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Discrete Fučík spectrum - anchoring rather
than pasting
Petr Stehlík*

In 1979, deep in the dark days of the Soviet occupation of Central and Eastern Europe, a car with a Belgian couple is
crossing the heavily guarded border between West Germany and Czechoslovakia. In their luggage they hide a
package with a big amount of cash. If revealed, Jean Mahwin and his wife would end up in a serious trouble. Custom
officers wouldn’t believe the true story about a donation collection of West European mathematicians for the widow
of the recently deceased young mathematician Svatopluk Fučík. The organizer of the collection is none other than
Jean Mawhin himself. The driver not only brings dollars, but also brightens faces of hundreds of decent people who
learn about this story. Even today. Mathematicians are commonly depicted as out-of-touch and asocial beings. Few
people would connect them to acts of courage and compassion. Jean Mawhin defies this stereotype more than
anyone else. I am very happy that I can offer my wishes to his 70th birthday. Happy birthday!
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Abstract
In this short note we study a simple discrete Fučík spectrum. Trying to imitate
standard continuous pasting procedures, we derive a more complicated discrete
analogue - anchoring. Using this technique, we show that the problem of finding the
parametrization of the second discrete Fučík branch is equivalent to solving a
transcendent equation A sin(x) = sin(Bx). Based on this equivalence, we state a
conjecture that already the second branch has no elementary parametrization, i.e., it
cannot be described by a finite number of elementary functions.
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1 Introduction
Comparison of related continuous and discrete nonlinear problems reveals a very inter-
esting relationship between these two worlds. In some cases, the finite dimension of dis-
crete function spaces could significantly simplify analysis and provide general results (see
[–]). In other situations, the broken discrete topology, in which sequences or vectors
appear instead of continuous curves, causes difficulties without analogies in the contin-
uous world. The goal of this paper is to show that the Fučík spectrum is one of the most
astonishing examples of the latter type.
The nonlinear generalization of the eigenvalue problem for ODEs by Svatopluk Fučík

[] was quickly applied in the theory of semilinear boundary problems (e.g., [, ]). Since
then this concept has been extended to more complicated differential operators (e.g., [,
]) and studied in general settings of Banach spaces (e.g., []). Attempts to analyze the
Fučík spectrum for matrices and difference operators have been less successful (see [–
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]). Those works reveal the complexity of the matrix problem, which prevents to fully
describe the spectrum beyond ×  matrices.
One possible answer to these complications could be to concentrate on a special class of

matrices corresponding to specific difference operators. In this brief note, we follow this
avenue and try to apply Fučík’s pasting technique [] to the simplest discrete problem, a
direct counterpart of the original continuous problem

⎧⎨
⎩
–�x(k – ) = μx+(k) – νx–(k), k = , , . . . ,N ,

x() =  = x(N + ).
()

Assuming that x±(k) := max{±x(k), }, we seek the Fučík spectrum, i.e., pairs (μ,ν) ∈ R

such that the problem () has a nontrivial solution.
In Section , there is a short summary of continuous pasting technique. In Section , we

deal with the trivial first branch of (). In Section , we show that (i) one should rather talk
about anchoring than pasting in the case of the second branch, and that (ii) the problem
of finding its parametrization is equivalent to the problem of solving A sin(x) = sin(Bx)
with A <  and B ∈ Q. Finally, in Section  we state and discuss the conjecture that the
parametrization of the second-branch of () is not elementary, i.e., it cannot be described
by a finite number of elementary functions.

2 Pasting in continuous case
First, let us briefly recall the pasting technique for the original continuous problem []

⎧⎨
⎩
–x′′(t) = μx+(t) – νx–(t), t ∈ (,π ),

x() =  = x(π ).
()

Lemma  The piecewise nonlinear BVP () has a nontrivial solution if and only if (μ,ν) ∈
�c, where �c =

⋃∞
n=Cc

n, where

Cc
 =

{
(μ,ν) : (μ – )(ν – ) = 

}
, ()

Cc
k =

{
(μ,ν) :

√
μ

+
√
ν
=

k

}
, ()

Cc
k+ =

{
(μ,ν) :

√
μ

+
√
ν
=

k
–


k√μ

or
√
μ

+
√
ν
=

k
–


k
√

ν

}
()

for k = , , . . . .

