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Abstract

The aim of this work is to study adaptive fully-discrete finite element methods for
quadratic boundary optimal control problems governed by nonlinear parabolic
equations. We derive a posteriori error estimates for the state and control
approximation. Such estimates can be used to construct reliable adaptive finite
element approximation for nonlinear quadratic parabolic boundary optimal control
problems. Finally, we present a numerical example to show the theoretical results.

1 Introduction

In this paper, we study the fully-discrete finite element approximation for quadratic
boundary optimal control problems governed by nonlinear parabolic equations. Optimal
control problems are very important models in engineering numerical simulation. They
have various physical backgrounds in many practical applications. Finite element approxi-
mation of optimal control problems plays a very important role in the numerical methods
for these problems. The finite element approximation of a linear elliptic optimal control
problem is well investigated by Falk [1] and Geveci [2]. The discretization for semilinear
elliptic optimal control problems is discussed by Arada, Casas, and Troltzsch in [3]. Sys-
tematic introductions of the finite element method for optimal control problems can be
found in [4-6].

As one of important kinds of optimal control problems, the boundary optimal control
is widely used in scientific and engineering computing. The literature in this aspect is
huge; see, e.g.,, [7-10]. For some quadratic boundary optimal control problems, Liu and
Yan [11, 12] investigated a posteriori error estimates and adaptive finite element methods.
Alt and Mackenroth [13] were concerned with error estimates of finite element approxi-
mations to state constrained convex parabolic boundary optimal control problems. Arada
et al. discussed the numerical approximation of boundary optimal control problems gov-
erned by semilinear elliptic equations with pointwise constraints on the control in [14].
Although a priori error estimates and a posteriori error estimates of finite element ap-
proximation are widely used in numerical simulations, they have not yet been utilized in
nonlinear parabolic boundary optimal control problems.

Adaptive finite element approximation is the most important method to boost accu-
racy of the finite element discretization. It ensures a higher density of nodes in a certain
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area of the given domain, where the solution is discontinuous or more difficult to approxi-
mate, using a posteriori error indicator. A posteriori error estimates are computable quan-
tities in terms of the discrete solution that measure the actual discrete errors without the
knowledge of exact solutions. They are essential in designing algorithms for mesh which
equidistribute the computational effort and optimize the computation. Recently, in [15—
18], we derived a priori error estimates, a posteriori error estimates and superconvergence
for optimal control problems using mixed finite element methods.

In this paper, we adopt the standard notation W"?(Q2) for Sobolev spaces on Q2 with

a norm || - |,y given by [[v|}, = > lel<m ||D°‘v||’2p(m and a semi-norm | - |,,,, given by
|V|’f,,,p = Z\od:m ||D"‘v||lz,,(9). We set W, (Q) = {v € W™P(Q) : v|sq = 0}. For p = 2, we de-
note H”(2) = W"2(Q), H(2) = Wg"*(Q),and || [l = Il - w2, Il - | = |- lo,2- We denote by

L*(0, T; W™?(Q2)) the Banach space of all L* integrable functions from J into W”#(Q2) with
the norm ||v||zsg,wmr () = (fOT ||V||5Wm,p(9) dt)% fors € [1,00), and the standard modification
for s = 00. The details can be found in [19].

In this paper, we derive a posteriori error estimates for a class of boundary optimal con-
trol problems governed by a nonlinear parabolic equation. To our best knowledge, in the
context of nonlinear parabolic boundary optimal control problems, these estimates are
new. The problem that we are interested in is the following nonlinear quadratic parabolic
boundary optimal control problem:

i /T Ly =yol? + Lt ) de W
ek | Jy \ 2ol F ol

subject to the state equations

Ye(x,£) =V - (AVy(x, t)) + ¢)(y(x, t)) =fxt), x€Qte], (2)
(AVy(x,t)) - n=Bulx,t) +zp, x€0Qte], (3)
y(x,0) =yo(x), x€Q, (4)

where the bounded open set Q C R? is 2 regular convex polygon with boundary 32, J =
(0, TN, f € L2(J; LA(R2)), yo € HY(R), z» € L?(3Q), and « is a positive constant. For any I > 0,
the function ¢(-) € W**(=L,1), ¢'(y) € L*(2) for any y € L*(J; H(R2)), and ¢'(y) > 0. We
assume the coefficient matrix A(x) = (2;j(x))2x2 € (W»*(2))**? is a symmetric positive
definite matrix, and there is a constant ¢ > 0 satisfying for any vector X € R?, X'AX >
c||X||§2. Here, K denotes the admissible set of the control variable defined by

K ={u(x,t) € L*(;L*(0Q)) : u(x,t) > 0ae.x € Q,t €]} (5)

The plan of this paper is as follows. In the next section, we present a finite element dis-
cretization for nonlinear quadratic parabolic boundary optimal control problems. A pos-
teriori error estimates are established for the finite element approximation solutions in
Section 3. In Section 4, we give a numerical example to prove the theoretical results.

