be applicable, the domain where the Lipschitz condition is assumed should be wide
enough.
The proof of Proposition . is based on Lemma . formulated below, which provides

an estimate for the sequence of functions αm,m ≥ , given by the formula

αm(t) :=
(
 –

t – t
p

)∫ t

t
αm–(s)ds +

t – t
p

∫ t+p

t
αm–(s)ds, (.)

where m ≥  and α(t) := , t ∈ [t, t + p]. We provide the formulation here for a clearer
understanding of the constants appearing in the estimates.

Lemma . ([, Lemma ]) For any ε ∈ (, +∞), one can specify an integer mε ≥  such
that

αm+(t)≤ p(�∗ + ε)αm(t) (.)

for all t ∈ [t, t + p] and m ≥ mε .

It should be noted that estimate (.) is optimal in the sense that ε can never be put
equal to zero.

Remark . It follows from [, Lemma ] that if ε ≥ ε, where

ε :=



– �* ≈ ., (.)

thenmε =  in Lemma . (here, of course, we think ofmε as of the least integer possessing
the property indicated).

The assertion of Proposition . suggests a natural way to establish a relation between
the p-periodic solutions of the given equation (.) and those of the perturbed equation
(.) (or, equivalently, solutions of the initial value problem (.), (.)). Indeed, it turns
out that, by choosing the value of z appropriately, one can use function (.) to construct
a solution of the original periodic boundary value problem (.), (.).

Proposition . ([, ]) Let the assumptions of Proposition . hold. Then:

http://www.boundaryvalueproblems.com/content/2013/1/57
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. Given a z ∈ D( pδ[t,t+p],D(g)), the function u∞(·, z) is a solution of the p-periodic
boundary value problem (.), (.) if and only if z is a root of the equation

�(z) = . (.)

. For any solution u(·) of problem (.), (.) with u(t) ∈D( pδ[t,t+p],D(g)), there exists
a z such that u(·) = u∞(·, z).

The important assertion ()means that equation (.), usually referred to as adetermin-
ing equation, allows one to track all the solutions of the periodic boundary value problem
(.), (.). In such a manner, the original infinite-dimensional problem is reduced to a
system of n numerical equations.
The method thus consists of two parts, namely, the analytic part, when the integral

equation (.) is dealt with by using themethod of successive approximations (.), and the
numerical one, which consists in finding a value of the unknown parameter from equation
(.). This closely correlates with the idea of the Lyapunov-Schmidt reduction [, ].
Themain obstacle for an efficient application of Proposition . is due to the fact that the

functionu∞(·, z), z ∈D( pδ[t,t+p],D(g)) and, therefore, themapping� :D( pδ[t,t+p],D(g)) →
R

n are explicitly unknown. Nevertheless, it is possible to prove the existence of a solution
on the basis of the properties of a certain iteration um(·, z) which is constructed explicitly
for a certain fixedm. For this purpose, one studies the approximate determining system

�m(z) = , (.)

where �m :D( pδ[t,t+p],D(g)) →R
n is defined by the formula

�m(z) :=
∫ t+p

t
g
(
s,um(s, z)

)
ds

for z ∈ D( pδ[t,t+p],D(g)). This topic is discussed in detail, in particular, in [], whereas a
theorem of the kind specified, which corresponds to the scheme developed here, is proved
in Section . Our main goal is to obtain a solvability theorem under assumptions weaker
than those that would be needed when applying Proposition ..
Indeed, in view of (.), assumption (.), which is essential for the proof of the uniform

convergence of sequence (.), can be rewritten in the form

r(K) < p–. . . . . (.)

Inequality (.) can be treated either as a kind of upper bound for the Lipschitz matrix or
as a smallness assumption on the period p, the latter interpretation presenting the scheme
as particularly appropriate for the study of high-frequency oscillations.
Without assumption (.), Lemma . does not guarantee the convergence of sequence

(.) when applied directly along the lines of the proof of Proposition .. Nevertheless,
it turns out that this limitation can be overcome and, by using a suitable parametrisation
and modifying the scheme appropriately, one can always weaken the smallness condition
(.) so that the constant on its right-hand side is doubled:

r(K) <

p�∗

. (.)
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Note also that, although we have in mind to weaken mainly the smallness condition
(.) guaranteeing the convergence of iterations, it turns out that the techniques sug-
gested here for this purpose allow us to obtain a considerable improvement of condition
(.) as well (Corollary .).
Moreover, we shall see that, under the weaker condition (.), themodified scheme can

be used to prove the existence of a periodic solution on the basis of results of computation
(Theorem .).

4 Interval halving, parametrisation and gluing
We should like to show that the approach described by Proposition . can also be used
in the cases where the smallness condition (.), which guarantees the convergence, is
violated. For this purpose, a natural trick based on the interval halving can be used, where
the unmodified scheme, in a sense, should work twice. However, some care should be
taken on the boundary conditions.
Indeed, from the first glance, one is tempted to implement halving in the sense that

the original scheme should be applied for each of the resulting half-intervals, and thus
sequence (.) would be constructed twice for problem (.), (.) with t = , p = 

T , g =
f |[, T]×Rn and t = 

T , p =

T , g = f |[ T ,T]×Rn , respectively. This is impossible, however,

because the boundary conditions on the half-intervals, with trivial exceptions, are never

T-periodic.
The correct halving scheme is obtained when, along with the periodic boundary value

problem (.), (.), we consider two auxiliary problems

x′(t) = f
(
t,x(t)

)
, t ∈

[
,



T

]
, (.)

x
(
T


)
– x() = λ (.)

and

y′(t) = f
(
t, y(t)

)
, t ∈

[


T ,T

]
, (.)

y(T) – y
(
T


)
= –λ, (.)

where λ = col(λ, . . . ,λn) is a free parameter, the value of which is to be determined suit-
ably from the argument related to gluing. The mutual disposition of the graphs of x and y
satisfying, respectively, problems (.), (.) and (.), (.) is as shown on Figure .
Our further reasoning related to problem (.), (.) uses the following simple observa-

tion. Let us put

χT (t) :=

⎧⎨
⎩ for  ≤ t < 

T ,

 for 
T ≤ t ≤ T .

(.)

http://www.boundaryvalueproblems.com/content/2013/1/57
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Figure 1 Solutions of auxiliary problems on half-intervals. Possible solutions of the auxiliary two-point
problems (4.1), (4.2) and (4.3), (4.4) for arbitrary λ. The gluing means that, in case of solvability, λ is chosen so
that (4.9) holds.

Proposition . ([]) Let x : [, T] → R
n and y : [ T ,T] → R

n be solutions of problems
(.), (.) and (.), (.), respectively, with a certain value of λ ∈ R

n. Then the function

u(t) := χT (t)x(t) +
(
 – χT (t)

)(
y(t) – y

(
T


)
+ x

(
T


))
, t ∈ [,T], (.)

is a solution of the periodic problem boundary value problem (.) for the equation

u′(t) = f
(
t,u(t) +

(
 – χT (t)

)(
y
(
T


)
– x

(
T


)))
, t ∈ [,T]. (.)

Conversely, if a certain function u : [,T] → R
n is a solution of problem (.), (.), then

its restrictions x := u|[, T] and y := u|[ T ,T] to the corresponding intervals satisfy, respec-
tively, problems (.), (.) and (.), (.).

Remark . A solution of the functional differential equation (.) is understood in the
Carathéodory sense, and a jump of u′ at 

T is allowed. Note that function (.) is always
continuous at 

T .

