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1 Introduction

In this paper, we are concerned with the following problem for the sixth-order Cahn-

Hilliard type equation:
au 6 4
rrin yD°u =Dy (u,t) + vuDu + f(x,¢), (x,t) €Q, 1.1)
Uls-01 = D’tls-01 = D*uli01 =0, >0, (1.2)
u(x,0)=ux,T), x€(0,1), (1.3)

where Q = (0,1) x (0,+00), D = %, Y(u,t) = —a(t)u® + b(t)u, a(t) and b(t) are Holder
continuous functions defined on R* with period T, f(x,t) belongs to the space c*i (Q
for some a € (0,1) with f(x,0) = f(x, T). Furthermore, we assume that M < a(t) < M,
|b(t)| <N, |a'(t)] <L, |b'(t)] < A, where y, v, M, M, N, L and A are positive constants.

Equation (1.1) with f(x, £) = O arises naturally as a continuum model for the formation of
quantum dots and their faceting; see [1]. It can also be used to describe competition and
exclusion of biological population [2]. If we consider that the perturbation function f'(x, t)
(for example, source) has the influence, then we obtain equation (1.1).

Korzec et al. [3] studied equation (1.1) with f(x, £) = 0. New types of stationary solutions
of one-dimensional driven sixth-order Cahn-Hilliard type equation (1.1) are derived by
an extension of the method of matched asymptotic expansions that retains exponentially
small terms. Liu et al. [4] proved that equation (1.1) with f(x,£) = O possesses a global
attractor in the H* (k > 0) space, which attracts any bounded subset of H*() in the
H*-norm.

During the past years, many authors have paid much attention to other sixth-order thin
film equations such as the existence, uniqueness and regularity of the solutions [5-7].
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However, as far as we know, there are few investigations concerned with the time-periodic
solutions of equation (1.1), even though there is some literature for population models
and Cahn-Hilliard [8, 9]. In fact, it is natural to consider the time-periodic solutions of
equation (1.1) when it is used to describe the models of the growth and dispersal in the
population which is sensitive to time-periodic factors (for example, seasons). In this pa-
per, we prove the existence of time-periodic solutions of problem (1.1)-(1.3) based on the
framework of the Leray-Schauder fixed point theorem which can be found in any standard
textbook of PDE (see, for example, [10]). For this purpose, we first introduce an operator
L by considering a linear sixth-order equation with a parameter o € [0, 1]. After verifying
the compactness of the operator and some necessary a priori estimates for the solutions,
we then obtain a fixed point of the operator in a suitable functional space with o = 1, which
is the desired solution of problem (1.1)-(1.3).

The main difficulties for treating problem (1.1)-(1.3) are caused by the nonlinearity of
both the fourth-order term and the convective factors. The main method that we use is
based on the Schauder-type a priori estimates, which here are obtained by means of a
modified Campanato space. We note that the Campanato spaces have been widely used
for the discussion of partial regularity of solutions of parabolic systems of second order and
fourth order. So, in the following section we give a detailed description and the associated
properties of such a space, and subsequently, in the next section we prove the existence of
classical time-periodic solutions of problem (1.1)-(1.3).

2 Holder norm estimates
Let Qr = (0,1) x (0, T), yo = (%0, o) € Q7. For any fixed R > 0, we define

Bg = Br(xo) = (ko —Ryxo +R),  Ir=Ip(to) = (to — R, 1o + R®),
Qr = Qr(0) = Ir(to) x Br(x0), Sr=QrNQr,

Er = Er(x0) = Br(x0) N (0,1), Jr =Jr(to) = Ir(to) N (0, T).

Let u be a function defined on Qr, and set

1 N N ur if QR n apQT = @,
Up =y R = 1o udxdt, Ug = thyy g = ‘
ISl J Jsg 0 ifQrN3,Qr #9,

where 9,Qr denotes the parabolic boundary of Qr and |Sz| denotes the area of Sg.
For any u € C(Q7) and A > 0, define

1
M?*[u] = sup sup F//s (y)|u(x,t)—f4yg,k|2dxdt,
RO

y0€Qr 0<R=Ro

where Ry = diam Q7. By the space £2*(Qr) we mean the subset of C(Qy), each element of
which satisfies M[u] < +00. For u € Eé”\, its norm is defined as

Izl 2 (Qr) = sgp\u(x, 1]+ M[u).