2 Finite element methods for parabolic boundary optimal control
We shall now describe a finite element discretization of nonlinear quadratic parabolic
boundary optimal control problem (1)-(4). Let V = HY(Q), W = L2(Q), U = L*(3S).
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Let
aly,w) = /Q (AV) - Vw, Vywe, (6)
Gifi) = [ S VS € W x W, )
(u, Vg = /;Q uv, V(u,v)el x U. (8)

Then quadratic parabolic boundary optimal control problem (1)-(4) can be restated as

i fT Ly =0l + Zjul? ) de )
uek | Jy \27 7ol ol

subject to
e, w) +a(y, w) + (¢(y),w) =(f,w) + Bu+zp,w)y, YweV,te], (10)
y(x,0) =yo(x), x€, (11)

where the inner product in L*(2) or L*(2)? is indicated by (-,-), and B is a continuous
linear operator from U to L?(S2).

It is well known (see, e.g., [12]) that the optimal control problems have at least a solution
(y,u), and that if a pair (y, u) is the solution of (9)-(11), then there is a co-state p € V such
that the triplet (y, p, u) satisfies the following optimality conditions:

ew) +a(y,w) + (60), w) = (L, w) + Bu + zp, W)y, YweV =H'(Q), 12)
y(x,0) =yo(x), x€L, (13)
—(pow) +alg,p) + (¢ Op.q) = -y0,9), Vg€V =H(RQ), (14)
px,T)=0, xe€Q, (15)
T
/ (au+B*p,v—u)udt20, Yve K cU=L*RQ), (16)
0

where B* is the adjoint operator of B. In the rest of the paper, we shall simply write the
product as (-, -) whenever no confusion should be caused.

Let us consider the finite element approximation of control problem (9)-(11). Again, here
we consider only #-simplex elements and conforming finite elements.

Let T” be a regular partition of Q. Associated with T" is a finite dimensional subspace
V" of C(Q) such that x|, are polynomials of m-order (m > 1) Vx € V" and r € T". It is
easy to see that V" C V. Let £” be a partition of 32 into disjoint regular (1 — 1)-simplices
s, so that 3Q = | J,_cx 5. Associated with £ is another finite dimensional subspace U”"
of L*(dR) such that x|, are polynomials of m-order (m > 0) Vx € U" and s € £". Let
. () denote the maximum diameter of the element t(s) in T#(£"), h = max, .k {h,}, and

hy = max,en{hg}. In addition C or ¢ denotes a general positive constant independent of /.
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By the definition of a finite element subspace, the finite element discretization of (9)-(11)
is as follows: compute (yy, ;) € V" x K" such that

'{/TCM 2 “nnﬂ} a7)
min — — + — U
men | Jo \2 Yn —JYo ) h

e Wi) + @i wi) + (6On), wa) = (Fr wi) + (Buy + 2o, wi)u,  Ywy € V2, (18)

yu(x,0) = yi(x), xe, (19)

where K" = K N U", y% € V" is an approximation of y;.

Again, it follows that optimal control problem (17)-(19) has at least a solution (yy, uy),
and that if a pair (y;, u) is the solution of (17)-(19), then there is a co-state p;, € V” such
that the triplet (yy, py, uy) satisfies the following optimality conditions:

e Wn) + @i wi) + (6On), wa) = (Frwi) + (Buy + zps Wi, Ywy € V2, (20)
yu(x,0)=yp(x), x€, (21)
~(pnewi) + algnpn) + (&' WP an) = On—yo,qn),  Yane V", (22)
pulx,T)=0, xeQ, (23)
T
/ (auh + B pp, vy — uh)udt >0, Vv,eK" (24)
0

We now consider the fully discrete approximation for the semidiscrete problem. Let

