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Abstract
In this study a steady state two-dimensional mixed convection problem in an air filled
cavity is investigated. The effects of linearly heated and uniformly cooled walls on
flow and heat transfer characteristics within the cavity are determined. The strength
of the fluid circulation within the cavity is found for both heated and cooled walls for
different Reynolds and Grashof numbers. The nonlinear coupled equations are solved
numerically using the penalty-Galerkin finite element method. Stream function and
isotherm results are obtained for different Reynolds and Grashof numbers. The results
for the heat transfer rate are presented in terms of both the local and the average
Nusselt number. In general, the strength of the circulation is stronger for the case of
cooled walls, and the anti-clockwise circulation is significantly stronger for cooled
walls, while the clockwise circulation is only slightly stronger for the cooled walls and
the difference in strength decreases both with increasing Reynolds and Grashof
numbers. Both the local and average Nusselt numbers are generally higher for the
case of cooled side walls than that for heated side walls.
MSC: 34B15; 65N30; 76M20

1 Introduction
Over the last decade mixed convection in a square cavity has become an increasingly at-
tractive field of study. The popularity of such studies is due in part to themany applications
of such flows in industrial and natural settings. These applications include, for example,
the thermal-hydraulics of nuclear reactors, drying technologies, the dynamics of lakes,
and food processing. Mixed convection in a lid-driven cavity has been extensively stud-
ied. Torrance et al. [] investigated the fluid motion in a lid-driven cavity where the upper
wall wasmaintained at a different temperature to that of the other walls in the cavity. They
observed that an increase in the aspect ratio led to an increase in secondary circulations
in the lower part of the cavity.
Kawaguti [] was one of the first to investigate the effect of the Reynolds number on

forced convection in a square cavity. Results were found using finite difference methods
for values of the Reynolds number Re between  and  for different ratios of lengths of the
cavity. An attempt wasmade to find results for Re = , but a convergent solution was not
found. By modifying Kawaguti’s method, Burggraf [] was able to attain stable solutions
for forced convection for a Reynolds number up to ,. Heinrich andMarshall [] used
the penalty finite elementmethod to investigate lid-driven cavity flowup to Re = . For a
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low Reynolds number, their results were in excellent agreement with published results. As
the Reynolds number increased, however, their results were less accurate in comparison
to other results. Early studies of natural convection in a cavity were of an experimental
nature. An example of an early experimental study is that of Eckert and Carlson []. They
made an experimental investigation into the flow and heat transfer in an enclosed cavity.
The top and bottom plates were heated to different temperatures. Their results showed
that, contrary to previous beliefs, it was very unlikely that a core of uniform temperature
could exist at large Rayleigh numbers unless the height to width aspect ratio was very
small. Ostrach [] gives an excellent review of early experimental studies of convection in a
cavity. Recently, Prasad and Koseff [] investigated mixed convection in a lid-driven cavity
through experimental means where the lower surface was heated and the upper surface
cooled. The lid speed and values of the Reynolds and Grashof numbers were varied. Their
results indicated that the overall heat transfer rate was a very weak function of the Grashof
number for the range of Reynolds numbers examined.
Moallemi and Jang [] investigated flow in a lid-driven cavity with the bottom wall

heated. They studied the effects of small Prandtl numbers on the flow and heat trans-
fer for various values of the Richardson number. Sivakumar et al. [] investigated mixed
convection in a lid-driven cavity with a cooled right wall and a heat source in the left wall.
Three different lengths of the heat source were examined. The finite volume method was
used to solve the resulting equations. It was found that for low values of the Richardson
number, reducing the heating portion length had no effect on the fluid flow. However,
on increasing the Richardson number, it was seen that the flow depended heavily on the
length of the heat source. It was also found that reducing the length of the heated portion
of the wall resulted in a better heat transfer rate. Nithyadevi et al. [] studied the case
where the side walls were partially heated or partially cooled while the rest of the cavity
was well insulated. They used the finite volumemethod to solve the equations. They stud-
ied nine different cases where the position of the heating and cooling sources was moved
between the top, bottom and middle of the wall of the cavity. They found that the heat
transfer rate was enhanced when there was a cooling source near the top of the cavity. For
a combination of a bottom top heating source, the heat transfer rate was found to be high,
while for the combination of a top bottom heating source, the heat transfer rate was low.
Related studies have been done by, among others, Paraconi and Corvaro [] and Pesso
and Piva [], Sathiyamoorthy et al. [].
Recently, Basak et al. [, ] studiedmixed convection in a lid-driven cavity. Themoving