The idea of Proposition . is, in fact, to rewrite the periodic boundary condition (.)
in the form

u() – u
(
T


)
+ u

(
T


)
– u(T) = , (.)

which naturally leads us to the introduction of the parameter λ.

http://www.boundaryvalueproblems.com/content/2013/1/57
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Proposition . allows one to treat the T-periodic problem (.), (.) as a kind of join
of two independent two-point problems (.), (.) and (.), (.). Solving them inde-
pendently and considering λ as an unknown parameter, one can then try to ‘glue’ their
solutions together by choosing the value of λ so that (.) holds. The possibility of this
gluing is equivalent to the solvability of the original problem. A rigorous formulation is
contained in the following

Proposition . ([]) Assume that x : [, T] →R
n and y : [ T ,T] → R

n are solutions of
problems (.), (.) and (.), (.), respectively, for a certain value of λ ∈ R

n. Then the
function u : [,T] → R

n given by formula (.) is a solution of problem (.), (.) if and
only if the equality

x
(
T


)
= y

(
T


)
(.)

holds.
Conversely, if a certain u : [,T]→R

n is a solution of problem (.), (.), then the func-
tions x := u|[, T] and y := u|[ T ,T] satisfy, respectively, problems (.), (.) and (.), (.).

Introduce the functions ᾱm : [, T] → [, +∞) and ¯̄αm : [ T ,T] → [, +∞), m ≥ , by
putting ᾱ ≡ , ¯̄α ≡ ,

ᾱm+(t) :=
(
 –

t
T

)∫ t


ᾱm(s)ds +

t
T

∫ 
T

t
ᾱm(s)ds (.)

for t ∈ [, T], and

¯̄αm+(t) := 
(
 –

t
T

)∫ t


T

¯̄αm(s)ds +
(
t
T

– 
)∫ T

t
¯̄αm(s)ds (.)

for t ∈ [ T ,T]. In particular, we have

ᾱ(t) = t
(
 –

t
T

)
, t ∈

[
,



T

]
, (.)

and

¯̄α(t) = 
(
 –

t
T

)
(t – T), t ∈

[


T ,T

]
. (.)

Functions (.) and (.), which are, in fact, appropriately scaled versions of (.), are
involved in the estimates given in the sequel.

5 Iterations on half-intervals
As Proposition . suggests, our approach to the T-periodic problem (.), (.) requires
that we first study the auxiliary problems (.), (.) and (.), (.) separately, for which
purpose appropriate iteration processes will be introduced. Let us start by considering
problem (.), (.). Following [], we set

X(t, ξ ,λ) := ξ +
t
T

λ, t ∈
[
,



T

]
, (.)
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and define the recurrence sequence of functions Xm : [, T]×R
n →R

n,m = , , . . . , by
putting

Xm(t, ξ ,λ) :=
∫ t


f
(
s,Xm–(s, ξ ,λ)

)
ds –

t
T

∫ T



f
(
s,Xm–(s, ξ ,λ)

)
ds + ξ +

t
T

λ,

t ∈
[
,



T

]
, (.)

for all m = , , . . . , ξ ∈ R
n and λ ∈ R

n. In a similar manner, for the parametrised problem
(.), (.) on the interval [ T ,T], we introduce the sequence of functions Ym : [ T ,T]×
R

n →R
n,m ≥ , according to the formulae

Y(t,η,λ) := η +
(
 –

t
T

)
λ, (.)

Ym(t,η,λ) :=
∫ t

T


f
(
s,Ym–(s,η,λ)

)
ds –

(
t
T

– 
)∫ T

T


f
(
s,Ym–(s,η,λ)

)
ds

+ η +
(
 –

t
T

)
λ, t ∈

[


T ,T

]
, (.)

for all η and λ from R
n.

The recurrence sequences determined by equalities (.), (.) and (.), (.) arise in a
natural way when boundary value problems of type (.), (.) and (.), (.) are consid-
ered. It is not difficult to verify that formulae (.), (.) and (.), (.) are particular cases
of those corresponding the iteration scheme for two-point boundary value problems (see,
e.g., []).One can also derive these formulae directly fromProposition . by carrying out,
respectively, the substitutions x(t) = u(t)–tT–λ, t ∈ [, T], and y(t) = u(t)+(tT– –)λ,
t ∈ [ T ,T], after which one arrives at parametrised 

T-periodic boundary value problems
on the corresponding half-intervals.
It is important to note that all the members of the sequences Xm(·, ξ ,λ), m ≥ , and

Ym(·, ξ ,λ),m ≥ , satisfy, respectively, conditions (.) and (.).

Lemma . For any {ξ ,η,λ} ⊂ R
n and m ≥ , the functions Xm(·, ξ ,λ) and Ym(·,η,λ) sat-

isfy the boundary conditions

Xm

(
T

, ξ ,λ

)
–Xm(, ξ ,λ) = λ, (.)

Ym(T ,η,λ) – Ym

(
T

,η,λ

)
= –λ. (.)

Now recall that the vector λ, which is involved in all the above-stated relations, is the
‘gluing’ parameter determining the pair of auxiliary boundary value problems (.), (.)
and (.), (.), for which a continuous join described by Proposition . is possible. In
this relation, the following property is important.

Lemma . Let m ≥  be arbitrary. Then the equality

Xm

(
T

, ξ ,λ

)
= Ym

(
T

,η,λ

)
(.)
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holds if and only if

λ = η – ξ . (.)

Proof Indeed, it follows directly from (.) and (.) that X( T , ξ ,λ) = ξ + λ and
Y( T ,η,λ) = η, whence the assertion is obvious for m = . Similarly, if m ≥ , then, ac-
cording to (.) and (.), we have Xm( T , ξ ,λ) = ξ + λ and Ym( T ,η,λ) = η and, conse-
quently, relation (.) is equivalent to (.) for anym. �

6 Successive approximations and their convergence
Let us now pass to the construction of the iteration scheme for the original T-periodic
problem (.), (.). The sequencesXm : [, T]×R

n →R
n and Ym : [ T ,T]×R

n →R
n,

m ≥ , from the preceding section will be used for this purpose. We shall see that, for this
purpose, the graphs of the respective members of the last named sequences should be
glued together in the sense of Lemma .. Namely, we put

xm(t, ξ ,η) := Xm(t, ξ ,η – ξ ), (.)

ym(t, ξ ,η) := Ym(t,η,η – ξ ) (.)

for any m = , , . . . . Functions (.) and (.) will be considered only for those values of
ξ and η that are located, in a sense, sufficiently far from the boundary of the domain D.
More precisely, we consider (ξ ,η) from the set GD(r), which, for any non-negative vector
r, is defined by the equality

GD(r) :=
{
(ξ ,η) ∈ D : B

(
( – θ )ξ + θη, r

) ⊂D for all θ ∈ [, ]
}
. (.)

Recall that we use notation (.). In other words, a couple of vectors (ξ ,η) belongs to
GD(r) if and only if every convex combination of ξ and η lies in D together with its r-
neighbourhood. The inclusion (ξ ,η) ∈ GD(r) implies, in particular, that B(ξ , r) ⊂ D and
B(η, r) ⊂ D, i.e., the vectors ξ and η both belong to the set D(r) defined by formula (.).
It is also obvious from (.) that GD(r) ⊂D for any r.
The following statement shows that sequence (.) is uniformly convergent and its limit

is a solution of a certain perturbed problem for all (ξ ,η) which are admissible in the sense
that (ξ ,η) ∈GD(r) with r sufficiently large.