At>0,N=T/AteZ,and let £ = iAt, i € R. Also, let
Vo=, dyi= LY
At

Fori=1,2,...,N, we construct the finite element spaces V}* € V with the mesh 7" (similar
to Vj). Similarly, we construct the finite element spaces L[l.h € L*(392) with the mesh T;;
(similar to Uj,). Let 4 (hg) denote the maximum diameter of the element t/(s’) in T},((E")?).
Define mesh functions 7(-), s(-) and mesh size functions 4, (-), /() such that 7 (£)|;e; ;1 =
T 8 tetty ] = 55 e (Ol = Mo Bs(®)lee(eyy 11 = hs;- For ease of exposition, we denote
7(t), s(t), h.(¢), and hs(2) by t, s, k., and ks, respectively.

Then the fully discrete finite element approximation of (17)-(19) is as follows. Compute
O, ul) e VI x K, i=1,2,...,N, such that

N
. 1, ay
mindS (il S141)| )
(e wn) + @y wn) + (@) wi) = (£ £, wi) + (Bas + 25, W) (26)

VYw,eV%i=12,...,N, yx)=yix), xeQ, (27)

where Kih =KN Uih, yg € V" is an approximation of .
Now, it follows that optimal control problem (25)-(27) has at least a solution (Y;;, L[;;),
i=1,2,...,N, and that if a pair (Y},U}), i =1,2,...,N, is the solution of (25)-(27), then
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there is a co-state Pﬁl‘l € Vl.h, i=1,2,...,N, such that the triplet (Yi,PZ‘l, U,i) satisfies the
following optimality conditions:

(th;;,wh) + a(Yhi,wh) + (¢(Y,i),wh) =(f,wy) + (BU,i + zb,wh)u, Ywy, € Vih, (28)

i=1,2,...,N, Y (%) =yix), xe (29)
~(dePy qn) + alan ) + (@' (V)P an) = (Vi —y0.an), Yawe VY, (30)
i=N,...,2,1, PY\(x)=0, xeQ, (31)
(al] + B*P}, vy, - U,) >0, Vv, eK!,i=12,...,N. (32)

Fori=1,2,...,N,let

Vil = (G =Y + (= ti)Y}) /A, (33)
Puli 1 = (G =P + (6= t1)P) I AL, (34)
Uh|(ti-1,ti] = U}il' (35)

For any function w € C(0, T;L*(R2)), let W(x, £)|te(t,_y e = W 1), W, E)leeqy ) = W,
t;i-1). Then the optimality conditions (28)-(32) can be restated as follows:

(Yot wi) + a(Yi, wi) + (6(¥5), wi) = (f, wi) + (BUy, + zp, Wiy,  Ywy, € VI, (36)
i=1,2,....,N, Y =yix), xeQ (37)
~Puerqn) + alqn, P) + (¢’ Yi)Pr @) = (Vi — yo,qn),  Yan e VY, (38)
i=N,...,2,1, Py(x,T)=0, xe€€, (39)
(aly +B*Py, vy~ Uy) >0, Vv,eK!i=12,...,N. (40)

In the rest of the paper, we shall use some intermediate variables. For any control func-
tion Uj, € K, we define that the state solution (y(U},), p(U},)) satisfies

e(Un), w) + a(y(Un),w) + ((y(Un)), w) = (f,w) + (BUy + zp,w), YweV, (41)

y(Up)(x,0) = yo(x), x€, (42)
—(pe(Un), q) + alq, p(Un) + (¢’ W (Un)p(Un),q) = (y(Un) = y0.9), Vg€V,  (43)
pUp)x,T)=0, =xeQ. (44)

Now we restate the following well-known estimates in [19].

Lemma 2.1 Let 71y, be the Clément-type interpolation operator defined in [19]. Then for
any v € H\(Q) and all element t,

lv=#nvll2ey +he | VO = 79| 2y < Che D Wiy (45)
TNTAD
v =Auvll 20 < C> > 1V, (46)
ict

where [ is the edge of the element.

Page 5 of 18
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For ¢ € W), we write

d(p) —d(p) == (9)(p —9) = —¢'(p) (0 — 9) + §" (@) (0 — ¥)%, (47)

where

- 1
¢'(p) = /0 ¢ (¢ +s(p — @) ds,

1
¥ = [ (a-99"(p +5(0 - ) ds
0
are bounded functions in  [20].