upper lid was insulated in both studies. In Basak et al. [] they investigated cooled side
walls with a heated (uniformly and non-uniformly) bottom wall. In Basak et al. [] they
looked at a uniformly heated bottom wall with linearly heated left side wall. The right side
wall was heated either linearly or cooled uniformly. Both papers used the penalty finite
elementmethod to solve the governing equations ofmotion and heat transfer. Both studies
found that the strength of convection increasedwith increasingGrashof numbers and that
lid-driven flow was dominant for Gr = . Their work showed that the heat transfer rate
for a uniformly heated bottom wall was higher than that for the non-uniformly heated
bottom wall and that the heat transfer rate was larger for the case of one cooled right wall
than it was for the case when both walls were linearly heated.
Research has also been done into mixed convection with more than one moving wall

in a cavity. Oztop and Dagtekin [] used the finite volume method to investigate three
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cases of moving walls with adiabatic top and bottom wall and cooled left wall and heated
right wall. They observed that the fluid flow and the heat transfer in the cavity depended
on both the Richardson number Ri and the direction of motion of the walls.
Cheng and Liu [] investigated four cases of mixed convection in a square cavity. In

the first case, the side walls were well insulated while the top moving wall was heated and
the bottom wall cooled. In the second case, the bottom wall was heated and the top wall
cooled. In the third and fourth cases, the top and bottom walls were well insulated and
one side wall was cooled while the other was heated. They found that for the first case,
when the Richardson number was greater than , the heat transfer was mainly through
conduction. When the Richardson number was less than , forced convection dominated
the fluid flow aswas found byOztop andDagtekin []. In contrast to the findings ofOztop
and Dagtekin, in the second case, when the Richardson number was greater than , the
lower half of the cavity showed natural convection while the upper part was dominated by
forced convection.When the Richardson numberwas less than , the fluid flowwas similar
to that for case . For the third case when the Richardson number was greater than , heat
transfer was shown to be by conduction near the side walls and by convection in the center.
Again when the Richardson number was less than one, the fluid flowwas similar to that for
cases  and . For the fourth case, a large portion of the cavity was dominated by natural
convection for all values of the Richardson number.
Corcione [] investigated the effect of the Rayleigh number and the width to height

aspect ratio of the cavity on steady laminar natural convection in an air filled cavity. The
cavity was heated from below and cooled from above while six different cases of side wall
heating and cooling were investigated. They showed that the heat transfer rate from a
cooled or heated boundary increased as the Rayleigh number increased. In the case with
insulated side walls, the heat transfer rate from the heated bottom wall or top cooled wall
increased as each of the side walls was replaced by a cooled or heated side wall. Wong []
investigated mixed convection in a square cavity. The left wall was maintained at a con-
stant velocity. The other walls were kept stationary. The top and bottom walls were insu-
lated and the left moving wall was heated while the right side wall was cooled. A numerical
solution was found using the consistent splitting scheme and the finite element method.
Wong fixed the Reynolds number at  and varied the Grashof number to measure the
effects of the Richardson number. When the Richardson number was ., the flow was
found to be strongly influenced by forced convection. At Ri = , mixed convection was
found to occur. At Ri = , the fluid flow was mainly dominated by natural convection.
These findings are similar to those of Oztop and Dagtekin [] even though only one side
wall wasmoving in this case. Chinyoka [] investigated non-isothermal two-dimensional
unsteady fluid flow problems in a rectangular channel.
In this study mixed convection in a two-dimensional cavity is investigated using the