Now, we give some useful lemmas.
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Lemma 2.1 [11] Let A > 7,

il g < COINul 2:(Qn),

where o = %

Now we consider the following linear periodical problem:

d

a—? ~-yDPu=®(x,t), (vt)eQr=(0,1)x(0,7), (2.1)
Ulx=01 = D*tlx—01 = D*ttlx-01 =0, t€(0,7), (2.2)
ulx,0)=ulxT), x€(0,1). (2.3)

Here we simply assume that ®(x, ) is sufficiently smooth. Our main purpose is to find the
relation between the Holder norm of the solution # and ®(x, £).
Let yo = (%0, ) € Q7 be a fixed point and define

(p(u,,o)://s (|ute,8) = it,|* + p°| DPul, O)[*) dcdt (0 > 0).

Let u be an arbitrary solution of problem (2.1)-(2.3). We split # on Sg = Sp(yo) as u = u; + uy
so that u; solves the problem

8141

a5 yD%u; =0, (%) € Sg, (2.4)

f uy(x, t)dx = f u(x,t)ydx, te(0,7), (2.5)
Ep Ep

Ut lye = Wlayre = Uy, — Ulayyes P'(x, D)urlyg,, = P'(%, D)utl (2.6)

and u; solves the problem

0
% - VDGMZ = cb(xr t)r (x) t) € SR: (27)
/ uy(x,t)dx=0, te(0,T), (2.8)
Ep
ualose — 2layy, = P'(% D)tz |, = 0, (2.9)
where
. D' ifx=0,1,
P'(x,D) = ) i=0,2,4
D*l ifx 40,1,

and 01/g, 02/ are the down-side and up-side points of Jr, and 9Ey is the boundary of Ex.
Some essential estimates on #; and u; are based on the following lemmas.

Lemma 2.2 For the solution uy of problem (2.7)-(2.9), we have

/ / (Dius)* dxdt + R / / (D"%uy)” dxdt < CR / / @ dxdt, (2.10)
Sk Sr SR

where C is a positive constant, i = 0,1,2.
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Proof Noticing the condition (2.8) and the boundary value condition (2.9), we use the
Poincaré inequality and interpolation method (see Chapter 5 in [12]) and get

/:/ u% dxdt < CRZ/ (Duy)?* dx dt,
SR Sk

/ / (Du,)* dxdt < — / / 12 dxdt + CR* / / (D*uy)” dxdt,
Sk R JJs, Sk

which implies that

// usdxdt < CR // dxdt (2.12)

Multiplying equation (2.7) by u,, integrating the result over Sz and using the boundary

(2.11)

value condition (2.9), we have

3 2 _
y /-/SR (D us (x, t)) dxdt = /[SR O(x, £)us(x, t) dx dt. (2.13)

Using the Young inequality and (2.12), we obtain

’// CD(x,t)uz(x,t)dxdt‘ < —// us dxdt + CR // D2 dxdt
Sp R Sp

< 8/ D3u2 dxdt + CR® // &% dxdt. (2.14)
Sr Sr

Combining (2.12), (2.13) and (2.14) yields the estimate (2.10) with i =0
Similarly, multiplying (2.7) by D*u, and D*u,, we can obtain the estimates (2.10) with
i=1,i=2. O

Lemma 2.3 For any (x1,t), (%2, ), (%, 11), (%, £2) € S,

(31, £) = 01 (62, 8)|* < CM(ay, )ty = ], (215)
| (v, 11) — wa (i, tz)|2 < CM(uy, p)lts — ]"°, (2.16)
where
My, p) = sup/ (Duy(x,1)) “dx + // dxdt
te]p JE, Sp

and C is a constant number. Further, (2.15) and (2.16) still hold if u, is replaced by Du, or
D2 up.
Proof The estimate (2.15) is obvious. In fact, by the Holder inequality,

2
|u1(x11 t) - Ml(xz, t)|2 =

x2
/ Duy(x,t) dx
x1

x9 2
5(/ |Du1(x,t)|dx> < M(u1, p)lx1 —
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For (2.16), we only consider the case when At =t —t; > 0, x,x + 3(At)V° € E,. Integrating
equation (2.4) over the region (t,t) x (z,z + (At)V°), we have

z+(At)1/6 ty
/ [ul(é, ) — ul(E,tl)] dé —y / [D5u1 (z + (At)1/6,s) —-Duy(z, S)] ds=0.