3 Aposteriori error estimates
In this section we obtain a posteriori error estimates for nonlinear quadratic parabolic

boundary optimal control problems. Firstly, we estimate the error ||y(U},) — Yl 12(5HL Q)

Theorem 3.1 Let (y(Uy,), p(Uy)) and (Yy,, Py) be the solutions of (41)-(44) and (36)-(40),
respectively. Then

6
||y(uh) - ?h “12‘2(];]_11(9)) = CZ 77121 (48)
i=1
where

r - - A N2
it= [ [~ Yies dvav iy - ey,

T

reTh
T A
n§=/ > hz/[AVYh~n12,
0 jag-¢p !

T
ﬂ§=/ Zhl/l(AVYh'n—BUh—Zb)2x

0 o
ni =Y, - }A/h||]%20;H1(Q))’
2
12 = Y0 - 30 @) 12 gy

2 7112
Ne = ”f _f”LZ(];LZ(Q))x

where [ is a face of an element t, h is the size of the face I, [AVyy, - n] is the A-normal

derivative jump over the interior face | defined by
[AVY;, . }’1]1 = (AVYh|fll _AVYh|112) -n,

where n is the unit normal vector on | = T} N T} outwards ;.

Page 6 of 18
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Proof Let ¢ = y(Uy) — Yy, and let ef be the Clément-type interpolator of ¢’ defined in
Lemma 2.1. Note that

T T
/ (yt(uh) - th,ey) dt = / / (yt(Uh) - Yht)ey dxdt
0 0 Q

1 1
=3 / (((Un) - Ya) 7)) dx - 5 1Y, 0) = o) .
Q
Thus
T 1 9
| 0t iy e 15365,0) =303y = 0
Using equations (36) and (41), we infer that

C”ey”%%]']_[l(g))

T T
< [ Vb -vi),veyde+ [ (@) - o) dr
0 0
T T
- [ v - 1) v - die [ (@) - o). -6
T T
o [ A bwn) - 1) V) des [ @0wn) o0, de
T T
< / (AV(y(Un) - Y2), V(e —€])) + / (o)) - p(Yn), € —€))
0 0
T 1 9
+ [0t = Vi = )i 3400~ 00 g
T T
+f0 (AV(y(Un) = Yn), V(e))) dt+/0 (p(y(Un)) — P(Ya), €)) dt
T
o [ O - Yie ) as

T
= fo 3 | (- Yo + div(aVE;) - g (3) (¢ - ) dit

e’
T
AVY,-n)(e - &) dsd
+/0§1/3t( hn)( 1)st
T
+/ / (AV)A/h'n—BUh—zb)(ey—ef)dsdt
0 Q2
T T
. / (AV () - 13), V(")) it + / (SO(U) - P(¥), &) di
0 0
T R 1 9
. /0 (=2 dt + 50 =30 [y

T
- fo > / (F — Yie + divAV ) - $(T1)) (¢” - &) dt

T
reTh

/Z

NIQ=¢

/(Avf/h -n) (¢ — ) dsdt
l
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T
+/
0

T

A T A
+/ (AV(Yh—Yh),V(e”))dt+/ (p(Yn) — ¢(Yn), €) dt
0 0

Z /;(AV)A/;, -n— BUy —zb)(ey—e}/) dsdt

1o

T
A 1
+/ (f—f,ey)dt+E”Yh(x,O)—yo(x)”iz(Q)
0

= I(l + I<2 + I<3 + 1(4 + ](5 + I<6 + I<7 (459)

Let us bound each of the terms on the right-hand side of (49). By Lemma 2.1 we have
T A~ A A
K = / Z /(f — Yie + div(AVY) - ¢(Y1)) (¢ - €]) dit
0 T
Th

T
< c/ > hi/(f- Yo + div(AVY;) - ¢(13))” de
0 T

teTh
T 2
+C8/ Zh;2/|ey—eﬂ dt
0 TeTh '
T
< c/ 3 hif(f— Y + div(AV Ty) = p(¥) dt + C5 €| 12100 (50)
0 Th T

Next, using Lemma 2.1, we get

K :/T > /(AVf’h-n)(ey—e}')dsdt

0 l

N3Q=¢
T R T 9
§C/ > hI/[AVYh~n]2+C6/ Zh;2/|ey—e§|
0 =g ! O Lerh 4
T
+caf Z/W(ey—emz
O cern’T
T 3 2
<C / S /[AVY;,-n]2+C8Hey”L2(];H1(Q)), (51)
0 jrag=g¢ V!

and

T
- -1 - BU, - e
K; /0 Z/I(AVY;, n—BU, - z,)(€ - €))

etilY}

T
< c/ Zhl/(Av?h.n—Buh—zb)Z
0 !