penalty-Galerkin finite elementmethod to solve the governingmomentum and heat equa-
tions. Much work has been done on mixed convection with uniformly heated or cooled
walls. Since little work has been done on sinusoidal and linearly heated walls and even
less work on a combination of these, the aim of this investigation is to combine linear and
sinusoidal heating of different walls of the cavity with a moving lid to study the resulting
mixed convective flow.
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2 Mathematical modeling
A two-dimensional square cavity of length L is considered for the current investigation.
The cavity lid is sinusoidally heated while moving at a constant speed from left to right,
and the cavity is heated at a constant rate from the bottom. Two cases of side wall heating
are investigated. In the first instance, the cavity side walls are linearly heated, while in
case  the side walls are uniformly cooled.
The equations that describe the fluid flow and the heat transfer characteristics within

the cavity, subject to the Boussinesq approximation are as follows:

∂u
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+
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= , ()
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subject to the boundary conditions

u = v = , T = Th – (Th – Tc)
y
L

or T = Tc at x = , , ()

u = v = , T = Th at y = , ()

u =U, v = , T = (Th – Tc) sin
(

π
x
L

)
+ Tc at y = , ()

where u and v are the velocity components in the x and y directions respectively, α is the
thermal diffusivity, β is the coefficient of thermal expansion, ν is the kinematic viscosity,
ρ is the mass density, g is the acceleration due to gravity, Th is the highest temperature
attained along the bottom wall and the middle of the top wall and Tc is the lowest temper-
ature attained at the top corners in case  and along the side walls in case .
We non-dimensionalize the equations by using the following change of variables:

X =
x
L
, Y =

y
L
, U =

u
U

, V =
v
U

, θ =
T – Tc

Th – Tc
, P =

p
ρU


,

whereU is the velocity of the upper wall and θ is the non-dimensional fluid temperature.
This leads to the equations
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Figure 1 Schematic sketch of the cavity problemwith, Case 1, linearly heated side walls and, Case 2,
uniformly cooled walls.

where the important parameters are the Prandtl number Pr, the Reynolds number Re, and
the Grashof number Gr given, respectively, by

Pr =
ν

α
, Re =

UL
ν

and Gr =
gβ(Th – Tc)L

ν .

The corresponding boundary conditions are:

U = V = , θ =  – Y or θ =  at X = , , ()

U = V = , θ =  at Y = , ()

U = , V = , θ = sin(πX) at Y = . ()

The geometry of the problem together with the associated boundary conditions is shown
in Figure .

3 Numerical solution
Equations ()-() were solved using the penalty-Galerkin finite element method
(PGFEM). This method has the advantage of eliminating pressure as a dependent vari-
able while still satisfying the continuity equation.
We introduce test functions φi (which are piecewise, once differentiable functions) and

multiply equations ()-() by the test functions to obtain the weak forms of the equations,
namely

∫
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)]
∂
 = , ()

∫
φi

[
U

∂V
∂X

+V
∂V
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∫
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U
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(
∂θ
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∂θ
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∂
 = . ()

The continuity equation in its weighted form becomes

∫



φi

(
∂U
∂X

+
∂V
∂Y

)
d
 = . ()
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The PGFEM supposes that we may replace equation () with

∫



φi

(
∂U
∂X

+
∂V
∂Y

)
d
 = –ε

∫
φiP, ()

where ε is an arbitrarily small parameter. Rearranging these equations, we find

P = –λ∇ · u, ()

where λ is the penalty parameter. Mass conservation is satisfied in the limit ε →  or
λ → ∞. Here λ is chosen to be  as this has been shown to give consistent results (Basak
et al. []). If required, the pressure field can be calculated using equation (). This gen-
erally requires a higher level of convergence than is necessary for the velocity field. In this
investigation we have chosen to restrict our results to the stream function and tempera-
ture contours. As an alternative to the penalty function technique above, the semi-implicit
method for pressure linked equations (SIMPLE) technique may be used; see, for instance,
Chinyoka [–].
Substituting equation () intomomentumequations () and () leads to the penalized

momentum equations:

∫
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)
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∂X
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U

∂

∂X

(
∂φi
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)
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∂

∂X

(
∂φi

∂Y

)]

+

Re

∂φi

∂Y
∂U
∂Y

= , ()
∫

φi

(
U

∂V
∂X

+V
∂V
∂Y

)
–
Grθ
Re

φi +

Re

∂φi

∂X
∂V
∂X

+ λ

[
U

∂

∂Y

(
∂φi

∂X

)
+V

∂

∂Y

(
∂φi

∂Y

)]

+

Re

∂φi

∂Y
∂V
∂Y

= . ()

To determine the finite element approximate solution of equations (), () and (), we
discretise the domain into  rectangular elementswith a total of  nodes. In principle,
more elements may be used to ensure even greater accuracy of results, but this greatly
increases the computation time. Initially, one hundred elements were used, but although
the computation of such a formulation was efficient, the accuracy of the solutions was
impaired. Four hundred elementswere found to give sufficient accuracywithout impairing
the efficiency of the solution method. There are  nodes which are not on a Dirichlet
boundary. Associatedwith each node in the domain is a basis function φj. For convenience,
the same functions φi were used as both test and basis functions. These basis functions
are chosen to be linear Lagrange elements. We expand U, V and θ as linear combinations
of the basis functions over the non-Dirichlet boundary nodes as

U =
∑
j=

Ujφj, V =
∑
j=

Vjφj, θ =
∑
j=

θjφj, ()

where Uj, Vj and θj are the nodal values of U , V and θ at the jth node.
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By substituting these expressions for U , V and θ into equations (), () and (), we
obtain (after manipulation and simplification)

∑
j=

Uj

∫



[( ∑
k=

Ukφk

)
∂φj

∂X
+

( ∑
k=

Vkφk

)
∂φj

∂Y

]
φi dX dY

+ λ

[ ∑
j=

Uj

∫



∂φi

∂X
∂φj

∂X
dX dY +

∑
j=

Vj

∫



∂φi

∂X
∂φj

∂Y
dX dY

]

+

Re

∑
j=

Uj

∫



[
∂φi

∂X
∂φj

∂X
+

∂φi

∂Y
∂φj

∂Y

]
dX dY = , ()

∑
j=

Vj

∫



[( ∑
k=

Ukφk

)
∂φj

∂X
+

( ∑
k=

Vkφk

)
∂φj

∂Y

]
φi dX dY

+ λ

[ ∑
j=

Uj

∫



∂φi

∂Y
∂φj

∂X
dX dY +

∑
j=

Vj

∫



∂φi

∂Y
∂φj

∂Y
dX dY

]

+

Re

∑
j=

Vj

∫



[
∂φi

∂X
∂φj

∂X
+

∂φi

∂Y
∂φj

∂Y

]
dX dY –

Gr
Re

∫



( ∑
j=

θjφj

)
φi dX dY = , ()

∑
j=

θj

∫



[( ∑
k=

Ukφk

)
∂φj

∂X
+

( ∑
k=

Vkφk

)
∂φj

∂Y

]
φi dX dY

+


RePr

∑
j=

θj

∫



[
∂φi

∂X
∂φj

∂X
+

∂φi

∂Y
∂φj

∂Y

]
dX dY = . ()

The set of non-linear equations is solved using the Gaussian quadrature and reduced
integration to prevent locking, that is, the deterioration in performance of the numerical
scheme as λ → ∞ (see, for instance, Qi et al. [] and the references therein).

3.1 The stream function and the Nusselt number
Results of the fluidmotion are usually interpreted in terms of the stream functionψ , where

U =
∂ψ

∂Y
and V = –

∂ψ

∂X
.