Integrating the above equation with respect to z over (y,y + (Af)/®), and then integrating
the result with respect to y over (x,x + (At)"/%), we have

x+(ADVO ayi (AL
[

tr pa+(AD)H6
=y / / [(D4u1 (J’ + 2(At)1/6,s) _D*uyy (y + (At)1/6’s))
n Jx

- (D4u1 (y+ (At)l/é,s) - D*uy(y, s))] dyds.

)1/6

z+(AL)Y6
/ [ul(g’tZ) -u (&, tl)] d& dzdy

By virtue of the mean value theorem and the Hélder inequality, we see that there exists
£* e (x,x + 3(At)V°) such that

172
(A0 (5%, 0) — 1 (%, 1) < C(ADT™ ( [[ 0ty dxdt)
Sp
7/12 12
< C(A)* (M(u, p)) .
Combining the above result with (2.15), it follows that

2
|u1(x, ) — u(x, t2)| < CM(uy, p) |t — ta]"®.

To prove the results on Du; or D?u;, we only need to differentiate equation (2.4) once
or twice with respect to x. And the next procedures are completely similar to the above

argument. g
Lemma 2.4
i \2 i+3. \2 C i-1 2
sup (D'w1)” dx + (D"™Puy)" dxdt < — (D"'uy - )" dxdt, (2.17)
teJr JEp Sp R Sk
4 4 4

where C is a constant and i =1,2,3,

arbitrary constant  if Qr N 9,Qr =9,
0 if QrN 3,Qr # 9.

Proof In order to prove (2.17) with i = 1, we first prove that

C
sup / (11 (x,0) - 1) dx + / / (D*m)* dxdt < — / (1 — 1)* dxdt. (2.18)
Ep S§ R S§

tejp
3

We discuss it in the following two cases.
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(I) We first prove (2.18) in the case 0, T € Jg. In such a case, Jz = (0, T), A = 0. Choose a
smooth function yx (x) satisfying the following requirements.
If0,1 ¢ Eg, then supp x C (x0— 5,%0+ 5), x(x) =1whenx € (xo— §, %0+ %),0 < x(x) <1,

C C C
X' )| < = |x" ()| < = Ix" )| < = XY@ < —

If 0 € Eg, then the value of x (x) for x < x, is changed into 1.
If 1 € Eg, then the value of x (x) for x > x¢ is changed into 1.
Multiplying equation (2.4) by x°u; and integrating the result over Sg, then using the

boundary value condition (2.6), we have
0= / D*u,D? (X ul) dxdt

// dxdt+ 18// x> x' D*un D uy dx dt + 90// x* x> DuD*u; dxdt
Sr Sr Sr

+18// x°x"DuyD?uy dxdt+// (x®)" wD*uy dxdt.
SR Sp

By the Young inequality and the definition of x (x), we have
18 /f x> x' D*u D3 uy dx dt

<sf/ a’xdt+C// X4X,2( 2ul)zdxdt.
SR SR

Similarly, we can estimate other three terms. Combining the above expressions yields

// dxdt
SR
§C<// 2" (Duy ) dxdt+// x*x"*(Duy)? dx dt
SR SR
+// x*x ( ) dxdt + — // ufdxdt)
SR R S%

=Cli+L+L+1y). (2.19)

As for I}, we have
11 = —// MID(XZXADMI) dxdt
SR

—// xzx’4u1D2u1dxdt—// (sz’4)/u1DM1dxdt

Sr SR

5813+C// X’6ufdxdt+—f/ 2y /4 )'u? dx dt
SR

<el3 + Cly. (2.20)

Page 6 of 17
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As for I, we have

L

—// ulD(X4x"2Du1) dxdt

SR

// xD(X4x”u1D2u1)dxdt+%// (X4 ”2)/ dxdt
Sr

< // "\ wD*uy dx dt
Sr

+ // X4X,X”(DM1D2M1 + ulDBul) dxdt + C14

Sr
=el3 +Cly +£// u1 dxdt— - // X4X,X” "(Dwy)? dx dt
Sr Sr
1
=813+C]4+8// dxdt——[z
S 2

—5// (x*x'x" +4x>x"“x")(Dw1)* dx dt,
SR

that is,
12<813+C14+8// dxdt
SR
-2 f/ (%' x" +4x°x*x") (D) dx dt.
3 J /s,
On the other hand,

