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Abstract
In this paper, we study some properties of the generalized Apostol-type polynomials
(see (Luo and Srivastava in Appl. Math. Comput. 217:5702-5728, 2011)), including the
recurrence relations, the differential equations and some other connected problems,
which extend some known results. We also deduce some properties of the
generalized Apostol-Euler polynomials, the generalized Apostol-Bernoulli
polynomials, and Apostol-Genocchi polynomials of high order.
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1 Introduction, definitions andmotivation
The classical Bernoulli polynomials Bn(x), the classical Euler polynomials En(x) and the
classical Genocchi polynomials Gn(x), together with their familiar generalizations B(α)

n (x),
E(α)
n (x) and G(α)

n (x) of (real or complex) order α, are usually defined by means of the fol-
lowing generating functions (see, for details, [], pp.- and [], p. et seq.; see also
[] and the references cited therein):
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and
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· exz =
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n=

G(α)
n (x)

zn

n!
(|z| < π

)
. (.)

So that, obviously, the classical Bernoulli polynomials Bn(x), the classical Euler polynomi-
als En(x) and the classical Genocchi polynomials Gn(x) are given, respectively, by

Bn(x) := B()
n (x), En(x) := E()

n (x) and Gn(x) :=G()
n (x) (n ∈N). (.)
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For the classical Bernoulli numbers Bn, the classical Euler numbers En and the classical
Genocchi numbers Gn of order n, we have

Bn := Bn() = B()
n (), En := En() = E()

n () and Gn :=Gn() =G()
n (), (.)

respectively.
Some interesting analogues of the classical Bernoulli polynomials and numbers were

first investigated by Apostol (see [], p., Eq. (.)) and (more recently) by Srivastava
(see [], pp.-). We begin by recalling here Apostol’s definitions as follows.

Definition . (Apostol []; see also Srivastava []) The Apostol-Bernoulli polynomials
Bn(x;λ) (λ ∈C) are defined by means of the following generating function:

zexz

λez – 
=

∞∑
n=

Bn(x;λ)
zn

n!(|z| < π when λ = ; |z| < | logλ| when λ �= 
)

(.)

with, of course,

Bn(x) = Bn(x; ) and Bn(λ) := Bn(;λ), (.)

where Bn(λ) denotes the so-called Apostol-Bernoulli numbers.

Recently, Luo and Srivastava [] further extended the Apostol-Bernoulli polynomials as
the so-called Apostol-Bernoulli polynomials of order α.

Definition . (Luo and Srivastava []) TheApostol-Bernoulli polynomialsB(α)
n (x;λ) (λ ∈

C) of order α ∈N are defined by means of the following generating function:

(
z

λez – 

)α

· exz =
∞∑
n=

B(α)
n (x;λ)

zn

n!(|z| < π when λ = ; |z| < | logλ| when λ �= 
)

(.)

with, of course,

B(α)
n (x) = B(α)

n (x; ) and B(α)
n (λ) := B(α)

n (;λ), (.)

where B(α)
n (λ) denotes the so-called Apostol-Bernoulli numbers of order α.

On the other hand, Luo [], gave an analogous extension of the generalized Euler poly-
nomials as the so-called Apostol-Euler polynomials of order α.

Definition . (Luo []) The Apostol-Euler polynomials E (α)
n (x;λ) (λ ∈C) of order α ∈N

are defined by means of the following generating function:

(


λez + 

)α

· exz =
∞∑
n=

E (α)
n (x;λ)

zn

n!
(|z| < ∣∣log (–λ)

∣∣) (.)
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with, of course,

E(α)
n (x) = E (α)

n (x; ) and E (α)
n (λ) := E (α)

n (;λ), (.)

where E (α)
n (λ) denotes the so-called Apostol-Euler numbers of order α.