Proof The detailed proof could be found, e.g., in [, Chapter ]. We only provide a seem-
ingly clumsy proof of the construction of the second branch Cc

 so that we could illustrate
the pasting technique. OnCc

 the solution could be split in the positive part xP(t) and nega-
tive part xN (t).Without loss of generality, we assume that xP(t) = sin(π t

m ), wherem ∈ (,π ).
Then the negative part must have the form xN (t) = C sinβ(t–π ), where β = –π

m–π
is chosen

so that xP and xN meet at m. The constant C is then chosen so that this connection is
continuously differentiable (cf. Figure ). From this we have that μ = ( π

m )
 and ν = ( π

π–m )
,

http://www.boundaryvalueproblems.com/content/2013/1/67
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Figure 1 Continuous pasting procedure. See Lemma 1 and its proof.

which implies that

√
μ

+
√
ν
=


. �

3 Trivial first branch
Let us return back to the discrete problem (). Following the continuous notation, we de-
note the discrete spectrum by �d . We realize first that the problem () on N +  points
can change sign only (N – )-times, which implies that the spectrum on N +  points will
have only N branches Cd

i , i.e.,

�d =
N⋃
i=

Cd
i .

Naturally, the first Fučík branch Cd
 of () is given by the eigenvalues of the discrete prob-

lem
⎧⎨
⎩
–�x(k – ) = λx(k), k = , , . . . ,N ,

x() =  = x(N + ).
()

As we use the eigenvalues in the sequel, we present a concise proof.

Theorem  The eigenvalues of () are

λi =  sin
iπ

(N + )
, i = , , . . . ,N , ()

and the corresponding eigenvectors are

ui(k) = sin
kiπ
N + 

, i,k = , , . . . ,N . ()

Proof For a fixed i = , , . . . ,N , direct substitution of () into () yields

–�ui(k – ) = λiui(k),

– sin
i(k – )π
N + 

+  sin
ikπ
N + 

– sin
i(k + )π
N + 

= λi sin
ikπ
N + 

,
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 sin
ikπ
N + 

–  sin
ikπ
N + 

cos
iπ

N + 
= λi sin

ikπ
N + 

,

 – cos
iπ

N + 
= λi,

 sin
iπ

(N + )
= λi.

Thus, we have N independent eigenvectors, which finishes the proof. �

The first eigenvalue λ =  sin π
(N+) generates the first Fučík branch Cd

 of (). Since
the corresponding eigenfunction u(k) = sin kπ

N+ does not change its sign, we obtain that
the problem () has a nontrivial solution u(k) for an arbitrary couple (λ,ν), with ν ∈ R.
Similarly, the problem () has a nontrivial solution –u(k) for an arbitrary couple (μ,λ),
with μ ∈R.

4 Second branch and anchoring
Let us move on to the second discrete Fučík branch Cd

 . It corresponds to the solutions of
() that change the sign exactly once (see Figure  for illustration and basic notation). As in
the continuous case, we try to paste together two sine functions.Without loss of generality,
we assume that the solution is positive first. We choosem ∈ (,N) and consider solutions
which are nonnegative on [,m]Z,a with values lying on the sine function (cf. Theorem 
and Figure )

xP(k) = sin

(
π

m
k
)
. ()

Since the solutions on the second branch change sign exactly once and lie on the sine
function again, we seek constantsC,β ∈R (cf.Theorem  and Figure ) in the nonpositive
part

xN (k) = C sinβ(k –N – ). ()

Then the vector (�m� and �m	 denote floor and ceiling functions)

x = [xP,xN ] :=
[
,xP(), . . . ,xP

(�m�),xN(�m	), . . . ,xN (N), 
]T

Figure 2 Discrete anchoring procedure. Illustration of the fact thatm + n 
= N + 1 in general.
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is the solution of () coupled with the pair (μ,ν) given by

μ =  sin
π

m
, ν =  sin

β


. ()

Above, we consideredm ∈ (,N). This follows from the fact that if we had chosenm ≤ 
or m ≥ N , there would have been no positive/negative part and the solution would have
laid on Cd

 instead.
Our first observation is trivial and considers integer values of m. In this case, the tran-

sition between the positive and negative parts occurs exactly at m = �m� = �m	, and we
could easily compute β and C in (). In other words, we could still talk about pasting in
this case.