_// X4X/X///+4X )(DM )dedt
SR
:f/ X4X/XW+4X3 2 ”)ulDzuldxdt

// (O x' %™ +4(x3 %% x") Yur Duy dx dt

<el; + Cly.
Combining the above two yields

]2<8]3+C]4+8// dxdt
SR

Notice that

13 = —// /2Du1D3u1 dxdt

// 4-)(3 Boxty ”)DulDZuldxdt
Sr

<eg // X6(D3u1)2dxdt +Cl + el3 + CL + el + CI,
SR

(2.21)

Page 7 of 17
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that is,
L<Cli+DL)+¢ /f dxdt (2.22)
SR
Finally, from (2.20), (2.21) and (2.22), we see that

I <8// dxdt+CI4, i=1,2,3,
Sr

which combined with (2.19) yields

// u1 dxdt < // u1 dxdt <Cl = // us dxdt. (2.23)
SR SR

We can imitate all the above procedures and derive a similar result on E, that is,

/ D*u,D? ()(6141) dx
Er

< / Hxox x" x" x™)ud dx, (2.24)
Ep

where H is a polynomial with respect to x, x', x”, x"” , x® and satisfies |H| < <% € Using

the Sobolev inequality on Jz, we have

C a
supf x6uf(x,t)dx§ —6// u%dxdt+2/ / X ulﬂdx
teJr JEg R SR JR |V ER at

2

= C14+2y/ / X6u1D6u1dx
JRIVER

<Cl+ C/
JR

Combining the above with (2.24) yields

C
sup/ uf(x,t)dxf —// ufdxdt.
R6
te/Jp JER SR
2

4 4

dt

dt

dt.

/ DgulDB(X%l) dx
E,

Combining the above with (2.23) yields the desired estimate (2.18).

(II) Then we prove (2.18) in the case 0 or T ¢ Ji. Take the case 0, T ¢ J as an example.
Choose another smooth function 7(¢) such that n(¢) = 1 when x (to - (®)%,t0 + (%)°);
n(t) =0 whenx € (0,20 — (§)®) Ut + (§)%, T); 0 < n(®) < L; In'(®)| < < € forallt e (0,T).

With A stated in the lemma, we multiply (2.4) by x®n(u; — 1) and 1ntegrate the result
over Sg. Then we can derive equalities similar to the above argument in which u; is re-

placed by u; — A and a term

1
——// X6 (uy — M) dxdt
2 ) /s

is added. Then following the argument as in Case I, we can complete the proof of (2.18).

Page 8 of 17
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Now we multiply (2.4) by D(x ®Du,) and follow the above argument. Then we derive the

same result on Du;:

tejp
3

o
sup / (D, ) dx + / / (D*m)’ dxdt < — / (Dwy)? dx dt. (2.25)
Ep SE R Sg

Using the interpolation inequality, we have

C
f/ (Duy)? dxdt < —sz ufdxdt+c1e4// (DBMI)dedt.
SR R SR SR
2 2 2

Replacing R in (2.23) by 2R, and combining the result with the above inequality, we have

C
/ (Duy)? dxdt < = // uf dxdt,
Sg R/ /s,

which together with (2.25) yields (2.17) with i = 1.
For (2.17) with i = 2 and i = 3, we should first multiply (2.4) by D(x ®Du;) and D?(x®D?u;)
respectively, and the remaining parts are similar and easier. 0

Lemma 2.5 Forany 0 < p <R,

8
@(u,p) <C (g) @(u1, R), (2.26)

where C is a constant number. Further, (2.26) still holds, if u, is replaced by Du, or D*u,.

Proof 1t suffices to show (2.26) for p < %, otherwise we only need to set C = 4%. By
Lemma 2.3 and Lemma 2.4, we have

R 8
/ |u1—£tlp|2dxdt§CM<I/l1,—>p8SC(£> / (g = A)? dxdt.
Sp 4 R Sk

Taking A = i1, we obtain

8
/ |y — i1, [>dxdt < C(g) / (211 — i,lR)Z dxdt. (2.27)
Sp SR

On the other hand, by (2.25),

/ / ul(x,t) *dxdt
Sp
<C// Du1 x,t) dxdt+C/f D*uy x,t) >dxdt
Sp Sp

5c<%> [/SR i — iy | dxdt+//SRR6( ) dxdt}

8
C(%) ¢(M1,R),
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which combined with (2.27) implies (2.26). The proofs of the results on Du; or D*u; are

similar. 0

Lemma 2.6 Let ¢(p) be a nonnegative and nondecreasing function satisfying

o
@(p) SA(%) @(R)+BRF, 0<p<R<R,,

where A, B, a, B are positive constants and B < a. Then there exists a constant C only

depending on A, B, o, 8 such that

5
o(p) = C<I%) [¢(R) + BR’], 0<p<R=<R.