On the subject of the Genocchi polynomials Gn(x) and their various extensions, a re-
markably large number of investigations have appeared in the literature (see, for example,
[–]). Moreover, Luo (see [–]) introduced and investigated the Apostol-Genocchi
polynomials of (real or complex) order α, which are defined as follows:

Definition . The Apostol-Genocchi polynomials G(α)
n (x;λ) (λ ∈ C) of order α ∈ N are

defined by means of the following generating function:

(
z

λez + 

)α

· exz =
∞∑
n=

G(α)
n (x;λ)

zn

n!
(|z| < ∣∣log (–λ)

∣∣) (.)

with, of course,

G(α)
n (x) = G(α)

n (x; ), G(α)
n (λ) := G(α)

n (;λ),

Gn(x;λ) := G()
n (x;λ) and Gn(λ) := G()

n (λ),
(.)

where Gn(λ), G(α)
n (λ) and Gn(x;λ) denote the so-called Apostol-Genocchi numbers, the

Apostol-Genocchi numbers of order α and the Apostol-Genocchi polynomials, respec-
tively.

Recently, Luo and Srivastava [] introduced a unification (and generalization) of the
above-mentioned three families of the generalized Apostol type polynomials.

Definition . (Luo and Srivastava []) The generalized Apostol type polynomials
F (α)

n (x;λ;u, v) (α ∈N, λ,u, v ∈C) of order α are defined by means of the following gener-
ating function:

(
uzv

λez + 

)α

· exz =
∞∑
n=

F (α)
n (x;λ;u, v)

zn

n!
(|z| < ∣∣log (–λ)

∣∣), (.)

where

F (α)
n (λ;u, v) :=F (α)

n (;λ;u, v) (.)

denote the so-called Apostol type numbers of order α.

So that, by comparing Definition . with Definitions ., . and ., we have

B(α)
n (x;λ) = (–)αF (α)

n (x; –λ; , ), (.)

E (α)
n (x;λ) =F (α)

n (x;λ; , ), (.)

G(α)
n (x;λ) =F (α)

n (x;λ; , ). (.)
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A polynomial pn(x) (n ∈ N, x ∈ C) is said to be a quasi-monomial [], whenever two op-
erators M̂, P̂, called multiplicative and derivative (or lowering) operators respectively, can
be defined in such a way that

P̂pn(x) = npn–(x), (.)

M̂pn(x) = pn+(x), (.)

which can be combined to get the identity

M̂P̂pn(x) = npn(x). (.)

The Appell polynomials [] can be defined by considering the following generating
function:

A(t)ext =
∞∑
n=

Rn(x)
n!

tn, (.)

where

A(t) =
∞∑
k=

Rk

k!
tk

(
A() �= 

)
(.)

is analytic function at t = .
From [], we know that the multiplicative and derivative operators of Rn(x) are

M̂ = (x + α) +
n–∑
k=

αn–k

(n – k)!
Dn–k

x , (.)

P̂ =Dx, (.)

where

A′(t)
A(t)

=
∞∑
n=

αn
tn

n!
. (.)

By using (.), we have the following lemma.

Lemma . ([]) The Appell polynomials Rn(x) defined by (.) satisfy the differential
equation:

αn–

(n – )!
y(n) +

αn–

(n – )!
y(n–) + · · · + α

!
y′′ + (x + α)y′ – ny = , (.)

where the numerical coefficients αk , k = , , . . . ,n –  are defined in (.), and are linked
to the values Rk by the following relations:

Rk+ =
k∑

h=

(
k
h

)
Rhαk–h.
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Let P be the vector space of polynomials with coefficients in C. A polynomial sequence
{Pn}n≥ be a polynomial set. {Pn}n≥ is called a σ -Appell polynomial set of transfer power
series A is generated by

G(x, t) = A(t)G(x, t) =
∞∑
n=

Pn(x)
n!

tn, (.)

where G(x, t) is a solution of the system:

σG(x, t) = tG(x, t),

G(x, ) = .

In [], the authors investigated the connection coefficients between two polynomials.
And there is a result about connection coefficients between two σ -Appell polynomial sets.