Theorem . Let the vector-function f : [,T] × D → R
n satisfy the Lipschitz condition

(.) on the set D with a matrix K such that

r(K) <


T�∗
. (.)

Moreover, assume that

GD

(
T


δ[, T],D
(f )

)
�=∅. (.)

Then, for an arbitrary pair of vectors (ξ ,η) ∈GD(T δ[, T],D
(f )):

http://www.boundaryvalueproblems.com/content/2013/1/57
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. The uniform, in t ∈ [, T], limit

lim
m→∞xm(t, ξ ,η) =: x∞(t, ξ ,η) (.)

exists and,moreover,

x∞
(
T

, ξ ,η

)
– x∞(, ξ ,η) = η – ξ . (.)

. The function x∞(·, ξ ,η) is the unique solution of the Cauchy problem

x′(t) = f
(
t,x(t)

)
+ T–�(ξ ,η), (.)

x() = ξ , (.)

where

�(ξ ,η) := η – ξ –
∫ T




f
(
τ ,x∞(τ , ξ ,η)

)
dτ . (.)

. Given an arbitrarily small positive ε, one can specify a number mε ≥  such that

∣∣xm(·, ξ ,η) – x∞(·, ξ ,η)∣∣
≤ 


ᾱmε (t)K

mε–
(


T�εK

)m–mε+(
n –



T�εK

)–

δ[, T],D
(f ) (.)

for all t ∈ [, T] andm ≥ mε , where �ε is given by (.).

Recall that the constant �∗ involved in condition (.) is given by equality (.), while
the vector δ[, T],D

(f ) arising in (.) is defined according to (.).

Remark . The error estimate (.) may look inconvenient because it is guaranteed
starting from a sufficiently large iteration number,mε , depending on the value of ε which
can be arbitrarily small. It is, however, quite transparent when the required constant is not
‘too close’ to �* (i.e., if ε is not ‘too small’). More precisely, in view of Remark ., mε = 
for ε ≥ ε, where

ε ≈ .

is given by formula (.). Consequently, inequality (.) with ε ≥ ε holds for an arbitrary
value ofm ≥ .

By analogy with Theorem ., under similar conditions, we can establish the uniform
convergence of sequence (.). Namely, the following statement holds.

Theorem. Assume that the vector-function f satisfies conditions (.), (.) and,more-
over,

GD

(
T


δ[ T ,T],D
(f )

)
�=∅. (.)
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Then, for all fixed (ξ ,η) ∈GD(T δ[ T ,T],D
(f )):

. The uniform, in t ∈ [ T ,T], limit

lim
m→∞ ym(t, ξ ,η) =: y∞(t, ξ ,η) (.)

exists and,moreover,

y∞(T , ξ ,η) – y∞
(
T

, ξ ,η

)
= ξ – η. (.)

. The function y∞(·, ξ ,η) is the unique solution of the Cauchy problem

y′(t) = f
(
t, y(t)

)
+ T–H(ξ ,η), (.)

y
(
T


)
= η, (.)

where

H(ξ ,η) := ξ – η –
∫ T

T


f
(
τ , y∞(τ , ξ ,η)

)
dτ . (.)

. For an arbitrarily small positive ε, one can find a number mε ≥  such that

∣∣ym(·, ξ ,η) – y∞(t, ξ ,η)
∣∣

≤ 


¯̄αmε (t)K
mε–

(


T�εK

)m–mε+(
n –



T�εK

)–

δ[ T ,T],D
(f ) (.)

for all t ∈ [ T ,T] andm ≥ mε , where �ε is given by (.).

Remark . Similarly to Remark ., one can conclude that the validity of estimate (.)
is ensured for all m ≥  provided that ε ≥ ε with ε given by formula (.).

Theorems . and . are improved versions of Theorems  and  from [], and their
proofs follow the lines of those given therein. The main difference here is the use of
Lemma . in order to guarantee that the values of the iterations do not escape from D.
The rest of the argument is pretty similar to that of [], and we omit it.
Note that the assumptions of Theorems . and . differ from each other in conditions

(.) and (.) only. Therefore, by putting

rD(f ) :=
T

max

{
δ[, T],D

(f ), δ[ T ,T],D(f )
}
, (.)

we arrive immediately at the following statement summarising the last two theorems.

Theorem . Assume that the function f satisfies the Lipschitz condition (.) in D with
K satisfying relation (.) and,moreover, D is such that

GD
(
rD(f )

) �=∅. (.)

Then, for any (ξ ,η) ∈GD(rD(f )), the assertions of Theorems . and . hold.

http://www.boundaryvalueproblems.com/content/2013/1/57
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Figure 2 The set D(rD(f )). A schematic picture of the set D(rD(f )) appearing in condition (6.22) with rD(f )
given by equality (6.19).

Recall thatD is themain domainwhere the Lipschitz condition (.) is assumed, whereas
GD(rD(f )) is the subset of D defined according to (.). The latter set is, in a sense, a two-
dimensional analogue of D(rD(f )) and, as has already been noted above, the inclusion

GD
(
rD(f )

) ⊂D
(
rD(f )

) ×D
(
rD(f )

)
(.)

is true. By virtue of (.), assumption (.) implies in particular that

D
(
rD(f )

) �=∅, (.)

which is a condition of type (.) appearing in Proposition . (see Figure ). It turns out
that, in the case of a convex domain, condition (.) can always be replaced by (.).
Indeed, the following statement holds.

Lemma . If the domain D is convex, then the corresponding set GD(rD(f )) has the form

GD
(
rD(f )

)
=D

(
rD(f )

) ×D
(
rD(f )

)
.

Proof In view of (.), it is sufficient to show that

GD
(
rD(f )

) ⊃D
(
rD(f )

) ×D
(
rD(f )

)
. (.)

Indeed, let us put r := rD(f ) (the assertion is, of course, true for any non-negative vec-
tor r, but the present formulation is sufficient for our purposes) and assume that, on the
contrary, inclusion (.) does not hold. Then one can specify some ξ and η such that

{ξ ,η} ⊂D(r), (.)

(ξ ,η) �∈GD(r). (.)

http://www.boundaryvalueproblems.com/content/2013/1/57
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According to definition (.), relation (.) means the existence of certain θ ∈ [, ] and
z ∈R

n such that

z ∈ B
(
( – θ)ξ + θη, r

) \D. (.)

Let us put h := z – ( – θ)ξ – θη. Then, in view of (.), we have

|h| ≤ r. (.)

Furthermore, it is obvious that

( – θ)(ξ + h) + θ(η + h) = z (.)

and, consequently, z is a convex combination of ξ + h and η + h. By virtue of (.), (.)
and (.), both vectors ξ +h and η+h belong toD and, therefore, so does z because (.)
holds and the set D is convex. However, this contradicts relation (.). Thus, inclusion
(.) holds, and our lemma is proved. �

By virtue of Lemma ., the assertion of Theorem . for f Lipschitzian in a convex
domain can be reformulated as follows.

Corollary . Let f satisfy conditions (.) and (.). If,moreover, the domain D is convex
and (.) holds, then, for any ξ and η from D(rD(f )), all the assertions of Theorems .
and . hold.

The convexity assumption on D is rather natural and, in fact, the domain where the
Lipschitz condition for the non-linearity is verified most frequently has the form of a ball
(in our case, where the inequalities between vectors are understood componentwise, it is
an n-dimensional rectangular parallelepiped).
We note that the smallness assumption (.), which guarantees the convergence of iter-

ations in Corollary ., is twice as weak as the corresponding condition (.) of Proposi-
tion .:

r(K) <


T�∗
. (.)