The proof of this lemma can be found in [13].

Theorem 2.1 Let ®(x,t) be an appropriately smooth function, and let u be the smooth so-
lution of problem (2.1)-(2.3). Then, for any o € (0, %), there exists a coefficient K depending
only on a, foT u*dxdt, foT (D3u)? dx dt, foT D2 dxdt such that

|, 1) — ulwa, 1)) < K (|1 —x21% + |ty — 1] 8). (2.28)
Further, (2.28) still holds if u is replaced by Du or D*u.

Proof For any fixed point (xo, to) € Qr, consider the function ¢(u, p), which is clearly non-

decreasing with respect to p. By Lemma 2.5,

o(u, p) < @(u1, p) + (us, p)

8
< c(%) 01, R) + p(142, R)
o\
< C(E) @1, R) + Cp(u, R)
holds for any 0 < p < R. By Lemma 2.2,

(p(MZ)R) = //S [(M2 - I:tzR)Z + R6 (Dguz)z] dxdt

< 4[/ w3 dxdt + R® // (Daug)zdxdt
Sz e
< CR" / f o dxdt.
SR

Thus,

8
o(u, p) < C(g) @(u,R) + CR*? // @2 dx ds.

Qr

Page 10 of 17
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By Lemma 2.6, we have

A
o(u, p) < C(R%) [¢(u,Ro) +Ro* //QT o2 dxdt]

for some 7 < A < 8. Hence,

1
M?[u] < C|:R—$go(u,R0) + //QT o2 dxdt].

Using Lemma 2.1, we immediately obtain (2.28). The proofs of the results on Du; or D?u

are similar. 0

3 The main result and its proof
In this section, we represent the main result of this paper.

Theorem 3.1 Problem (1.1)-(1.3) admits a time-periodic solution u € Co 15 (Q).

To prove the existence of this solution, we employ the Leray-Schauder fixed point theo-
rem which enables us to study the problem by considering the following equation:

Z—b; —yD®u =oDg(x,t) + of (x,1), (3.1)
subject to the conditions (1.2)-(1.3), where o is a parameter taking value on the in-
terval [0,1], and g(x,£) € W is periodic in time ¢ with period T, where W = {w|w €
clhed (Qr), w(x, t) is periodic in time ¢ with period T'}. For any given function g(x, £) € W,
from linear classical theory (see [14]), we see that problems (3.1) and (1.2)-(1.3) admit a
unique solution u € Coreltg (Qp) C clrod (Qr), and hence we can define a mapping £ as
follows:

L:W x[0,1] = W, (g,0)—~>u,
together with its composition with W (v, £) = D3V (v, t) + vv2, namely
L(Y(,),): W x[0,1] > W.

Obviously, for any given v € W, L(v,0) = 0. By virtue of the Leray-Schauder fixed point
theorem, to prove the existence of solutions of problem (1.1)-(1.3), we only need to show
that the mapping £ is compact and prove that there exists a constant independent of u,
@) < C. Moreover,
it follows from the above arguments that u is a classical solution. Then we consider the

and o such that, for any u and o satisfying u = L(¥ (1), 0), |1, ”C”‘*“‘%

problem in Q(r.27); ..., Q(u-1)T,nT), - - - in turn. Finally, we know that initial boundary value
problem (1.1)-(1.3) admits a classical solution in Q.

Lemma 3.1 The mapping L : (v,0) — u is compact.

This result can be directly obtained by a compact embedding theorem, so we omit the
details here.
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Lemma 3.2 Let u, be a time-periodic solution of the equation

0y

5 " yD%u, = o D*Yr (uy, t) + o vits Dutg + o f(x, 1), (3.2)

subject to the conditions (1.2)-(1.3), where o € [0,1]. Then

Il <C, Dol <C  [Dus| <G (33)

where C is a constant independent of the solution u and o.