1coQ

v [ S fle-elves L5 [lve-dr

T
< C/O S h /Z(AVYh 1= BUy ~2,)* + C8]|€ | 2 (52)
1CoQ
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For K4-Kjs, the Schwarz inequality implies
T A
Ky = / (AV(Y, - Y3), V(€")) dt
0
A 2 2
= ClIYi = Yill gy + €81 [ 12y
and
T A
K= [ (o) -o(h,e)dr
0
T ~ A
= / (@' (V) (Ys - Ya), ) dt
0
IS 2
< CIYi = YilZ2gpn ) + €81 [ 2gan
and
T A
Kg:/'v_ﬁayu
0
Clf =112 s)ler|?
= ClIf =F W2z + C81€ | g ey

Finally, add inequalities (49)-(55) to obtain

6
i=1

This completes the proof.

Analogously to Theorem 3.1, we show the following estimates.

Page 9 of 18

(53)

(54)

(55)

Theorem 3.2 Let (y(Uy), p(Uy)) and (Yy, Py) be the solutions of (41)-(44) and (36)-(40),

respectively. Then

1
|2 = Pull 2 sy < €D
i=1

where

02 = Z W /(f’h ~yo + Py +div(A*VD,) - ¢/(?h)j)h)2’
T

reTh

is [ 2 i fiavir

0 o= !

T
= [ X m frhe

1coQ
77%0 =Yy - Yh”%Z(];Hl(Q))r

7)%1 = ”Ph _Ph”%Z(];Hl(Q))’

(57)
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where 11-1ng are defined in Theorem 3.1, [ is a face of an element t, [A*V Dy, - n] is the

A-normal derivative jump over the interior face | defined by
[A*VPy - n], = (A"VPy| g —~A*VPy.2) - 1,
where n is the unit normal vector on | = T} N T} outwards ;.

Proof Let e’ = p(Uy) — Py, and let ef = ,e?, where 7, is the Clément-type interpolator
defined in Lemma 2.1. Note that (p(U}) — Py,)(x, T) = 0, then we obtain

T
- [ (et - P =0,
0

Using equations (38) and (43), we obtain

C”ep ”22(1;1{1(9))

T

T
< /0 (Ve!, A"V (p(Uy) — Py)) di + /0 (& (W) (p(Uy) — Py &) dit
T 5 T o
:A (VEP»A*V(P(Uh)—Ph))dH/O (¢’ (U)oU) = ¢’ (Yn) Py, €°) dit
T T o
—/0 (Pt(Uh)—Pm,ep)dH/o (¢' (V)P — ¢’ (y(Un)) Py, ) dt
T ~
+ / (Ve?,A*V (P, — Py)) dt
0
T _ T
- f (V(& = &), A"V (p(Uy) - Py)) dit - / (Pe(Uy) = Pror & — &) dt
0 0
T o T R
. fo (& OW)p(Us) — & (TP — &) dt + /O (W) - T ) d
T 5 T o
+ / (Ve?, A*V(Py — Py)) dt + f (' (Yi)Py — ¢ (y(Un)) Py €”) dit
0 0
T
:/ (Y4 — yo + P + div(A*VP,) - ¢ (V) Py, e — &) dt
0
T
N
T
g
T

T
+ / (Ver, A*V(Py, - Py)) dt + f (¢ (V) Py — &' (y(Up)) P, €°) dit
0 0

/ (A*VE, - n) (¢ - &) dsdt

I

T
) /l(A*Vf)h-n)(e"—ef)dsdH /0 (L) — i) dit

1CoQ

=L +Ly+L3+Ly+Ls+Lg. (58)
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Now let us bound each of the terms on the right-hand side of (58). By Lemma 2.1 we
have

T
L = / Z /(f’h ~yo + Py + div(A*VDP,) — ¢/ (YV)Py) (¢ — €]) dt
/ ZhZ/ Vi — 5o + P + div(A*VD,) — ¢/ (V) Py) dt

+C8/ > kP /|e” & dr

eTh

T
< [ S0 [0 pusan(4°VR) - ¢ B
0 TeTh ’

