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1 Introduction
In the paper we investigate the initial value problem for magneto-micropolar fluid equa-
tions in R3

du—(+ x)Au+u-Vu—-b-Vb+V(p+1b*) - xV xv=0,
oVv—yYAv—kVV - -v+2xv+u-Vv-xV xu=0,

(1.1)
0:b—vAb+u-Vb—-b-Vu=0,
V.-u=0, V-b=0,
with the initial value
t=0: u=ulx), v =v(x), b = by(x), (1.2)

where u(t, x), v(¢,x), b(t,x) and p(¢, x) denote the velocity of the fluid, the micro-rotational
velocity, magnetic field and hydrostatic pressure, respectively. p is the kinematic vis-
cosity, x is the vortex viscosity, ¥y and « are spin viscosities and % is the magnetic
Reynold.

The incompressible magneto-micropolar fluid equations (1.1) have been studied exten-
sively (see [1-6] and [7-10]). The existence and uniqueness of local strong solutions is
proved by the Galerkin method in [5]. In [4], the author proved global existence of a strong
solution with the small initial data. The existence of weak solutions and the uniqueness of
weak solutions in 2D case were established in [6]. Yuan [8] obtained a Beale-Kato-Majda

type blow-up criterion for a smooth solution (, v, b) to the Cauchy problem for (1.1) that
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relies on the vorticity of velocity V x u only. Wang et al. [10] established a Beale-Kato-
Majda blow-up criterion of smooth solutions to the 3D magneto-micropolar fluid equa-
tion with partial viscosity. Fundamental mathematical issues such as the regularity of weak
solutions have generated extensive research and many interesting results have been estab-
lished (see [1, 7] and [9]).

If b = 0, (1.1) reduces to micropolar fluid equations. The micropolar fluid equations were
first proposed by Eringen [11] (see also [12]). The existence of weak and strong solutions
for micropolar fluid equations was obtained by Galdi and Rionero [13] and Yamaguchi
[14], respectively. Dong and Chen [15] established regularity criteria of weak solutions
to the three-dimensional micropolar fluid equations. In [3], the authors gave sufficient
conditions on the kinematics pressure in order to obtain the regularity and uniqueness of
weak solutions to the micropolar fluid equations. For more details on regularity criteria,
see [16, 17] and [18].

Ifboth v =0 and yx = 0, then equations (1.1) reduce to be magneto-hydrodynamic(MHD)
equations. Magnetohydrodynamics (MHD), the science of motion of an electrically con-
ducting fluid in the presence of a magnetic field, consists essentially of the interaction
between the fluid velocity and the magnetic field (see [19]). Besides their physical ap-
plications, the MHD equations are also mathematically significant. The local existence
of solutions to the Cauchy problem (1.1), (1.2) in the usual Sobolev spaces H*(R?) was
established in [20] for any given initial data uo, By € H*(R?), s > 3. But whether the lo-
cal solution can be extended to a global solution is a challenging open problem in the
mathematical fluid mechanics. There are numerous important progresses on the fun-
damental issue of the regularity for the weak solution to (1.1), (1.2) (see [21-28] and
[29-32]).

The purpose of this paper is to establish the regularity criteria of weak solutions to (1.1),

(1.2) via the derivative of the velocity in one direction. It is proved that if fOT 2 | fa dt < oo
2

with 2 +
a B
t=T.

The paper is organized as follows. We first state some important inequalities in Sec-

<1 and a > 3, then the solution (,v,b) can be extended smoothly beyond

tion 2. Then we give the definition of a weak solution and state main results in Section 3,

and then we prove the main result in Section 4.

2 Preliminaries
In order to prove our main result, we need the following lemma, which may be found
in [33] (see also [21, 34] and [35]).