Proof First, let w, (x,t) be a time-periodic solution of the problem
1
D*w = u,, Dw|,—0, =0, / wdx =0,
0
then from the Poincaré inequality we know that

1 1 1 1
/ w?dx < / (Dwy)? dx < f (Dza)(,)2 dx = / u? dx. (3.4)
0 0 0 0

Multiplying (3.2) by w, (%, £), integrating the result over Q7 and using the condition (1.2),
then using the Young inequality and (3.4), we have

y // (D2z,ta)2 dxdt+o // ?wl(t)ug(Dug)2 dxdt
Qr Qr

=0 / b(t)(Duy ) dxdt — o // viug Dty w, dxdt — o / flx, t)w, dxdt

Qr Qr Qr
2 Mo 2 2 2

< C/ (Duy ) dxdt + — // u, (Duy)” dxdt + C// w; dxdt + C, (3.5)

Qr 2 Qr Qr
which implies that

// (Dzua)zdxdth// uw? dxdt + C. (3.6)
Qr Qr

Moreover,

// (Du,)? dxdt = —// u,D*u,y dx dt
Qr Qr
< C// (DzuU)dedt+C// u? dxdt
Qr Qr

< C// ui dxdt+ C. (3.7)
Qr

It follows from (3.5) that

N A
// uf,(Dua)zdxdt < — // (Duy)? dxdt + — // wi dxdt+C
Qr 3M Qr 3M Qr

< C// ui dxdt + C. (3.8)
Qr
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By (1.2), we have

x 1 1
ul(x,t) =/ D(ul(s,t)) ds < / |Dut | dx = 4-/ |1 Du, | dx.
0 0 0

Integrating the above inequality over Qr and using (3.8) together with the Young inequal-

ity, we have

ﬁ"ﬁmmgg/|@mﬂwm
Qr Qr
1/2 1/2
< 4(// ui dxdt) <// uf,(DuG)2 dxdt)
Qr Qr
172 172
_4(// uidxdt) (C// uidxdt+C) ,
Qr Qr

that is,

f/ uidxdth/f u dxdt + C.
Qr Qr

On the other hand, by the Young inequality,

// uf,dxdtfs// ur dxdt + C.
Qr Qr

Combining the above expressions, we obtain

f / ut dxdt < C, / / w2 dxdt < C. (3.9)
Qr Qr

Combining the above with (3.6) and (3.7), we see that
/ (Du,)? dxdt < C, / / (D*u,)’ dxdt < C. (3.10)
Qr Qr

Set
F(t) = /ll:g(DuU)Z + U(H(ug,t) + A):| dx,
0

where H(u,t) = - [ ¢ s = Ayt M0y2 > 3, ) is a positive constant depending
only on M and N. Then F(t) > 0. Integrating |F(¢)| over (0, T), by (3.9) and (3.10), we get

/|ﬂMm< Y (Duy) s (“)4 ?f+0

§C/ (Duo)zdxdt+C// u‘;dxdt+C// u dxdt +C
Qr Qr Qr

<cC. (3.11)

dxdt
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On the other hand, integrating by parts and using (1.2), we have

dF

1 1
= _/ (vD'u, + aDzw)2 dx—o / (yD*us + 0y ) vuuyDity dx
0 0

1 1 ’ ’
_o"/ (yD2ua+m/f)fdx+a/ <a(t)ui—b(t)u2)dx.
0 0

4 2 °

Integrating the above equality over (0, T') and noticing the periodicity of F, we have

// (vD'u, + oDzw)zdxdt
Qr
=-0 // (yDzuU +<ﬂp)vu0DuU dxdt-o // ()/Dzu(, +olp)fdxdt
Qr

Qr
+a/fQT<a;it)u§_

Integrating |‘;—f| over (0, T), using (3.9) and (3.10), we have

[

< 2/ ’()/DZMU +a1//)vuaDuU‘dxdt+ 2// }(]/DZM(7 + (Tl/f)f’ dxdt
Qr Qr
a (t)ug _ b (t)u§

+2/f

Qr 4 2

SC// (Dzua)zdxdt+C// uidxdt+C// | | dx dt
Qr Qr Qr

+C// u’dxdt+C<C. (3.12)
Qr

b ;t) uf,) dxdt.

dF

— | dt
dt

dxdt

By virtue of (3.11) and (3.12), we have F(t) < C. Noticing the definition of F(£), we get
1
/ (Duy ) dx < C. (3.13)
0