Furthermore, it is rather interesting to observe that the condition on inner neighbour-
hoods also becomes less restrictive after the interval halving has been carried out. Indeed,
it is clear from (.) and (.) that, for condition (.) of Corollary . to be satisfied, it
would be sufficient if

D
(
T


δ[,T],D(f )
)

�=∅, (.)

whereas, at the same time, assumption (.) of Proposition . would require the relation

D
(
T


δ[,T],D(f )
)

�=∅. (.)
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The radius of the inner neighbourhood in (.) is less by half. Comparing (.) and (.)
with the corresponding conditions (.) and (.) arising in Proposition ., we conclude
that the idea of interval halving described above thus allows us to improve the original
scheme of periodic successive approximations in both directions.
Theorem . suggests that the iteration sequences (.) and (.) can be used to con-

struct the solutions of auxiliary problems (.), (.) and (.), (.) and ultimately of the
original problem (.), (.). A further analysis, which will lead us to an existence theorem,
involves determining equations. Before continuing, we give some auxiliary statements.

7 Auxiliary statements
Several technical lemmata given below are needed in the proof of Theorems . and ..
We implicitly assume in the formulations that condition (.) is satisfied.
Given arbitrary i ∈ {, } and v ∈ C([  iT ,


 (i + )T],Rn), put

(Piv)(t) :=
∫ t

i
T

v(s)ds –
(
t
T

– i
)∫ i+

 T

i
T

v(s)ds (.)

for all t ∈ [  iT ,

 (i + )T]. The linear mapping Pi, which obviously transforms the space

C([  iT ,

 (i + )T],Rn) to itself, is in fact a scaled version of the corresponding projection

operator used rather frequently in studies of the periodic boundary problem (see, e.g.,
[]). In our case, properties of this mapping are used when estimating the values of the
Nemytskii operator generated by the function f involved in equation (.).

Lemma . Let x : [, T] → R
n and y : [ T ,T] → R

n be arbitrary functions such that
{x(t) : t ∈ [, T]} ⊂ D and {y(t) : t ∈ [ T ,T]} ⊂ D. Then:
. For t ∈ [, T],

∣∣Pf
(·,x(·))∣∣(t) ≤ 


ᾱ(t)δ[, T],D(f )

≤ T


δ[, T],D
(f ). (.)

. For t ∈ [ T ,T],

∣∣Pf
(·, y(·))∣∣(t)≤ 


¯̄α(t)δ[ T ,T],D(f )

≤ T


δ[ T ,T],D
(f ). (.)

Recall that ᾱ and ¯̄α are functions (.), (.), and the vectors δ[, T],D
(f ), δ[ T ,T],D(f )

are defined according to (.). The proof of Lemma . is almost a literal repetition of that
of [, Lemma ] and uses the estimate obtained in [, Lemma ].

Lemma . For arbitrary m ≥  and (ξ ,η) ∈GD(rD(f )), the inclusions

{
xm(t, ξ ,η) : t ∈

[
,



T

]}
⊂D (.)
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and {
ym(t, ξ ,η) : t ∈

[


T ,T

]}
⊂D (.)

hold.

Proof Let us fix an arbitrary pair of vectors

(ξ ,η) ∈GD
(
rD(f )

)
(.)

and prove, e.g., relation (.). We shall argue by induction. Indeed, in view of (.),

X(t, ξ ,η – ξ ) = ξ +
t
T
(η – ξ ) =

(
 –

t
T

)
ξ +

t
T

η (.)

for t ∈ [, T]. This means that, at every point t from [, T], the value of x(t, ξ ,η) is a
convex combination of ξ and η. Recalling definition (.) of the set GD(rD(f )) and using
assumption (.), we conclude that all the values of the function X(·, ξ ,η– ξ ) lie in D, i.e.,
(.) holds withm = .
Assume now that{

Xm(t, ξ ,η – ξ ) : t ∈
[
,



T

]}
⊂D (.)

for a certain value ofm and show that the inclusion{
Xm+(t, ξ ,η – ξ ) : t ∈

[
,



T

]}
⊂D (.)

holds as well. Indeed, considering (.) and recalling notation (.), we conclude that, for
allm, the identity

Pf
(·,Xm(·, ξ ,η – ξ )

)
(t) = Xm+(t, ξ ,η – ξ ) – ξ –

t
T
(η – ξ )

= Xm+(t, ξ ,η – ξ ) –
(
 –

t
T

)
ξ –

t
T

η (.)

holds for any t ∈ [, T]. Since the validity of inclusion (.) has been assumed, we see
that inequality (.) of Lemma . can be applied and, therefore, identity (.) yields

∣∣∣∣Xm+(t, ξ ,η – ξ ) –
(
 –

t
T

)
ξ –

t
T

η

∣∣∣∣ ≤ T


δ[, T],D
(f ) (.)

for all t ∈ [, T]. It follows from (.) that, at every point t ∈ [, T], the value
Xm+(t, ξ ,η – ξ ) lies in the T

 δ[, T],D
(f )-neighbourhood of a convex combination of the

vectors ξ and η. Since ξ and η satisfy (.) and, by (.), rD(f ) ≥ T
 δ[, T],D

(f ), it follows
from definition (.) of the set GD(rD(f )) that all the values of the function Xm+(·, ξ ,η – ξ )
belong to D, i.e., (.) holds. Thus, inclusion (.) is true for allm ≥ . Recalling notation
(.), we arrive immediately to (.).
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Relation (.) is proved by analogy. Indeed, it follows from (.) that

Y(t,η,η – ξ ) = η +
(
 –

t
T

)
(η – ξ ) =

(
t
T

– 
)

ξ + 
(
 –

t
T

)
η

=
(
 – θ (t)

)
ξ + θ (t)η, (.)

where θ (t) := ( – tT–) for any t ∈ [ T ,T]. Since, obviously,  ≤ θ (t) ≤  for all t ∈
[ T ,T], identity (.) and assumption (.) guarantee that the function Y(·,η,η– ξ ) has
values in D. Let us assume that, for a certainm,

{
Ym(t,η,η – ξ ) : t ∈

[


T ,T

]}
⊂ D (.)

and show that

{
Ym+(t,η,η – ξ ) : t ∈

[


T ,T

]}
⊂ D. (.)

By virtue of (.), for any t ∈ [ T ,T], we have

Pf
(·,Ym(·,η,η – ξ )

)
(t)

= Ym+(t,η,η – ξ ) – η –
(
 –

t
T

)
(η – ξ )

= Ym+(t,η,η – ξ ) –
(
t
T

– 
)

ξ – 
(
 –

t
T

)
η

= Ym+(t,η,η – ξ ) –
(
 – θ (t)

)
ξ – θ (t)η (.)

with the same definition of θ (·) as in (.). According to assumption (.), the func-
tion Ym(·, ξ ,η – ξ ) has values in D. Therefore, using equality (.) and estimate (.) of
Lemma ., we obtain

∣∣Ym+(t,η,η – ξ ) –
(
 – θ (t)

)
ξ – θ (t)η

∣∣ ≤ T


δ[ T ,T],D
(f ) (.)

for all t ∈ [ T ,T]. Since θ : [ T ,T] → [, ], inequality (.) implies that all the values of
the function Ym+(·,η,η – ξ ) belong to the T

 δ[ T ,T],D
(f )-neighbourhood of a convex com-

bination of ξ and η. Recalling now (.) and (.) and using assumption (.), we arrive at
(.). Consequently, inclusion (.) holds for all m, and (.) follows immediately from
(.) and (.). The lemma is proved. �

Finally, the corresponding assertions of Theorems . and . lead us immediately to
the following statement.