+Cser ”iz(];Hl(Q))' (59)
Next, using Lemma 2.1, we get
T ~
Lzzf > /(A*VPh~n)(eP—e5’)dsdt
0 o= 7!
<c/ > h,/Avp,, n) +ca/ Zh /\ep &)
0 Jnan=¢
+C8/ ¢ -2
reTh f
§C/ > hl/A VB, - n]” + C8 €| 2 (60)
0 jag-¢ Y!
and
Ls _/ /A*VPh n)(e —éf)
0 o
§C/ ZhI/(A*Vf’h~n)2
0 oo Vi
+C5/ Zh /|e” & +C5] o)
reTh f
sc/ Zh;/l(A*VPh~n) o] g ey (61)
0

fati]e)

The Schwarz inequality implies

T A
Ly =/ (y(Up) - Yy, €) dt
0

T
= / (0(U) = Ya) + (Vs = Y3), € dt
0

Page 11 0of 18
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< Clyu) - Y + 1Yy —

2
||L2(]H1 (@) Yh||L2(];H1(S2))

+Csler|?, -y (62)

Q)
and
T ~
Ls = / (Ve?,A*V (P, — Py)) dt
0
~ 2
< ClIPs = Pull32 40y + €811 € | 2 ey (63)
Next, for Lg, we obtain

T
L =/0 (¢' (Vi) Py — ¢/ (y(Uy)) Py &) dit

T

T
_ /0 (¢ (T)(By - Py), ) it + /0 (¢ (T) - &/ (¥3) P ) di
T ~
. /0 (¢ (T) = & (L)) P &) di
T B 5 T 5
- /0 (/) By - Py), &) dt + /O (&' (T2) - ¢/ (Y) o ) di

T
+ / ((,‘b”(Yh)(Yh —y(Uh))Ph,e”) dt
0
=< CHJ’(Uh) - Yh ||L2(]H1 () + C“ Yh Yh“iZ(]Hl(Q))

+ ClIPy = Ballagany + 8[| (64)

L2(;HY(Q))"

Finally, add inequalities (58)-(64) and combine Theorem 3.1 to obtain

This completes the proof. O

For given u € K, let M be the inverse operator of the state equation (12) such that
y(u) = MBu is the solution of the state equation (12). Similarly, for given U}, € K", Y;,(Uj,) =
M, BUy, is the solution of the discrete state equation (36). Let

S(u)——IIMBu yoll* + = ||u|| ,
2 U 2
Sp(Uy) = 5|IMhBUh—yo|| + E”uh” .

Itis clear that S and S, are well defined and continuous on K and K”. Also, the functional
Sy can be naturally extended on K. Then (9) and (25) can be represented as

mei11<1{S(u)}, (66)
min {S,(Uy)}. (67)

Uyekh
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It can be shown that

(S'w),v) = (au + B*p,v),
(S' (W), v) = (aly + B*p(Uy),v),
(S,(Un),v) = (aly + B*Py,v),

where p(U},) is the solution of equations (41)-(43).

In many applications, S(-) is uniform convex near the solution u (see, e.g, [21]). The
convexity of S(-) is closely related to the second-order sufficient conditions of the control
problems, which are assumed in many studies on numerical methods of the problems. If
S(-) is uniformly convex, then there is a ¢ > 0 such that

T
/ (S/(M) - S/(Uh), u- Uh) = C”M - uhlliZ(/;LZwQ))’ (68)
0

where u and U, are the solutions of (66) and (67), respectively. We assume the above
inequality throughout this paper.
In order to have sharp a posteriori error estimates, we divide 92 into some subsets:

IQ; = {x € 3Q: (B*Py)(x,1;) < 0},

9Q; = {x € 9Q: (B*Py) (%, 1) > 0, U}, = 0},

IQ; = {x € 9Q: (B*Py) (%, £;) > 0, U}, > 0}.
Then it is clear that three subsets do not intersect each other, and 02 = 927 U9 2; U 02/,
i=12,...,N.

Let p(U}) be the solution of (41)-(44). We establish the following error estimate, which
can be proved similarly to the proofs given in [22].