Lemma . ([]) Let σ ∈ �(–). Let {Pn}n≥ and {Qn}n≥ be two σ -Appell polynomial sets
of transfer power series, respectively, A and A. Then

Qn(x) =
n∑

m=

n!
m!

αn–mPm(x), (.)

where

A(t)
A(t)

=
∞∑
k=

αktk .

In recent years, several authors obtained many interesting results involving the related
Bernoulli polynomials and Euler polynomials [, –]. And in [], the authors studied
some series identities involving the generalized Apostol type and related polynomials.
In this paper, we study some other properties of the generalized Apostol type polynomi-

als F (α)
n (x;λ;u, v), including the recurrence relations, the differential equations and some

connection problems, which extend some known results. As special, we obtain some prop-
erties of the generalized Apostol-Euler polynomials, the generalized Apostol-Bernoulli
polynomials and Apostol-Genocchi polynomials of high order.

2 Recursion formulas and differential equations
From the generating function (.), we have

∂

∂x
F (α)

n (x;λ;u, v) = nF (α)
n–(x;λ;u, v). (.)

A recurrence relation for the generalized Apostol type polynomials is given by the fol-
lowing theorem.

Theorem . For any integral n ≥ , λ ∈ C and α ∈ N, the following recurrence relation
for the generalized Apostol type polynomials F (α)

n (x;λ;u, v) holds true:

(
αv
n + 

– 
)
F (α)

n+(x;λ;u, v) =
αλ

u
· n!
(n + v)!

F (α+)
n+v (x + ;λ;u, v) – xF (α)

n (x;λ;u, v). (.)
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Proof Differentiating both sides of (.) with respect to t, and using some elementary
algebra and the identity principle of power series, recursion (.) easily follows. �

By setting λ := –λ, u =  and v =  in Theorem ., and then multiplying (–)α on both
sides of the result, we have:

Corollary . For any integral n ≥ , λ ∈ C and α ∈ N, the following recurrence relation
for the generalized Apostol-Bernoulli polynomials B(α)

n (x;λ) holds true:

[
α – (n + )

]
B(α)
n+(x;λ) = αλB(α+)

n+ (x + ;λ) – xB(α)
n (x;λ). (.)

By setting u =  and v =  in Theorem ., we have the following corollary.

Corollary . For any integral n ≥ , λ ∈ C and α ∈ N, the following recurrence relation
for the generalized Apostol-Euler polynomials E (α)

n (x;λ) holds true:

E (α)
n+(x;λ) = xE (α)

n (x;λ) –
αλ


E (α+)
n (x + ;λ). (.)

By setting u =  and v =  in Theorem ., we have the following corollary.

Corollary . For any integral n ≥ , λ ∈ C and α ∈ N, the following recurrence relation
for the generalized Apostol-Genocchi polynomials G(α)

n (x;λ) holds true:


[
α – (n + )

]
G(α)
n+(x;λ) = αλG(α+)

n+ (x + ;λ) – (n + )xG(α)
n (x;λ). (.)

From (.) and (.), we know that the generalized Appostol type polynomials
F (α)

n (x;λ;u, v) is Appell polynomials with

A(t) =
(

utv

λet + 

)α

. (.)

From the Eq. () of [], we know that G(;λ) = . So from (.) and (.), we can obtain
that if v = , we have

A′(t)
A(t)

=
λα



∞∑
n=

Gn+(;λ)
n + 

· t
n

n!
. (.)

By using (.) and (.), we can obtain the multiplicative and derivative operators of the
generalized Appostol type polynomials F (α)

n (x;λ;u, v)

M̂ =
(
x +

λα


G(;λ)

)
+

λα



n–∑
k=

Gn–k+(;λ)
(n – k + )!

Dn–k
x , (.)

P̂ =Dx. (.)

From (.), we can obtain

∂p

∂xp
F (α)

n (x;λ;u, v) =
n!