Lemma . Under the assumptions of Theorem ., the inclusions{
x∞(t, ξ ,η) : t ∈

[
,



T

]}
⊂D (.)
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and {
y∞(t, ξ ,η) : t ∈

[


T ,T

]}
⊂D (.)

hold true for any (ξ ,η) ∈GD(rD(f )).

The proof of Lemma . consists in passing to the limit in (.) and (.) as m → +∞,
the possibility of which is ensured by Theorem ..

8 Limit functions and determining equations
The techniques based on the original periodic successive approximations (.), the ap-
plicability of which is guaranteed by Proposition ., lead one to the necessary and suffi-
cient conditions for the solvability formulated in terms of determining equations (.) of
Proposition .. A certain analogue of the last mentioned statement should also be estab-
lished for our new version of the method, with iterations constructed using the interval
halving procedure, for the resulting scheme to be logically complete. It is natural to expect
that the limit functions of the iterations on the half-intervals will help one to formulate cri-
teria of solvability of the original problem, and, in fact, it turns out that it is the functions
� : GD(rD(f )) → R

n and H : GD(rD(f )) → R
n defined according to equalities (.) and

(.) that provide such a characterisation.
Indeed, Theorems . and . guarantee that, under the conditions assumed, the func-

tions x∞(·, ξ ,η) : [, T] → R
n and y∞(·,η,η) : [ T ,T] → R

n are well defined for all
(ξ ,η) ∈ GD(rD(f )). Therefore, by putting

u∞(t, ξ ,η) := χT (t)x∞(t, ξ ,η)

+
(
 – χT (t)

)(
y∞(t, ξ ,η) – y∞

(
T

, ξ ,η

)
+ x∞

(
T

, ξ ,η

))
,

y ∈ [,T], (.)

we obtain a function u∞(·, ξ ,η) : [,T] →R
n, which is well defined for the same values of

(ξ ,η) ∈ GD(rD(f )). This function is obviously continuous.
The following theorem, which is a modified version of [, Theorem ], establishes a

relation of this function to the original periodic problem (.), (.) in terms of the zeroes
of � and H.

Theorem . Let f satisfy the Lipschitz condition (.) with a matrix K such that (.)
holds. Furthermore, assume that D has property (.). Then:
. The function u∞(·, ξ ,η) : [,T]→R

n defined by (.) is a solution of the periodic
boundary value problem (.), (.) if and only if the pair (ξ ,η) satisfies the system of
n equations

�(ξ ,η) = ,

H(ξ ,η) = .
(.)

. For every solution u(·) of problem (.), (.) with (u(),u( T)) ∈GD(rD(f )), there
exists a pair (ξ,η) such that u(·) = u∞(·, ξ,η).
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Equations (.) are usually referred to as determining or bifurcation equations [, ]
because their roots determine solutions of the original problem. The variables involved in
system (.) admit a natural interpretation: ξ means the value of the solution at , whereas
η is responsible for its value at 

T . We can observe the main difference between the un-
modified periodic successive approximations (Proposition .) and a similar scheme ob-
tained after the interval halving (Theorem.): the convergence condition is twice as weak
but, instead of n numerical equations (.) of Proposition ., we need to solve n equa-
tions (.) of Theorem ..
A constructive solvability analysis involves a natural concept of approximate determin-

ing equations, which is discussed below.

9 Approximate determining equations
Although Theorem . provides a theoretical answer to the question on the construction
of a solution of the periodic problem (.), (.), its application faces difficulties due to the
fact that the explicit form of the functions � : GD(rD(f )) → R

n and H : GD(rD(f )) → R
n

appearing in (.) is usually unknown. This complication can be overcome by using the
functions

�m(ξ ,η) := η – ξ –
∫ T




f
(
τ ,xm(τ , ξ ,η)

)
dτ (.)

and

Hm(η,λ) := ξ – η –
∫ T

T


f
(
τ , ym(τ , ξ ,η)

)
dτ (.)

for a fixed m, which will lead one to the so-called approximate determining equations.
More precisely, similarly to [, ], it can be shown that, under certain natural assump-
tions, one can replace the exact determining system (.) by its approximate analogue

�m(ξ ,η) = ,

Hm(ξ ,η) = .
(.)

Note that, unlike system (.), the mth approximate determining system (.) contains
only terms involving the functions xm : [, T] × GD(rD(f )) → R

n and ym : [ T ,T] ×
GD(rD(f ))→ R

n and, thus, known explicitly.
It is natural to expect that approximations to the unknown solution of (.), (.) can be

obtained by using the function um(·, ξ ,η) : [,T] →R
n,

um(t, ξ ,η) := χT (t)xm(t, ξ ,η)

+
(
 – χT (t)

)(
ym(t, ξ ,η) – ym

(
T

, ξ ,η

)
+ xm

(
T

, ξ ,η

))
, (.)

which is an ‘approximate’ version of (.) well defined for all t ∈ [,T] and (ξ ,η) ∈
GD(rD(f )).
The piecewise character of the definition of function (.) does not affect the properties

that a potential approximation obtained from it should possess. Indeed,
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Proposition . If ξ and η satisfy equations (.) for a certain m, then the function
um+(·, ξ ,η) determined by equality (.) is continuously differentiable on [,T].

Proof It follows immediately from (.), (.) and (.) that

x′
m+

(
T

, ξ ,η

)
= f

(
T

,xm

(
T

, ξ ,η

))

–

T

∫ T



f
(
s,xm(s, ξ ,η)

)
ds +


T
(η – ξ ) (.)

and

y′
m+

(
T

, ξ ,η

)
= f

(
T

, ym

(
T

, ξ ,η

))

–

T

∫ T

T


f
(
s, ym(s, ξ ,η)

)
ds –


T
(η – ξ ). (.)

Recall that, by virtue of (.) and (.),

ym
(
T

, ξ ,η

)
= η.

Then, in view of (.) and (.), it follows from (.), (.) and (.) that

x′
m+

(
T

, ξ ,η

)
= y′

m+

(
T

, ξ ,η

)

and, therefore, u′
m+(·, ξ ,η) is continuous at 

T . The continuous differentiability of the
function um+(·, ξ ,η) at other points is obvious from its definition. �

In order to prove a statement on the solvability of problem (.), (.), we need some
estimates of the functions �m : GD(rD(f )) → R

n and Hm : GD(rD(f )) → R
n, m = , , . . . ,

defined by (.) and (.).

Lemma . Assume that (.) holds. Let f satisfy the Lipschitz condition (.) with a
matrix K such that

r(K) ≤ 
T

. (.)

Then the estimates

∣∣�(ξ ,η) –�m(ξ ,η)
∣∣ ≤ T



(



TK
)m+(

n –



TK
)–

δ[, T],D
(f ) (.)

and

∣∣H(ξ ,η) – Hm(ξ ,η)
∣∣ ≤ T



(



TK
)m+(

n –



TK
)–

δ[ T ,T],D
(f ) (.)

hold for any values of (ξ ,η) ∈GD(rD(f )) and m ≥ .
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Proof Let us fix arbitrary (ξ ,η) ∈ GD(rD(f )) and m ≥ . Recalling (.) and (.), we ob-
tain

∣∣�(ξ ,η) –�m(ξ ,η)
∣∣ = ∣∣∣∣

∫ T




[
f
(
t,x∞(t, ξ ,η)

)
– f

(
t,xm(t, ξ ,η)

)]
dt

∣∣∣∣
≤

∫ T




∣∣f (t,x∞(t, ξ ,η)
)
– f

(
t,xm(t, ξ ,η)

)∣∣dt. (.)