Lemma 2.1 Assume that 0,1,9 € R and satisfy

>N

+

|

2 3
1<6, A < 00, +—=>1, 1+ —=
A 0

Assume that f € H'(R3), fy,.fv, € L*(R?) and f,, € L°(R®). Then there exists a positive con-
stant such that

1 1 1
W llzo < Cll 125 W 12 Wi - 2.1)
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Especially, when A = 2, there exists a positive constant C = C(0) such that

1 1 1
”f”L?‘g = C”ﬁq”iz”fxz”iz”ﬂcg ”L39’ (22)
which holds for any f € H'(R®) and f,, € L°(R3) with 1 < j1 < 0.

Lemma 2.2 Let 2 < q < 6 and assume that f € H'(R3). Then there exists a positive con-
stant C = C(q) such that

q-2

6-q q-2 q-2 q-2
Ifllze < CUFILS 10 f 15" 10 f 115" 19af 115" - (2.3)

Proof It follows from the interpolating inequality that

3q9-6

6-q 3¢-6
Ifllze < CIFILS" IF1L,6" - (2.4)

Using (2.2) with 6 = 2, we obtain

1 1 1
fllzs < ClawfIE 18 f 11 1 12 (25)
Combining (2.4) and (2.5) immediately yields (2.3). O

3 Main results

Before stating our main results, we introduce some function spaces. Let
G (B) = {o  (C(®)): V-9 =0} < (C™ (&))"

The subspace
12=Co (®) ' = {p e P(R): Vg =0)

is obtained as the closure of Cg?, with respect to L?-norm | - ||;2 . H’, is the closure of Coo

with respect to the H"-norm

el == A) 2,2 r=0.

Before stating our main results, we give the definition of a weak solution to (1.1), (1.2)
(see [1, 7] and [9]).

Definition 3.1 (Weak solutions) Let 7 > 0, ug, by € L2(R3), vy € L*(R®). A measurable
R3-valued triple (x, v, b) is said to be a weak solution to (1.1), (1.2) on [0, T] if the following
conditions hold:

1.

(u,b) € (0, T; L2 (R*)) N L*(0, T; HL (R?))
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and
ve L*(0, T;L*(R%)) N L*(0, T; H'(R?)).

2.(L.1), (1.2) is satisfied in the sense of distributions, i.e., for every (¢, ¥) € H'((0, T); H!)
and ¢ € HY((0, T); H*) with o(T) = ¥(T) = ¢(T) = 0, the following hold:

T
[ (-t + e Vg + s 00V V) dr
T
- [ 10 Vb0 + 009 x ) dr =0 000)
T
/ [, 0:8)} + Y (Y, V@) + (V- v, V) +2x (v, ) dT
0
T
+/0 {(w-Vv,¢) = x(V x u,¢) } dT = (vo, $(0))
and
T
/ {=(b,0:9) + v(VD, V) + (u- Vb, ) — (b Vu,¥)} dt = (b, ¥(0)).
0
3. The energy inequality, that is,
t
Ju@)] 72 + VO 2 + 6]z +2 / (]| V@) 72 + v [ Ve ) do

o2 [ Vv + 1o s+ | VB )

2 2 2
= lluoll}2 + Ivollj2 + lboll}>- (3.1)

Theorem 3.1 Let ug, by € H:(R3) with vy € H'(R3). Assume that (u,v,b) is a weak solution
to (1.1), (1.2) on some interval [0, T]. If

T
®(T)E/ N[ty 11 dlt < 00, (3.2)
0
where
3 2
-+ = S 1! a 2 3;
a B

then the solution (u,v, b) can be extended smoothly beyond t = T.

4 Proof of Theorem 3.1

Proof Multiplying the first equation of (1.1) by « and integrating with respect to x on R?,

using integration by parts, we obtain

1d
EEHu(t)Hiz + (0 + )()HVu(t)Hi2 = /Rgb~Vh-udx+ X As(v X V) - udx. (4.1)


http://www.boundaryvalueproblems.com/content/2013/1/58

Wang Boundary Value Problems 2013, 2013:58
http://www.boundaryvalueproblems.com/content/2013/1/58

Similarly, we get

1d
5;””””?2 + VHVV(t)lliz + iV VI, + 2 IVII7, = x/ (V x u)-vdx
R3
and
1d
5 1P + v [ Va2 = /Rs b-Vu-bdx.