(n – p)!
F (α)

n–p(x;λ;u, v). (.)

Then by using (.), (.) and (.), we obtain the following result.

http://www.boundaryvalueproblems.com/content/2013/1/64
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Theorem . For any integral n ≥ , λ ∈ C and α ∈ N, the following recurrence relation
for the generalized Apostol type polynomials F (α)

n (x;λ;u, ) holds true:

F (α)
n+(x;λ;u, ) =

(
x +

λα


G(;λ)

)
F (α)

n (x;λ;u, )

+
λα



n–∑
k=

(
n
k

)Gn–k+(;λ)
n – k + 

F (α)
n–k(x;λ;u, ). (.)

By setting u =  in Theorem ., we have the following corollary.

Corollary . For any integral n ≥ , λ ∈ C and α ∈ N, the following recurrence relation
for the generalized Apostol-Euler polynomials E (α)

n (x;λ) holds true:

E (α)
n+(x;λ) =

(
x +

λα


G(;λ)

)
E (α)
n (x;λ) +

λα



n–∑
k=

(
n
k

)Gn–k+(;λ)
n – k + 

E (α)
n–k(x;λ). (.)

Furthermore, applying Lemma . to F (α)
n (x;λ;u, ), we have the following theorem.

Theorem . The generalized Apostol type polynomials F (α)
n (x;λ;u, ) satisfy the differ-

ential equation:

λα


Gn(;λ)

n!
y(n) +

λα


Gn–(;λ)
(n – )!

y(n–) + · · ·

+
λα


G(;λ)


y′′ +

(
x +

λα


G(;λ)

)
y′ – ny = . (.)

Specially, by setting u =  in Theorem ., then we have the following corollary.

Corollary . The generalized Apostol-Euler polynomials E (α)
n (x;λ) satisfy the differential

equation:

λα


Gn(;λ)

n!
y(n) +

λα


Gn–(;λ)
(n – )!

y(n–) + · · ·

+
λα


G(;λ)


y′′ +

(
x +

λα


G(;λ)

)
y′ – ny = . (.)

3 Connection problems
From (.) and (.), we know that the generalized Apostol type polynomials F (α)

n (x;λ;
u, v) are a Dx-Appell polynomial set, where Dx denotes the derivative operator.
From Table  in [], we know that the derivative operators of monomials xn and the

Gould-Hopper polynomials gmn (x,h) [] are all Dx. And their transfer power series A(t)
are  and ehtm , respectively.
Applying Lemma . to Pn(x) = xn andQn(x) =F (α)

n (x;λ;u, v), we have the following the-
orem.

http://www.boundaryvalueproblems.com/content/2013/1/64
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Theorem .

F (α)
n (x;λ;u, v) =

n∑
m=

(
n
m

)
F (α)

n–m(λ;u, v)x
m, (.)

where F (α)
n (λ;u, v) is the so-called Apostol type numbers of order α defined by (.).

By setting λ := –λ, u =  and v =  in Theorem ., and then multiplying (–)α on both
sides of the result, we have the following corollary.

Corollary .

B(α)
n (x;λ) =

n∑
m=

(
n
m

)
B(α)
n–m(λ)x

m, (.)

which is just Eq. (.) of [].

By setting u =  and v =  in Theorem ., we have the following corollary.

Corollary .

E (α)
n (x;λ) =

n∑
m=

(
n
m

)
E (α)
n–m(λ)x

m. (.)

By setting u =  and v =  in Theorem ., we have the following corollary.

Corollary .

G(α)
n (x;λ) =

n∑
m=

(
n
m

)
G(α)
n–m(λ)x

m, (.)

which is just Eq. () of [].

Applying Lemma . to Pn(x) =Fn(x;λ;u, v) and Qn(x) =F (α)
n (x;λ;u, v), we have the fol-

lowing theorem.

Theorem .