By Lemma ., the function x∞(·, ξ ,η) : [, T]→R
n has values in D and, therefore, the

Lipschitz condition (.) can be used in (.). Then, applying estimate (.) of Theo-
rem . with ε = ε, where ε ≈ . is given by (.), we obtain

∣∣�(ξ ,η) –�m(ξ ,η)
∣∣

≤ K
∫ T





∣∣x∞(t, ξ ,η) – xm(t, ξ ,η)
∣∣dt

≤ 


∫ T



ᾱmε

(t)dtKmε

(


T�εK

)m–mε+
(
n –



T�εK

)–

δ[, T],D
(f ). (.)

Recall now that, in view of Remark . and relations (.) and (.), one has

mε = , �ε =



, (.)

and, therefore, (.) can be rewritten in the form

∣∣�(ξ ,η) –�m(ξ ,η)
∣∣

≤ 


∫ T



ᾱ(t)dtK

(



TK
)m–(

n –



TK
)–

δ[, T],D
(f ). (.)

Furthermore, it follows from (.) and (.) that the function ᾱ has the form

ᾱ(t) =
(


T t

 –

T

t + t +
T


)
t, t ∈

[
,



T

]
, (.)

whence we obtain by computation that

∫ T



ᾱ(t)dt =

T


. (.)

Considering (.) and (.), we find that inequality (.), in fact, means that

∣∣�(ξ ,η) –�m(ξ ,η)
∣∣ ≤ T


K

(



TK
)m–(

n –



TK
)–

δ[, T],D
(f ), (.)

which estimate coincides with (.). Note that the invertibility of the matrix n – 
TK is

guaranteed by condition (.).
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In a similar manner, in order to establish (.), we use (.) and (.) to obtain the
estimate

∣∣H(ξ ,η) – Hm(ξ ,η)
∣∣ = ∣∣∣∣

∫ T

T


[
f
(
t, y∞(t, ξ ,η)

)
– f

(
t, ym(t, ξ ,η)

)]
dt

∣∣∣∣
≤

∫ T

T


∣∣f (t, y∞(t, ξ ,η)
)
– f

(
t, ym(t, ξ ,η)

)∣∣dt. (.)

Lemma . guarantees that all the values of the function y∞(·, ξ ,η) : [ T ,T] → R
n lie in

D and, therefore, the Lipschitz condition (.) can be used in (.). Estimate (.) of
Theorem . applied with ε = ε then yields

∣∣H(ξ ,η) – Hm(ξ ,η)
∣∣

≤ K
∫ T

T


∣∣y∞(t, ξ ,η) – ym(t, ξ ,η)
∣∣dt

≤ 


∫ T

T


¯̄αmε
(t)dtKmε

(


T�εK

)m–mε+
(
n –



T�εK

)–

δ[ T ,T],D
(f ). (.)

Finally, it follows from (.) and (.) by computation that

¯̄α(t) =

T t

 –

T
t + t –

T


t +
T


, t ∈

[


T ,T

]
, (.)

and, hence,

∫ T

T


¯̄α(t)dt =
T


. (.)

Consequently, by virtue of relations (.) and (.), inequality (.) leads us directly to
the required estimate (.). �

10 Solvability analysis based on approximation
The argument shown above allows us to conclude on the solvability of the periodic prob-
lem (.), (.) on the basis of properties of iterations (.) and (.). More precisely, it
turns out that the use of functions (.) and (.) allows one to study the vector field
� :GD(rD(f ))→R

n,

�(ξ ,η) :=

⎛
⎝η – ξ –

∫ T


 f (τ ,x∞(τ , ξ ,η))dτ

ξ – η –
∫ T
T

f (τ , y∞(τ , ξ ,η))dτ

⎞
⎠ , (ξ ,η) ∈GD

(
rD(f )

)
, (.)

the critical points of which, as we have seen in Theorem ., determine the solutions of
the original problem (.), (.), through its approximation

�m(ξ ,η) :=

⎛
⎝η – ξ –

∫ T


 f (τ ,xm(τ , ξ ,η))dτ

ξ – η –
∫ T
T

f (τ , ym(τ , ξ ,η))dτ

⎞
⎠ , (ξ ,η) ∈ GD

(
rD(f )

)
, (.)

where m is fixed. In the formulation of the theorem given below, the following notion is
used.
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Definition . ([]) Let r and l be positive integers and S ⊂ R
l be an arbitrary non-

empty set. For any pair of vector functions gj :Rl →R
r , j = , , we write

g �S g (.)

if and only if there exists a function ν : S → {, , . . . , l} such that the strict inequality

〈
g(z) – g(z), eν(z)

〉
>  (.)

holds for all z ∈ S.

Here, ek , k = , , . . . , r, are the unit vectors,

ek := col(, , . . . , ︸ ︷︷ ︸
k–

, , , . . . , ), (.)

and 〈·, ·〉 stands for the usual inner product in R
r . The binary relation �S introduced by

Definition . is a kind of strict inequality for vector functions and its properties are sim-
ilar to those of the usual strict inequality sign. For example, f ≥ g and g �S h imply that
f �S h. The last named property will be used below in the proof of Theorem ..
We are now able to formulate a statement guaranteeing the solvability of the original pe-

riodic problem (.), (.) based on the information obtained in the course of computation
of iterations. In contrast to the unmodified scheme of periodic successive approximations
(Proposition ., r(K) < T–�–

* ), here the iterations are proved to be convergent under the
assumption that is twice as weak as in the former case (Theorem ., r(K) < T–�–

* ).
A similar observation can be made concerning the assumption on the domain D (see
Corollary . and the remarks related to conditions (.) and (.)).
When stating the existence theorem, we restrict our consideration to a slightly weaker

version of condition (.), where the value �* ≈ . is replaced by ., and thus neglect
the gap (, . . . .) for ε in estimates (.) and (.).

Theorem . Assume that the function f in (.) satisfies the Lipschitz condition (.)
with a matrix K such that inequality (.) holds and, moreover, the set D has property
(.).Moreover, let there exist a closed domain

� ⊂GD
(
rD(f )

)
such that, for a certain fixed value of m ≥ , the mapping �m given by formula (.) sat-
isfies the conditions

deg(�m,�) �=  (.)

and

|�m|�∂�

T


(
Mmδ[, T],D

(f )
Mmδ[ T ,T],D

(f )

)
, (.)
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where

Mm :=
(




TK
)m+(

n –



TK
)–

. (.)

Then there exist certain values (ξ *,η*) ∈ � such that the function u∞(·, ξ *,η*) is a solution
of the periodic boundary value problem (.), (.).

Recall that the symbol �∂� in (.) is understood in the sense of Definition .. It
should be noted that condition (.) involves the values of functions on the boundary of
� only.

Proof We shall use the lemmata stated above. By analogy to [, ], we shall prove that
the fields � and �m are homotopic. It will be sufficient to consider the linear deformation

Qθ := �m + θ (� –�m), (.)

where θ ∈ [, ]. Indeed, it is clear that Qθ is a continuous mapping on ∂� for every θ ∈
[, ] and, furthermore,

Q = �m, Q = �. (.)

Let us fix an arbitrary pair (ξ ,η) ∈ ∂�. According to (.) and (.), we have

∣∣Qθ (ξ ,η)
∣∣ = ∣∣�m(ξ ,η) + θ

[
�(ξ ,η) –�m(ξ ,η)

]∣∣
≥ ∣∣�m(ξ ,η)

∣∣ – ∣∣�(ξ ,η) –�m(ξ ,η)
∣∣. (.)