Theorem 3.3 Let u and Uy, be the solutions of (66) and (67), respectively. Then
~ 2
lloe - Uh”iZ(/;LZ(aQ)) = C(’ﬁz + ”Ph _p(uh)||L2(];H1(BQ)))’ (69)

where

n?, = Z/ / |B*Py, + ally|?.
i=1 Vi1 YO8y

Proof 1t follows from the inequality (68) that

cllu - Uh||i2(];L2(BQ))

T
< / (S/(M),M - Uh) - (S/(uh),u - Uh) dt
0
T
- S'(Up),u—-Uy)d
< /0 (S' (W), u - Uy) dt

T T
= / (S;(Uh),Llh —u) dt + / (SL(U},)—S/(U;,),M— Uh) dt. (70)
0 0
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Note that

T
/ (S;,l(uh), u, - M) dt
0
= Z/ / (B*]Bh + aL[h)(L[h —u)
j=1 Yti-1 Y0y
+Z/ / (B*f)h+auh)(uh—u)
i=1 Yti-1 Y0

N g )
+ ; /ti_l /a‘sz; (B*Ph + aUh)(—u). (71)

It is easy to see that

f (B*i)h + Oluh)(uh - M)
Q7

=< / B*Py + ally|* dxc + 8llu = Upll 722060
s

= Cnfy + 81l = Unll2g 1250 (72)

Since U, is piecewise constant, Uj|s; > 0 if s N dQ] is not empty. If u;|s > 0, there exists
e>0and B € Uy, such that 8 > 0, || Bz =1 and (u, — €B)|s > 0. For example, one can
always find such a required 8 from one of the shape functions on s. Hence, &, € K " where
uy = Uy, — ¢B as x € s and otherwise & = Uj,. Then it follows from (40) that

/ (B*Py + ally)B

s

=gt /(B*j)h + OtUh)(Uh —(Uy - 8ﬁ))
-1 * 7
<eg / (B*Py + ally) (Uy — (U — €B)) < 0. (73)
IQ
Note that on 9}, B*Py + all, > B*P, > 0, and from (72) we have that

/ |B*Py, + ally|B = (B*Py + ally)B
sr\asz;

Eatlexs

< —/ (B*Py + ally)B 5/ |B*Py + ol (74)
SNy sNA2;

Let § be the reference element of s, s° = s N 92}, and §° C § be a part mapped from $°.

Note that (/, |-|?)"2, [, |-|B are both norms on L%(s). In such a case, for the function g fixed
above, it follows from the equivalence of the norm in the finite-dimensional space that

f |B*Py, + ally|?
sﬁEJQ;r

:/ |B*Py, + ally|* < Chf/ |B*Py, + ally|?
s0 50
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2 2
< CK? (/0 |B*P), + aL[h|,3> < Ch? (/ﬁw |B*Py, + ozL[h|ﬁ)

2
< Ch? < / |B*P), + aUh|> <C / |B*Py, + ally|?, (75)
sﬁBQ; sﬂ&QlT

where the constant C can be made independent of 8 since it is always possible to find the

required B from the shape functions on s so that
/ (B*Py, + ally) (U — u)
Q]

<C [ B alh ol Uil s
aQ;

<C [ BBl 3= Ul
aQ;

< Cny + 8llu = Upl 72712060 (76)

It follows from the definition of 8%, that B*P), + all}, > 0 on 3%;. Note that —z < 0, we
have that

f (B*Py + ally) (<) < 0. (77)
9%
It is easy to show that

(Sp(Un) = S'(Un), u - Uy)
= (B*Py + ally,u— Uy) — (B*p(Uy) + ally, u— Uy)
= (B*(Pn — p(Un)), u — Uy)
< ClPu = W 212560 + 1 = sl 1200

= 2

< C”Ph —P(Uh)HLz(];m(aQ)) + 6”” - Uh”%Z(];LZ(ag))' (78)
Therefore, (69) follows from (70)-(72) and (76)-(78). O
Hence, we combine Theorems 3.1-3.3 to conclude the following.

Theorem 3.4 Let (y,p,u) and (Yy, Py, Uy) be the solutions of (12)-(16) and (36)-(40), re-
spectively. Then

lloe - uh”iZU;LZ(ag)) + ||J’— Yh”iZ(];Hl(Q)) + ||I9 _Ph||%2(];H1(Q))

12
<Cy (79)
i=1

where n1,12,..., and N1y are defined in Theorems 3.1-3.3, respectively.
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Proof From (12)-(15) and (41)-(44), we obtain the error equations