Summing up (4.1)-(4.3), we deduce that

1d
5 7p 14O+ @ 7+ [50]22) + (e + 0| Vuto) [ 2
+y | V@3 + €IV - vIZ + 2x V1% + v | VB |,
=f b-Vb-udx+X/ (V x V) -udx
R3 R3
+X/ (qu)-vdx+/ b-Vu-bdx.
R3 R3

By integration by parts and the Cauchy inequality, we obtain

1 [ (7 udn [ (700 vds <1Vl + VI
R R
Using integration by parts, we obtain

/ b~Vb-udx+/ b-Vu-bdx=0.
R3 R3

Combining (4.4)-(4.6) yields

d
0+ 101+ [60]2) + Vo

+y || V() ||z2 +Kk||V - vlli2 + X ||V(t) ||i2 + v||Vb(t)||i2 <0.

Integrating with respect to ¢, we have

[+ [0 + 6012 +2 [ (Vo) + v [V

o2 [ (VA [+ x| 00|

2 2 2
< lluolly> + lIvollj2 + lboll}2-
Differentiating (1.1) with respect to x3, we obtain

Opthy — (0 + X) AUty + Uy - VU + U - Vidyy, —byy - Vb —b - Vb,
+ V(P +31b1%)a; — xV X vy =0,

OtV = VAV =KV - Vi + 2 Veo + Uyy - VV+1U - Vs — XV X 1y, =0,

O¢byy —VADby, + Uy - Vb+u-Vby, —by, - Vu—-b-Vu,, =0.

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)
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Taking the inner product of u,, with the first equation of (4.8) and using integration by
parts yield

1d
2dt

:—/ ux3~Vu-ux3dx+/ by, - Vb -uy, dx
R3 R3

|ty )] 72 + (1t + %) | Vity (8)] 2

+/ b-Vby, -uy, dx+x / (V X Vyy) * Uty dx. (4.9)
R3 R3

Similarly, we get

1d 2 2
5 gV Ol + v [V @ 2+ IV - vag I + 2 lvig 172
=—/ Us, ~Vv-vx3dx+xf (V X Uyy) - Vyy dx (4.10)
R3 R3
and
1d

pr LGl PR AL MO]

= —/ Uy, - Vb - by, dx+/ by, - Vu-by, dx+/ b-Vuy, - by, dx. (4.11)
R3 R3 R3

Combining (4.9)-(4.11) yields

1d 2 2 2 2
5 2 s Ol + v @ 2 + [ O 2) + (1 + )| Vit ()] 12
2 2
g ||va3 (t) ||L2 +K ”V * Vs ”32 + 2X ||Vx3 ”32 +v HVbx;;(t)”LZ
:—/ Uy, ~Vu-ux3dx+/ by, -Vb-uxsdx+/ b-Vby, - uy, dx
R3 R3 R3
+X/3(V X vxg)-ux?,alx—fsux3 -Vv-vxsdx+)(/3(v X Uyy) + Vyy A%
R R R
—/ Uy - Vb - Dy, dx+/ byy - V- by, dx+/ b-Viuy, - by, dx. (4.12)
R3 R3 R3
Using integration by parts and the Cauchy inequality, we obtain
1[0 )ty [ (7 ) vy < 0 B o e (813
R R

Using integration by parts, we have

/ b-Vby, -y, dx + / b- Vi, - by, dx=0. (4.14)
R3 R3
Combining (4.12)-(4.14) yields

1d (
2dt

7 [ Vv @22 + €IV - vig 122 + X0y 0 |32 + v | Vs 0] 7

|14 (O 12+ Vs O 12 + [ by O] 12) + ]| Vi (8)] 2
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5—/ ux3~Vu~ux3dx+/ be-Vb~ux3dx—/ Uy - VV - Vyy dx
R3 R3 R3

[ e 9 b [ by Vi by
R3 R3

Eh+hL+L+1+1s (4.15)

In what follows, we estimate J; (j = 1,2,...,5). By integration by parts and the Holder
inequality, we obtain