On the other hand, by Lemma ., estimates (.) and (.) true. Using relations (.)
and (.) in (.), we show that

|Qθ |�∂� 

and henceQθ does not vanish on ∂� for any θ . Thus,� is homotopic to�m. The property
of invariance of degree under homotopy then yields

deg(�,�) = deg(�m,�);

and therefore, in view of (.), we conclude that deg(�,�) �= . Consequently, there ex-
ist vectors ξ * and η* possessing the properties indicated, and it only remains to refer to
Theorem .. The theorem is proved. �

Note that Theorem . provides solvability conditions based upon properties of ap-
proximations starting from the second one inclusively. A similar statement allowing to
use the zeroth and the first approximations can be obtained if we use [, Lemma .] in-
stead of Lemma .. In that case, condition (.) of Theorem . is replaced, respectively,
by the relations

|�|�∂�

T



(
K(n – 

TK)–δ[, T],D(f )
K(n – 

TK)–δ[ T ,T],D(f )

)
(.)
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and

|�|�∂�

T



(
K(n – 

TK)–δ[, T],D(f )
K(n – 

TK)–δ[ T ,T],D(f )

)
. (.)

11 Approximation of a solution
The theorem proved in the preceding section can be complemented by the following nat-
ural observation. Let (ξ̂ , η̂) ∈ � be a root of the approximate determining system (.) for
a certainm. Then the function

Um(t) := um(t, ξ̂ , η̂), t ∈ [,T], (.)

defined according to (.) can be regarded as the mth approximation to a solution of the
periodic problem (.), (.). This is justified by Proposition . and the estimates

∣∣x∞(t, ξ̂ , η̂) –Um(t)
∣∣ ≤ 


ᾱ(t)

(



TK
)m(

n –



TK
)–

δ[, T],D
(f ) (.)

for t ∈ [, T] and

∣∣y∞(t, ξ̂ , η̂) –Um(t)
∣∣ ≤ 


ᾱ(t)

(



TK
)m(

n –



TK
)–

δ[ T ,T],D
(f ) (.)

for t ∈ [ T ,T], which, as is easy to see from (.), follow directly from Theorem ..
A uniform inequality, not given here, can be obtained by estimating the mapping (ξ ,η) �→
um(t, ξ ,η) for any fixed t ∈ [,T].
It is worth to emphasise the role of the unknown parameters whose values appearing in

(.) are determined from equations (.): ξ̂ is an approximation of the initial value of the
periodic solution and η̂ is that of its value at 

T .
As regards the practical application of Theorem ., it should be noted that, according

to (.), the mapping �m is known in an analytic form because it is determined solely by
the mth iteration, which is already constructed at the moment. Of course, the degree in
(.) is the Brouwer degree because all the vector fields are finite-dimensional. Likewise,
all the terms in the right-hand side of inequality (.) are computed explicitly (e.g., by
using computer algebra systems).

12 An example
Let us consider the scalar π-periodic boundary value problem

u′(t) = –u(t) –


(
u(t)

) + h(t), t ∈ [,π ], (.)

x() = x(π ), (.)

where h(t) := 
 ( cost–sint)+


 (sint+), t ∈ [,π ]. It is easy to check that the function

u(t) =


(cost + sint), t ∈ [,π ], (.)
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is a solution of problem (.), (.). This solution has values in the domain D := [–, ],
where, as one can verify, the convergence condition (.) is not satisfied. However, the
corresponding condition with the doubled constant (.) does hold, and therefore, the
interval halving technique can be used.
The appropriate computations, which have been carried out by usingMaple  and are

omitted here, show that the approach based on Theorems . and . is indeed appli-
cable in this case. The existence of solution (.) (let us forget for a moment that we
know it explicitly in this academic example) is established by Theorem ., whereas its
approximations of type (.) are constructed as described above. For instance, in the first
approximation, we have u≈ U with

U(t) := χπ (t)x(t) +
(
 – χπ (t)

)
y(t), t ∈ [,π ],

where χπ is the indicator function (.) and

x(t) := –. + .(cos t) + . sin t cos t

– .(cos t) – .t, t ∈
[
,



T

]
, (.)

and

y(t) := –. + .(cos t) – .(cos t)

+ . sin t cos t + .t, t ∈
[


T ,T

]
. (.)

The numerical values of the parameters ξ and η corresponding to functions (.), (.)
(see Table ) are found from the system of equations (.) with m = , which, in this case,
have the form

πξ η +
(
 – π + π + πη

)
ξη

+
(
π + π –  + πη – η + πη + πη)η = 

and

πξ η +
(
π +  + π + πη

)
ξη

+
(
π – π –  – πη – η + πη + πη)η = .

Table 1 Approximate values of parameters at several steps of iteration for problem (12.1),
(12.2). The last row corresponds to the exact solution (12.3)

Iteration ξ η

0 0.3586778912 –0.1413221085
1 0.4733911105 –0.7166404021
2 0.5053539028 –0.5122443553
3 0.5079847542 –0.4747166175
4 0.498648589 –0.5011705927
. . . . . . . . .
∞ 0.5 –0.5
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Figure 3 Solution (12.3) of problem (12.1), (12.2) and its 0th, 1st and 2nd approximations.

The graphs obtained in the course of computation are shownonFigures  and ,whereas
Table  contains the corresponding numerical values of the parameters. Note that only the
zeroth approximation has derivative with a discontinuity at 

T (cf. Proposition .). The
graphs and the computed numerical values of the parameters show a rather good accuracy
of approximation.

13 Comments
Several points can be outlined in relation to the techniques discussed in the preceding
sections.

13.1 Approximation scheme in practice
An interesting feature of the approach indicated here is that a practical analysis of the pe-
riodic problem (.), (.) along its lines starts directly with the computation of iterations.
We construct the approximate determining equations (.), solve them numerically in an
appropriate region, substitute the corresponding roots into the formula for um and form
functions (.) which are, in a sense, candidates for approximations of a solution. Having
constructed functions (.) for several values ofm, we check their behaviour heuristically
and if it exhibits some signs of being possibly convergent, we stop the computation and
verify the assumptions of the existence theorem. If successful, then, since this moment, we
already know that a solution exists, and either we are satisfied with the achieved accuracy
of approximation (in this case, the scheme stops and the function Um given by (.) for
the last computed value of m is proclaimed as its outcome) or, for some reasons, we find
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Figure 4 Solution (12.3) of problem (12.1), (12.2) and its 2nd, 3rd and 4th approximations.

that a more accurate approximation is needed (one more step is made then, and a similar
check is carried out for the new approximation).
It is important to observe that, once the existence of a solution is known from Theo-

rem . at themth step of iteration, we immediately obtain an approximation to it in the
form (.). The scheme thus allows us to both study the solvability of the periodic problem
and construct approximations to its solution.
It should be noted that the ability to derive the fact of solvability of the original problem

from the corresponding properties of approximate problems is rather uncommon (see
[] for some details). For the numerical methods, the generic situation is, in fact, quite
the reverse, when some or another technique is applied to solve a problemwhich is a priori
assumed to be solvable.