Lemma  If m ∈ (,N) is an integer number, then

β =
π

N +  –m
, C =

sin π
m

sin π
N+–m

. ()

Moreover, xP and xN are equal in m – ,m and m + .

Proof If m is integer, then xP(m) = . Consequently, the difference equation () at k =m
reduces to

xP(m – ) + xN (m + ) = .

Exploiting the symmetry of sine functions, both xP and xN are equal inm–,m andm+.
Since xN (m) = , we obtain that

β =
π

N +  –m
.

Finally, the equality of functions xP and xN , e.g., atm + , implies that

sin
π (m + )

m
= C sin

π

N +  –m
(m +  –N – ),

– sin
π

m
= –C sin

π

N +  –m
,

C =
sin π

m
sin π

N+–m
. �

The analysis gets more complicated once we consider non-integer values of m. In this
case, the transition between positive and negative parts occurs between �m� and �m	. Our
first result states that the values of xP and xN coincide at �m� and �m	 (cf. Figure ).

Lemma  (Necessary condition) Let m ∈ (,N) be non-integer. Let x = [xP,xN ] be a non-
trivial solution of () with xP and xN given by () and (). Then the following equalities
hold:

xP
(�m�) = xN

(�m�), ()

xP
(�m	) = xN

(�m	). ()

http://www.boundaryvalueproblems.com/content/2013/1/67
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Proof If xP is given by (), then the equation

�xP(k – ) = μxP(k)

holds for k = , , . . . , �m� –  if and only if (see the proof of Theorem )

μ =  sin
π

m
.

If we consider the difference equation () in �m� we get

xP
(�m� – 

)
– xP

(�m�) + xN
(�m	) =  sin

π

m
xP

(�m�).
This equality holds if and only if (see ())

xN
(�m	) = xP

(�m	),
which verifies ().
Using the same argument at �m	 for xN , we obtain that () holds as well. �

This result enables us to get both peripheral parts of Cd
 .

Corollary 

(μ,ν) =
(
 sin

π

m
,  –

sin (N–)π
m

sin Nπ
m

)
∈ Cd

 , m ∈ (N – ,N),

and

(μ,ν) =
(
 –

sin (N–)π
n

sin Nπ
n

,  sin
π

n

)
∈ Cd

 , n ∈ (N – ,N).

Proof Let us consider m ∈ (N – ,N). Then we have

xP(N – ) = sin

(
(N – )π

m

)
, xP(N) = xN (N) = sin

(
Nπ

m

)
.

Then we can rewrite the equation () in k =N ,

–x(N – ) + x(N) – x(N + ) = νx(N),

– sin
(
(N – )π

m

)
+  sin

(
Nπ

m

)
= ν sin

(
Nπ

m

)
,

 –
sin (N–)π

m

sin Nπ
m

= ν.

This proves the former part of the statement. The latter follows from the mirror argu-
ment. �

http://www.boundaryvalueproblems.com/content/2013/1/67
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Obviously, ν >  form sufficiently close to N . This implies that () cannot hold for any
β , i.e., not all the solutions on the second branch can be obtained as a composition of sine
functions!
Since the problem is solved for m ∈ (, ) ∪ (N – ,N), we could turn our attention to

m ∈ (,N – ) in the following. Applying () and (), we can rewrite conditions () and
() in the following way.

Corollary  (Necessary condition II) Let m ∈ (,N – ) be non-integer. If xP and xN have
the form () and (), then the following equality is satisfied:

sin

(
π

m
�m�

)
sinβ

(�m	 –N – 
)
= sin

(
π

m
�m	

)
sinβ

(�m� –N – 
)
. ()

Proof One can rewrite equalities () and () into

sin

(
π

m
�m�

)
= C sinβ

(�m� –N – 
)
,

sin

(
π

m
�m	

)
= C sinβ

(�m	 –N – 
)
.

Isolating C on the right-hand sides of both equations, we get

sin( π
m�m�)

sinβ(�m� –N – )
= C =

sin( π
m�m	)

sinβ(�m	 –N – )
.