5 < Cll Vit [l 12 |ty |l e N 2] 30,

where

1 1 1
—+-—==, 2<p<6.
o 3a 2

It follows from the interpolating inequality that

1-3(3-3) 3(3-3)
ltxsllze < Cllstagll 2~ @ IVt o” ©

From (2.2), we get

(3-

L S
L = Cli Vg, |l 2 loxs 11> Vi 2™ ° IVull )yl Nl e

1 1
270)

1+3( 1-3(3-1) 2 1
CliVu,ll,» (7 [P (71 A (17N 58

IA

128 2
< EllvuxgniZ + C””xg”iZ”VM”Lg”Mx;; 1 es
where
2 2
q= 11y N
3-93-1) 301-1

When o > 3, we have 2g < 2, and the application of the Young inequality yields

n
L < EIIVMxS 175 + Cllttag 122 (V275 + 2415 1130 ) (4.16)
where
2
—+-=1
a b

From integration by parts and the Holder inequality, we obtain

1-3 3
L = ClIVBI21lbss ||| 20, s llze < CIVDI 2 a3 Lz 1D Wl 2" 1V s I

< g”VbxgnLZ + VDI 37 Ny [l 11bs Il /2~
v 2 2 8 58
< gllVbeHLz + C(||Vb||L2 + ||ty ||La)||bx3|L37 ) (4.17)
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Similarly,

I = ClIVVI2 Ve || 20 Moty N2

< ClIVVIIz2 ||ty |l ||Vx3|| it IIVVx3||
< —IIVnglle + IIVVII 7 lluxgllL" o vl 578
Y =
=< EIIVVxSIILz + C(IVVIF2 + llttag 17 lvas 1 572, (4.18)
and
Lo = ClIVDII2lIbxs || 2, N2k |l
< CIVDli 2 |3l 2= ||bx3|| °‘ IIVbx3||
v
< 6||Vbx3||Lz + IIVbIIZ“ - IIMx3||2°‘ bl 5 %3
v
=3 IVbss 172 + CIVDIT: + llttas l170) 1By 1 5 %3 3» (4.19)
where
3 2
—+-=1
o §
By integration by parts and the inequality, we have
I5 < ClIVba |l 2 11bxs |l o | ] 3
1-3(5-3) 3(3-3) 3 3
< ClIVbs 2 1bs 127 1V 1057 1Vl kg
v 2
< g”Vbx?,”%2 + Cllbas 172V ael| 5 ks N
where
2
9=
31-1)
When o > 3, we have 2g < 2, and the application of the Young inequality yields
v
=< g”Vbx;;”%Z + Clibas 172 (1 Vatll32 + ks 134 ), (4.20)
where
2
—+—-=1
a 4

Page 8 of 12
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Combining (4.15)-(4.20) yields

d
2 2 2 2
— (s 172 + Nbag 172 + 1B51172) + 1l Vit |17

dt

2 2 2 2
+ VIV lllz + €IV - v 172 + X lVas 72 + VI VD 172

2 2 2 s
< C(lltxg 172 + Dy I172) (V2 s + N2ty 17 )

20-6 20-6
2 2 $ 2a-3 20=3
+ C(IIVVIZ2 + IV + Ntk e ) (Va1 57 + Nbas 1 57°)-

From the Gronwall inequality, we get

t
2 2 2 2
”ng ”LZ + ”bx3 ”LZ + ||bx3 ”LZ + /‘L/ ”vuxg ”LZ dT
0

t
2 2 2 2
+/ (V||VVx3||L2 'l'K”V : Vx3||L2 + X||Vx3||L2 + UHVbxg”LZ)dT
0

(lug 1%y +livo 12y +libo11%,) @ 2 2 2
< Ce T2 TN 2 e (t)[”u()”]_[l +lvollza + 1boll s

20-3
+ C(””O”iz + ||Vo||iz + ||b0||iz + CD(t)) * ]

(4.21)