13.2 Extension to other problems
The idea expressed above can easily be adopted for application to differential equations
with argument deviations. The only issue that should be clarified in that case is the defini-
tion of iterations on the half-intervals at those points which are thrown over the middle to
the adjacent half-interval. For this purpose, sequences (.) and (.) should be computed
simultaneously, with (.) serving as an initial function for (.) at the next step, and vice
versa.
Likewise, with appropriate modifications, the technique developed here can be applied

to problems with boundary conditions other than periodic ones. We do not dwell on this
topic here.
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13.3 Variable subinterval lengths
It is, of course, not necessary to keep the  :  ratio of subinterval lengths. For example, if
there is a point s such that δ[,s],D(f ) is much greater than δ[s,T],D(f ), the halving, or any
other kind of division, is natural to be continued on [, s]. This reminds us of the idea
used in the adaptive numerical methods with a variable step length.

13.4 Applicability on small intervals
In contrast to purely numerical approaches, where one may be forced to discretise with a
tiny step, the efficiency of the technique based on Theorem . is not so much affected by
the smallness of the interval. This makes the scheme well applicable, in particular, for the
study of high-frequency oscillations.

13.5 Advantages over other methods
The proposed technique has some other positive features distinguishing it from other ap-
proaches. For example, when applying it, one experiences no difficulties with the selection
of the starting approximation (in contrast, e.g., to monotone iterative methods); there is
no need to re-calculate considerable amounts of data when passing to the next step of ap-
proximation (unlike projection methods); the global Lipschitz condition and the assump-
tion on the unique solvability of the Cauchy problem are not necessary (unlike shooting
method); etc.As regards the lastmentioned condition, one should note that, for functional
differential equations, it is violated even in very simple cases, and it is thus unnatural to
require it when constructing a scheme of analysis of a reasonably wide class of problems.

13.6 Repeated interval halving
The interval halving procedure can be repeated. When doing so, we observe that con-
ditions both on the eigenvalues of the Lipschitz matrix and the size of the domain are
weakened by half at each step. Indeed, it follows immediately from Corollary . that the
periodic successive approximation scheme constructed with k interval halvings is appli-
cable provided that

r(K) <
k

T�∗
(.)

and

D
(

T
k+

δ[,T],D(f )
)

�=∅. (.)

It is also clear that the D(–k–Tδ[,T],D(f )), k = , , . . . , is a strictly increasing sequence
of sets tending to the original domain D in the limit as k grows to ∞. In other words,
rather interestingly, the scheme suggested here is theoretically applicable however large
the eigenvalues of K may be.
The side-effect of the successive interval halving is the increase of the dimension of the

system of determining equations, which contains kn equations at the kth interval halving.
One can regard this as a certain price to be paid for being able to apply interval halving in
order to convert a divergent iteration scheme into a convergent one.
In this way, by carrying out interval halving sequentially, one can, in particular, re-

establish the convergence of numerical-analytic algorithms for systems of ordinary dif-
ferential equations with globally Lipschitzian non-linearities (see [, , ]).
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13.7 Combination with other methods
The most difficult part of the scheme discussed consists in the analytic construction of so
many members of the parametrised iteration sequence (.) which is sufficient to estab-
lish the solvability of the periodic problem (see conditions (.), (.)) and achieve the
required precision of approximation in (.). Its practical implementation, usually done
by using symbolic computation systems, can be considerably facilitated by combining the
analytic computation with a suitable kind of approximation. The use of the polynomial or
trigonometric interpolation (see [, ]) is very convenient for this purpose.

13.8 Non-degeneracy condition for higher-order approximations
It is obvious from (.) and (.) that limm→∞ Mm =  and, hence, the right-hand side of
inequality (.) vanishes when m grows to +∞. On the other hand, it is easy to see that,
under the conditions assumed, the mapping �m (uniformly on compact sets) converges
to � as m tends to +∞. We thus arrive at the interesting observation that assumption
(.) of Theorem ., which is the main condition ensuring the non-degeneracy of the
homotopy, has the form of the strict inequality

|�m|�∂� wm,

where |�m| approaches to |�| while the term wm becomes arbitrarily small as m grows
to +∞.

13.9 Relation to continuation theorems
Theorem . and similar statements can also be applied on the zeroth step of iteration,
i.e., when one does not perform any iteration at all. This reminds us of the notion of a
generating system appearing, e.g., in the asymptotic methods.
Indeed, having in mind Theorem . in its present formulation and recalling condition

(.), let us put

f #(ξ ,η) :=

⎛
⎝ η – ξ –

∫ T


 f (τ , ( – t
T )ξ + t

T η)dτ

ξ – η –
∫ T
T

f (τ , ( tT – )ξ + ( – t

T )η)dτ

⎞
⎠ (.)

for any (ξ ,η) ∈ GD(rD(f )). Recall that GD(rD(r)) is a subset of D which a priori contains
the value (u(),u( T)) for the periodic solution u(·) in question.
By using Theorem . for m =  with condition (.) replaced by (.), we obtain

the following statement on the solvability of the periodic problem (.), (.).

Corollary . Let assumption (.) hold and let the convergence condition (.) be sat-
isfied. Furthermore, let there exist a closed domain � ⊂GD(rD(f )) such that

deg
(
f #,�

) �=  (.)

and

∣∣f #∣∣�∂�

T



(
K(n – 

TK)–δ[, T],D(f )
K(n – 

TK)–δ[ T ,T],D(f )

)
. (.)
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Then the periodic boundary value problem (.), (.) has at least one solution u(·) which
has values in D and,moreover, is such that (u(),u( T)) ∈ �.

Recall that the vectors δ[, T],D
(f ) and δ[ T ,T],D

(f ) are computed directly according to
formula (.), whereas ‘�∂� ’ means that, at every point from ∂�, the strict inequality ‘>’
holds for at least one row, and the number of that row may vary with the point.
Assumptions of type (.), (.) are natural from various points of view. For example,

let us imagine for a while that no interval halving has been carried out at all and thus,
instead of Theorem ., we are in the situation described by Proposition . with g = f ,
p = T and t = . The system of n determining equations (.) then turns back into the
n-dimensional system (.),

∫ T


f
(
t,u∞(t, ξ )

)
dt = ,

the zeroth approximation of which, in the sense of the iteration process (.), has the form

∫ T


f (t, ξ )dt = . (.)

Therefore, assumption (.) becomes

deg(f̄ ,V ) �=  (.)

with a suitable domain V ⊂D, where

f̄ (ξ ) :=
∫ T


f (t, ξ )dt (.)

for ξ ∈ V . Then, using [, Lemma .] with m = , one easily shows that the following
statement holds.

Corollary . The conditions (.), r(K) < (T)– and

|f̄ |�∂V
T


K

(
n –




TK
)–

δ[,T],D(f ) (.)

are sufficient for the solvability of the periodic problem (.), (.).

Arguing in this manner, we can obtain, in particular, the well-knownMawhin’s theorem
[], with (.) being the solvability condition for the generating equation (of course,
one could use the condition of a priori bounds type instead of (.) for a more exact
resemblance). In this context, Corollary . can be regarded as a ‘halved’ analogue of the
last mentioned statement, where the equations

∫ T



f
(

τ ,
(
 –

t
T

)
ξ +

t
T

η

)
dτ = η – ξ , (.)

∫ T

T


f
(

τ ,
(
t
T

– 
)

ξ + 
(
 –

t
T

)
η

)
dτ = ξ – η (.)
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determine the initial data of the zeroth approximation. The side-effect of halving is visible
from the presence of two independent variables, ξ and η, due to which system (.),
(.), in contrast to (.), contains n extra equations.
It should be noted that the convergence of the iteration scheme in Corollary . is guar-

anteed under the assumption r(K) < (T)–, which is twice asweak as the corresponding
condition of Corollary . (r(K) < (T)–).
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