(e = ye(Un), w) + a(y — y(Un), w) + (6() — d(¥(Un)), w) = (B — Up), w), (80)
—(pe — pe(Un),q) + alg,p — p(Un)) + (&' W)p — ¢ (¥(Un)p(Un), q)
= (y - y(Un), q), (81)

for all w € V and g € V. Thus it follows from (80)-(81) that

(e = ye(Un), w) + a(y - y(Up), w) + (¢’ ) (y = y(Un)), w) = (Blu — Uy), w), (82)
—(pe — pe(Un),q) + a(q,p — p(Un)) + (¢’ (/(Un) (p - p(Un)) q)
= (¢" () () - y)p>q). (83)

By using the stability results in [23], we can prove that

1y =9 | 121y = Cllit = UnlZ2y12000) (84)
and

12— pW | 2gsmicny = 1y =W |12 sy < Cllt = UnlZagy 250 (85)
Finally, combining Theorems 3.1-3.3 and (84)-(85) leads to (79). O

4 Numerical example

In the section, we use a posteriori error estimates presented in our paper as an indicator for
the adaptive finite element approximation. The optimization problem is solved numeri-
cally by a preconditioned projection algorithm, with codes developed based on AFEPACK.
The optimal control problem is

i /T Ly g0l + pul?) de
min — - + —|U
u(t)eK 0 2 y yo 2

Yi—-Ay+y =f, xe Vy-n=u, x€d, y(x,0)=0, xe€Q.

In the example, we choose the domain € = [0,1] x [0,1] and K = {u € L2(J; L2(0R)) : u >
0}. Let 2 be partitioned into 7}, as described in Section 2. We use 1y, as the control mesh
refinement indicator and n;-71; as the states and co-states.

For the constrained optimization problem min,,cx S(u), where S(u) is a convex functional
on U, the iterative scheme reads (# = 0,1,2,...)

b(um%,v) = b(U, V) — Py (S’(un),v), Upil = P,Zj(un%), YveKk, (86)

1
2

where b(-,-) is a symmetric and positive definite bilinear form such that there exist con-
stants ¢p and ¢; satisfying

b, u) = colluly, |6, v)| <cllulylivily, Yu,vel, (87)
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Table 1 Comparison of uniform mesh and adaptive mesh

Mesh information  Uniform mesh  Adaptive mesh

u-elements 15,872 1,148
u-sides 23,968 1,868
u-nodes 8,097 721

y, p-elements 15,872 1,754

y, p-sides 23,968 2,725
y,p-nodes 8,097 972

lu=unll 2g2g) — 438920e-02 427977e-02
Iy =yl 201 9.80281e-02 9.62631e-02
e =pall 20 4.39287e-03 4.17962e-03

and the projection operator P4 U — K is defined as follows. For given w € U, find P4w € K
such that

b(Pow —w,Phw —w) = min b(u — w,u — w). (88)
uek
The bilinear form b(-, -) provides suitable preconditioning for the projection algorithm.
An application of (86) to the discretized nonlinear parabolic boundary optimal control
problem yields the following algorithm:

b(ui l,vh) = b( ) p,,(u +pn,vh) Yy, € Kl.h, (89)

( ) +a(y,wn) + (05 wi) = (Fwa) + (uwh) ,p Ywin € V), (90)

( > +a(qnp)) + (39 P an) = 0 - yo.an),  Vane VY, (91)

n+1 = Pb(uiﬁl)’ Mf,Hl’uil € I<zh (92)
2 2

The main computational effort is to solve the state and co-state equations and to com-
pute the projection Pf}u; ,1-In this paper we use a fast algebraic multigrid solver to
2
solve the state and co-state equations. Then it is clear that the key to saving computing
i

time is finding how to compute Ph<un+ , efficiently. For the piecewise constant elements,
I

K" = {uy, € K : uy, > 0} and b(u,v) = (4, v)y, then
P1b<u;+% |1 = max(O,avg(uiH%) |T),

where avg(u;Jr 1 )7 is the average of uiH , over T. Insolving our discretized optimal control
problem, we use the preconditioned projection gradient method (89)-(92) with b(u,v) =
(4, v)n and a fixed step size p = 0.8. In the numerical simulation, we use a piecewise linear
finite element space for the approximation of y and p, and a piecewise constant for u.

It can be clearly seen from Table 1 that on the adaptive meshes one may use less degree of
freedom to produce a given control error reduction. Then it is clear that these a posteriori
error estimates are very good for the parabolic boundary optimal control, and the adaptive
finite element method is more efficient.
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