By (1.2), we know that ||u, ||, < C.
In order to prove the rest of this lemma, we need to give a priori estimate on D*u3. First,

by the Gagliardo-Nirenberg inequality, we can obtain

19
1Dy lla < C| Doy | 20 1D, 17,
3 37
”Dua ”8 S CHD6MU ||2m ”Dua ”;01
3
|D%us |, < ClD°us | 1Dus 1,
6 9 1
< C|D°us || 2° | Dus 1 3°

|Dus
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where || ||, denotes the L, norm on (0, 1). Regulating the exponents and using the Young

inequality for every of the above three expressions, we get

1 1 ) 1 19/9
f (Duy ) dx < s/ (D6u(,) dx + C(/ (Duy)? dx) ,
0 0 0
1 1 ) 1 37/7
/ (Duy )8 dx < 8/ (D6uo) dx + C(/ (Du,)? dx) ,
0 0 0
1 . 1 ) 1 3
/ (Dzu(,) dx < 8/ (D6ug) dx + C(/ (Duy)? dx) ,
0 0 0
11

/01(D3u0)4dx < 8/01(D6u0)2dx + C(/()I(Du(,)2 dx) .

Integrating the above inequalities over (0, T') and noticing (3.13), we see that the terms
of left hand side in these inequalities can all be estimated by ¢ |’ fQT(D6u(,)2 dxdt and a
constant number C. Then by the boundary value condition and (3.10), we have

// (D“u{,)zdxdtfs// (D°u, )’ dxdt + C, (3.14)
Qr Qr

and also, by the above discussion, we have

// (D‘*u?,)2 dxdt < C// (D4Lt(,)2 dxdt + C/f (DuoDsug)zdxdt
Qr Qr Qr
+Cf/ (|Du0|2D2ua)2dxdt+C/f (ID?u, |*)? dxdt
Qr Qr

< s// (Du, )’ dxdt + C. (3.15)
Qr

Multiplying (3.2) by D°u,, integrating the result over Qr, using (3.14), (3.15) and the

Young inequality, we get

f/ (D6ua)2 dxdt < sff (D6ug)2dxdt+ C// (D41p(ug,t))2dxdt+ C
Qr Qr Qr

<e¢ // (D6ua)2dxdt +C, (3.16)
Qr

that is,

f / (Du,)’ dxdt < C. (3.17)
Qr

By (3.17) and the approach similar to (3.14), we can derive

// (Du,)’ dxdt < C, // (Du,)* dxdt < C,
Qr Qr
// (D5ua)2 dxdt <C.

Qr

(3.18)
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Now we set
! 2
F(t) = / (Dzu(,) dx.
0
Obviously,
T
/ |Fi(t)|de < C. (319)
0

On the other hand, by (3.16), (3.17) and (3.18), we have

T T
[t
0 0

< c// (D4ug)2dxdt+C// (D°u,)’ dxdt
Qr Qr

+C//QT(D41p)2dxdt+C§ C. (3.20)

daF

1
T / D*u, (yD6ug +oD* + ovu,Dugy + of) dx|dt
0

By virtue of (3.19) and (3.20), we have F(t) < C. Noticing the definition of F;(z), we get

1
/ (D*u,)*dx < C.
0

Applying the Poincaré inequality and the Friedrichs inequality [15], we conclude that
[Dtts |l < C.
Finally, we set

F(t) = /()I(D?’ug)zdx.

By an approach similar to the above argument, we can obtain the last result that
|1D*tt4 || o < C. The proof of this lemma is complete. O

Proof of Theorem 3.1 Now we apply Theorem 2.1 to complete the proof of Theorem 3.1.
For the smooth function ®(x, t) in Theorem 2.1, let

®(x,t) = o D* Y (uy, t) + 0 VUte Dty + o f.
From the proof of Lemma 3.2, we see that foT(Diua)2 dxdt (i = 0,1,...,6) and
I/ or ®%dxdt can be all uniformly bounded by a constant number C. Therefore the co-

efficient K in Theorem 2.1 now only depends on the Holder exponent «. So, for u,, we
have

| D't (21, 11) = D't (3, 15) | < K@) (11 — 22|* + |13 — 1o §), i=0,1,2,

which combines with the results of Lemma 3.2. We know that ||, || & G < C,where C
is independent of # and o . Then, it follows from the results in [16] that ||, || Ml G <C.
T

Page 16 of 17
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Recalling the discourse in the beginning of this section, we conclude from the Leray-
Schauder fixed point theorem that £(%,1) admits a fixed point x in the space C®***5 (Q,),
which is the desired solution of problem (1.1)-(1.3). The proof of Theorem 3.1 is com-
pleted. O
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