Now, it suffices to multiply this equality by both denominators to get (). �

Remark  (Anchoring) Corollary  implies that the (continuous extensions of ) sine func-
tions () and () do not intersect at m in general. Indeed, we could see that β = π

N+–m
does not solve () for allm. In other words, if we define n := π

β
, we havem + n 
=N +  for

almost every m ∈ (,N) (see Figure ).

We have shown that

Cd
 =

ZCd
 ∪ Cd

 ∪ Cd
 ,

where (see Lemma  and ())

ZCd
 =

{
(μ,ν) : μ =  sin

π

m
,ν =  sin

π

(N +  –m)
,m ∈ (,N)Z

}
,

and the parametrization of Cd
 is given by (). Finally, wewould like to get the parametriza-

tion of Cd
 , i.e., consider m ∈ (,N – ). Corollary  implies that one could get the

parametrization of Cd
 if and only if one could solve (). Equation () is equivalent to

the problem of solving the transcendent equation

A sin(x) = sin(Bx), ()

http://www.boundaryvalueproblems.com/content/2013/1/67
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with A <  and B ∈ Q. Indeed, if we define

A =
sin( π

m�m�)
sin( π

m�m	) , C = �m	 –N – , D = �m� –N – ,

then the nonlinear equation () can be rewritten as

A sin(Cβ) = sin(Dβ).

Consideringm ∈ (�m�, �m	), we see that D and C are constant non-zero integers and A ∈
(–∞, ). Consequently, if we substitute x = Bβ and D = BC, we get ().
In order to get the parametrization of the complete second Fučík branch Cd

 , we need
to solve () for β , or, equivalently, () for x. While this could be done pretty easily nu-
merically, we state, in the final section, a conjecture that it is not possible to use a finite
number of elementary functions to get such a parametrization. Meanwhile, we make two
straightforward observations.

Remark  Considering non-integer values of m, we can solve equation () only in the
symmetric case, in whichm = �m�+ 

 = �m	– 
 . Either the symmetry of sine functions or

the direct computation yields thatβ = π
N+–m . Similarly, as in the integer case (cf.Lemma),

this value coincides with the value of the corresponding continuous problem as the posi-
tive and negative parts meet atm.

Combining this with the following straightforward corollary, we observe that the second
branchCd

 of the discrete spectrum slidesmonotonically along its continuous counterpart,
coinciding in the ‘symmetric’ values ofm, in which m ∈N (see Figure ).

Figure 3 Illustration of the second Fučík branch for N = 4 with the corresponding continuous second
branch Cc

2.
ZCd2 is not depicted for presentation purposes. In this case, ZCd2 consists only of two points, in

which the orange 1Cd2 meets the pink 2Cd2 , corresponding tom = 2 andm = 3.

http://www.boundaryvalueproblems.com/content/2013/1/67
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Corollary  The value of ν is decreasing in μ.

Proof Putting β = β(m) and differentiating (), we get

β ′(m)

=
cos( π

m�m�) · π�m�
m · sinβ(�m	 –N – ) – cos( π

m�m	) · π�m	
m · sinβ(�m� –N – )

sin( π
m�m�) cosβ(�m	 –N – ) – sin( π

m�m	) cosβ(�m� –N – )
.

Analyzing the signs of individual terms and observing that π
m�m� < π and that π

m�m	 > π ,
we conclude that

β ′(m) > ,

and () yields the result. �

5 Elementariness of the second branch Cd
2

Since the second-branch Cd
 of () is the first nontrivial branch of the simplest discrete

Fučík spectrum, we believe that its properties can help to explain difficulties with discrete
Fučík spectra. Therefore, we discuss possible ways to prove that its part Cd

 has no ele-
mentary parametrization.

Definition  We say that a function is elementary if it is a finite composition of rational,
algebraic, exponential, logarithmic, trigonometric, inverse trigonometric, hyperbolic and
inverse hyperbolic functions.We say that a parametrization of a curve inR is elementary
if it consists of elementary functions.

Under this definition, our conjecture becomes as follows.

Conjecture  The second branch Cd
 of () has no elementary parametrization.