F (α)
n (x;λ;u, v) =

n∑
m=

(
n
m

)
F (α–)

n–m (λ;u, v)Fm(x;λ;u, v), (.)

where F (α)
n (λ;u, v) is the so-called Apostol type numbers of order α defined by (.).

By setting λ := –λ, u =  and v =  in Theorem ., and then multiplying (–)α on both
sides of the result, we have the following corollary.

Corollary .

B(α)
n (x;λ) =

n∑
m=

(
n
m

)
B(α–)
n–m (λ)Bm(x;λ), (.)

which is just Eq. (.) of [].

http://www.boundaryvalueproblems.com/content/2013/1/64
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By setting u =  and v =  in Theorem ., we have the following corollary.

Corollary .

E (α)
n (x;λ) =

n∑
m=

(
n
m

)
E (α–)
n–m (λ)Em(x;λ). (.)

By setting u =  and v =  in Theorem ., we have the following corollary.

Corollary .

G(α)
n (x;λ) =

n∑
m=

(
n
m

)
G(α–)
n–m (λ)Gm(x;λ). (.)

Applying Lemma . to Pn(x) = gmn (x,h) andQn(x) =F (α)
n (x;λ;u, v), we have the following

theorem.

Theorem .

F (α)
n (x;λ;u, v) =

n∑
r=

n!
r!

[[(n–r)/m]∑
k=

(–)k
hk

k!(n – r –mk)!
F (α)

n–r–mk(λ;u, v)

]
gmr (x,h). (.)

By setting λ := –λ, u =  and v =  in Theorem ., and then multiplying (–)α on both
sides of the result, we have the following corollary.

Corollary .

B(α)
n (x;λ) =

n∑
r=

n!
r!

[[(n–r)/m]∑
k=

(–)k
hk

k!(n – r –mk)!
B(α)
n–r–mk(λ)

]
gmr (x,h), (.)

which is just Eq. (.) of [].

By setting u =  and v =  in Theorem ., we have the following corollary.

Corollary .

E (α)
n (x;λ) =

n∑
r=

n!
r!

[[(n–r)/m]∑
k=

(–)k
hk

k!(n – r –mk)!
E (α)
n–r–mk(λ)

]
gmr (x,h). (.)

By setting u =  and v =  in Theorem ., we have the following corollary.

Corollary .

G(α)
n (x;λ) =

n∑
r=

n!
r!

[[(n–r)/m]∑
k=

(–)k
hk

k!(n – r –mk)!
G(α)
n–r–mk(λ)

]
gmr (x,h). (.)

When vα = , applying Lemma . to Pn(x) = E (α–)
n (x;λ) and Qn(x) = F (α)

n (x;λ;u, v), we
have the following theorem.

http://www.boundaryvalueproblems.com/content/2013/1/64


Lu and Luo Boundary Value Problems 2013, 2013:64 Page 10 of 13
http://www.boundaryvalueproblems.com/content/2013/1/64

Theorem . If vα = , then we have

F (α)
n (x;λ;u, v) =

n∑
m=

(
n
m

)
(u–)αGn–m(λ)E (α–)

m (x;λ). (.)

By setting λ := –λ, u =  and v =  in Theorem ., and then multiplying (–)α on both
sides of the result, we have the following corollary.

Corollary .

Bn(x;λ) = –



n∑
m=

(
n
m

)
Gn–m(–λ)xm. (.)

By setting u =  and v =  in Theorem ., we have the following corollary.

Corollary .

Gn(x;λ) = –



n∑
m=

(
n
m

)
Gn–m(λ)xm, (.)

which is just the case of α =  in (.).

When v =  or α = , applying Lemma . to Pn(x) = G(α–)
n (x;λ) and Qn(x) = F (α)

n (x;λ;
u, v), we can obtain the following theorem.

Theorem . If v =  or α = , we have

F (α)
n (x;λ;u, v) =

n∑
m=

(
n
m

)
(u–)αGn–m(λ)G(α–)

m (x;λ). (.)