Multiplying the first equation of (1.1) by —Au and integrating with respect to x on R3, and

then using integration by parts, we obtain

1d

5 71 VEO L+ Gev )l dul,

=/ u-Vu-Audx—/ b-Vb-Audx—x/ (V xv) - Audx.
R3 R3 R3

Similarly, we get
1d
2dt

:/ u-Vv~Avdx—X/ (V x u)-Avdx
R3 R3

2
[Vv(@)] 2 + Y IAVIE: + €IV Y - v]12, + 2% |V V]2,

and

1d

5 71 VPOl L + viAbIg,

:/ u-Vb-Abdx- | b-Vu-Abdx.
R3 R3

Collecting (4.22)-(4.24) yields

1d
2 2 VO + 99O + [Vo@ ) + G+ 0l Aul

+ VAV + .YV - VII7 + 2X I VVIZ, + VI ADIIZ

=/ u-Vu-Audx—/ b-Vb-Audx—x/(va)-Audx
R3 R3 R3

(4.22)

(4.23)

(4.24)

Page 9 of 12
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+/ u~Vv-Avdx—)(/ (V x u)-Avdx
R3 R3
+/ u-Vb~Abdx—/ b-Vu- Abdx.
R3 R3
Thanks to integration by parts and the Cauchy inequality, we get
—x/ (VXV) Audx— x/ (V xu)- Avdx < x| Aull2s + x [IVVI7,.
R3 R3

It follows from (4.25)-(4.26) and integration by parts that

1d

L2 (Ivuo ] + |90l + [95) + Al

+ VI AV + .YV - VIIE + X IVVIZ, + vIIADIZ,

5—/ Vu-Vu~Vudx+/ Vh~Vb-Vudx—/ Vu-Vv-Vvdx
R3 R3 R3

—/ Vrob~Vbdx+/ Vb-Vu-Vbdx
R3 R3

ENh+h+)s+ ]+

In what follows, we estimate J; (i = 1,...,5).
By (2.3) and the Young inequality, we deduce that

W< ClVul}s < C||VM||L%2||V2VM||L2||VMx3||L%2
< LVVul + CIVul L Vit 2
=< %Ilvazvullfz + C(IVull7 + | Vit I72) V]| 7.
By (2.3) and the Young inequality, we have
Jo = IVull 3 ”Vb”%a

2 1
= CIIVMII >[I VEVu|| 2||Vux3|| VDIl 2 IVEVBI 5 IV by |l >

I/\

IIV Vullz, + Cl|Vul 2||Vux3|| zIIVbIILz Vz VbIILzIIVbngI

/\

U v 1
= ”Vfcvu”iZ + g”vich”%z + CI Va2 | Vits | 5 1 VD172 [V By

/\

vV
IIV VaullZ, + ~ IV Vbl}

+ CIIVbIILz(IIVMIILz + 1 Vit 72 + 11V Dy I72)-
Similarly, we obtain

J3 < I Vull 3 VvII7s
= —IIV Vullz, + 5 IIV Vvl

2
+ CIIVVIILz(IIVMIILz + | Vit 72 + 11 Vvag [172),

3”22

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

Page 10 of 12
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Ja < IVull 31 Vb3
M 2 Y 2
= o 1Vavuli + gIIV;chIILz

+ CIVBIL (IIVUl7a + Vi 172 + Vb 172) (4.31)

and

A

Js < | Vul31VbIIZ5

A

u v
EIIVJCVMII; *g IVzVbli3,

+ CIVBIZ (IVull s + 1 Vit i72 + 1 Vb 172)- (4.32)

Combining (4.27)-(4.32) yields

d
S V@[ + [9vO 2 + VO ) + il Aul,
+ ¥ I AV +&IIVV - vl7: + X IVVIZ, + v AD]7,
< C(IVullz, + Vvl + 1IVBI7)

x (IVull?y + [ Vit 125 + Vi 125 + 1 Vbyy [17). (4.33)

From (4.33), the Gronwall inequality, (4.7) and (4.21), we know that (&,v,b) € L>(0, T;
HY(R3)). Thus, (u,v,b) can be extended smoothly beyond ¢ = T. We have completed the
proof of Theorem 3.1. O
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