Our analysis in the previous section implies that one could rephrase this conjecture in
the following way.

Conjecture  The solution of equation () cannot be solved in elementary functions.

Since there is a developed theory of elementary integration (see []) and (to our knowl-
edge) there is no suitable tool dealing with elementary parametrizations of transcendent
equations like (), we try to use the theory of elementary integration to attack Conjec-
tures  and .

Definition  We say that the integral is elementary if it can be expressed in terms of
elementary functions.

One could use the Risch algorithm [, Chapter ] to determine whether an integral is
elementary or not.We use this procedure to analyze an integral directly connected to ().

Lemma  The integral
∫ dx

x sin(x) is not elementary.

http://www.boundaryvalueproblems.com/content/2013/1/67
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Proof Denoting θ = eix, a(θ ) = iθ and b(θ ) = x(θ – ), we rewrite the integral
∫ dx

x sin(x)
=

∫ iθ
x(θ – )

dx =
∫ a(θ )

b(θ )
dx.

We compute the following resultant (see [, Definition .]):

R(z) = resθ
(
a(θ ) – z · b′(θ ),b(θ )

)
= resθ

(
iθ – zθ( + ix) + z,x

(
θ – 

))

=

∣∣∣∣∣∣∣∣∣

–z( + ix) i z 
 –z( + ix) i z
x  –x 
 x  –x

∣∣∣∣∣∣∣∣∣
= x – xz.

Since the roots of R(z) are z = ± 
x , i.e., not constant, the integral is not elementary (see

the Rothstein-Trager theorem [, Theorem .]). �

Let us return back to Conjecture  and study () in more general settings, considering
A,B ∈R.

Conjecture  Equation x sin(u)– sin(yu) =  cannot be solved for u = u(x, y) using a finite
number of elementary functions.

Let us denote f (x, y,u) := x sin(u) – sin(yu) and consider the equation f (x, y,u) = . Since
∂f
∂u = x cos(u) – y cos(yu), the implicit function theorem can be applied in points (x, y,u)
such that x sin(u) = sin(yu) and x cos(u) 
= y cos(yu). Therefore, we take into account triplets
(x, y, z) = (,C, πn–C ) with C 
= , n ∈ Z.
The implicit function theorem implies that the solution u = u(x, y) starting in those

points satisfies

 =
∂

∂x
f
(
x, y,u(x, y)

)
= sin(u) +

[
x cos(u) – y cos(yu)

]∂u
∂x

,

 =
∂

∂y
f
(
x, y,u(x, y)

)
= –u cos(yu) +

[
x cos(u) – y cos(yu)

]∂u
∂y

.

Multiply the first equation by xu cos(u), the second equation by y sin(u), add both and
divide the result by the non-zero term in the square brackets to obtain the initial problem
for the first-order partial differential equation (y 
= )

⎧⎨
⎩
xu cos(u) ∂u

∂x + y sin(u) ∂u
∂y = –u sin(u),

u(, y) = πn
–y .

()

Characteristic equations of () are given by

⎧⎪⎪⎨
⎪⎪⎩
ẋ = xz cos(z), x() = ,

ẏ = y sin(z), y() = C,C 
= ,

ż = –z sin(z), z() = πn
–C ,n ∈ Z,

()
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where z = u(x, y) is the value of u along characteristic curves. The third equation of ()
cannot be solved using elementary functions for n 
=  as the integral

∫ 
z sin(z) dz is not

elementary (Lemma ).
Unfortunately, the existence of non-elementary parametrization does not imply yet that

the solution surfaces u = un(x, y) of f (x, y,u) =  (which arise as a union of the characteristic
curves) cannot be expressed using elementary functions.

6 Conclusion
The goal of this paper was to shed some light on the problems which have arisen in the
study of the discrete Fučík spectrumor related resonance problems. Althoughwewere un-
able to fully prove the nonexistence of elementary parametrization of the second branch of
the simplest discrete Fučík spectrum, we believe that the anchoring technique and the re-
lationship to the transcendent equation () help to understand better the troubles which
occur in this area.
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Endnote
a Subscript Z denotes the discrete interval, i.e., [0,m]Z := [0,m]∩Z.
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