By setting λ := –λ, u =  and v =  in Theorem ., and then multiplying (–)α on both
sides of the result, we have the following corollary.

Corollary .

B(α)
n (x;λ) =

n∑
m=

(
n
m

)(
–



)α

Gn–m(–λ)G(α–)
m (x; –λ). (.)

When α =  in (.), it is just (.).
By setting u =  and v =  in Theorem ., we have the following corollary.

Corollary .

G(α)
n (x;λ) =

n∑
m=

(
n
m

)
Gn–m(λ)G(α–)

m (x;λ), (.)

which is equal to (.).
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If α =  in Theorem ., we have:

Corollary .

xn =
n∑

m=

(
n
m

)
Gn–m(λ)G(–)

m (x;λ). (.)

4 Hermite-based generalized Apostol type polynomials
Finally, we give a generation of the generalized Apostol type polynomials.
The two-variable Hermite-Kampé de Fériet polynomials (VHKdFP) Hn(x, y) are de-

fined by the series []

Hn(x, y) = n!
[n/]∑
r=

xn–ryr

r!(n – r)!
(.)

with the following generating function:

exp
(
xt + yt

)
=

∞∑
n=

tn

n!
Hn(x, y). (.)

And the VHKdFP Hn(x, y) are also defined through the operational identity

exp

(
y

∂

∂x

){
xn

}
=Hn(x, y). (.)

Acting the operator exp (y ∂

∂x ) on (.), and by the identity []

exp

(
y

∂

∂x

){
exp

(
–ax + bx

)}
=

√
 + ay

exp

(
–
ax – bx – by

 + ay

)
, (.)

we define the Hermite-based generalized Apostol type polynomials HF (α)
n (x, y;λ;u, v) by

the generating function

(
uzv

λet + 

)α

· ext+yt =
∞∑
n=

HF (α)
n (x, y;λ;u, v)

tn

n!
(|t| < ∣∣log (–λ)

∣∣). (.)

Clearly, we have

HFn(x, y;λ;u, v) = HF ()
n (x, y;λ;u, v).

From the generating function (.), we easily obtain

∂

∂xHF (α)
n (x, y;λ;u, v) = nHF (α)

n–(x, y;λ;u, v) (.)

and

∂

∂yHF (α)
n (x, y;λ;u, v) = n(n – )HF (α)

n–(x, y;λ;u, v), (.)
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which can be combined to get the identity

∂

∂x HF (α)
n (x, y;λ;u, v) =

∂

∂yHF (α)
n (x, y;λ;u, v). (.)

Acting with the operator exp y ∂

∂x on both sides of (.), (.), (.), (.), and by using
(.), we obtain

HF (α)
n (x;λ;u, v) =

n∑
m=

(
n
m

)
F (α)

n–m(λ;u, v)Hm(x, y), (.)

HF (α)
n (x;λ;u, v) =

n∑
m=

(
n
m

)
F (α–)

n–m (λ;u, v)HFm(x;λ;u, v), (.)

HF (α)
n (x;λ;u, v) =

n∑
m=

(
n
m

)
(u–)αGn–m(λ)HE (α–)

m (x;λ), where vα = , (.)

HG(α)
n (x;λ) =

n∑
m=

(
n
m

)
Gn–m(λ)HG(α–)

m (x;λ), where v =  or α = , (.)

where HE (α)
n (x;λ) and HG(α)

n (x;λ) are the Hermite-based generalized Apostol-Euler poly-
nomials and the Hermite-based generalized Apostol-Genocchi polynomials respectively,
defined by the following generating functions:

(


λet + 

)α

· ext+yt =
∞∑
n=

HE (α)
n (x;λ)

tn

n!
(|t| < ∣∣log (–λ)

∣∣),
(

t
λet + 

)α

· ext+yt =
∞∑
n=

HG(α)
n (x;λ)

tn

n!
(|t| < ∣∣log (–λ)

∣∣).
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