Expanding the stream function in the same way as we did for U , V and θ , we obtain

∑
j=

ψj

∫



[
∂φi

∂X
∂φj

∂X
+

∂φi

∂Y
∂φj

∂Y

]
dX dY

+
∑
j=

Uj

∫



φi
∂φj

∂Y
dX dY –

∑
j=

Vj

∫



φi
∂φj

∂X
dX dY = . ()

The heat transfer coefficient in terms of the Nusselt number is defined as

Nu = –
∂θ

∂n
, ()
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Figure 2 Benchmark results for natural convection in a square cavity with uniformly heated bottom
wall when Re = 1, (a) Gr = 103, (b) Gr = 105. These results are in good agreement with those of Basak et al.
[24].

where n denotes the normal to the plane. The average Nusselt number is defined as

Nu =
∫ 


Nudn. ()

4 Results and discussion
Results have been found for  ×  quadratic elements with  inner nodes, Pr = .
(the value for air),  ≤ Gr ≤ , and Re = , ,  and ,. Convergence was found
to be generally poor for Re > ,.
Benchmark results were found for uniformly heated bottom and cooled side walls with

an adiabatic stationary lid. Figure  shows the stream function and temperature contours
for the benchmark results. The results are in good agreement with those in the literature,
particularly Basak et al. [].We note that in the figures below, a negative stream function
value denotes clockwise flow while a positive value denotes anti-clockwise flow.
Figures - show the results for the stream function and temperature contours for a

moving sinusoidally heated lid with linearly heated side walls and a uniformly heated bot-
tom wall for Grashof numbers between  and .
Figure  shows that for Re = , Gr = , two counter rotating circulations are formed in

the cavity. The circulation on the left-hand side of the cavity is counter-clockwise, while
the circulation on the right-hand side of the cavity is clockwise. The clockwise flow is
significantly stronger than the anti-clockwise flow and thus it can be observed that the flow
is dominated by forced convection due to the moving lid. As was expected, the isotherms
for Re = , Gr =  reach a maximum along the bottom wall and at the center of the top

http://www.boundaryvalueproblems.com/content/2013/1/83
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Figure 3 Stream function and temperature contours for linearly heated side walls when Re = 1,
(a) Gr = 103, (b) Gr = 104, (c) Gr = 105.

wall, while reaching aminimumat the top corners of the cavity. At the bottomof the cavity,
isotherms span the entire width of the cavity. When θ ≤ ., the isotherms instead curve
upwards towards the lid of the cavity. Hot isotherms at the top of the cavity are restricted
to the center of the top wall.
As Gr increases to , the anti-clockwise circulation increases in size and in strength

so that two symmetric rotations are formed within the cavity. Natural convection is now
as equally dominant as the forced convection regime. The isotherm pattern is similar to
that of Gr = , although the heat from the bottom wall has risen slightly higher into the
middle of the cavity.
AtGr = , the clockwise circulation in the cavity increases in size and dominates most

of the cavity. The circulation is slanted towards the top right and bottom left corners.
A small third anti-clockwise circulation is formed on the bottom right-hand side of the
cavity. It can be seen that the isotherms are compressed in the top corners of the cavity
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Figure 4 Stream function and temperature contours for linearly heated side walls when Re = 10,
(a) Gr = 103, (b) Gr = 104, (c) Gr = 105.

and in the middle of the bottom wall. The isotherms are widely dispersed in the left-hand
corner of the cavity. This is due to the shape and angle of the clockwise circulation. Cool
fluid is brought down on the right-hand side of the cavity, while hot fluid is transported
upwards towards the middle of the cavity on the left-hand side of the bottom wall. The
strength of the circulations increase with increasing Grashof numbers.
For Re =  and Gr =  (see Figure ), the flow in the cavity is clearly dominated by

forced convection. Only a very small secondary circulation is found for this low Grashof
number. The isotherms are no longer perfectly symmetrical. As Gr increases to , the
secondary circulation on the left-hand side of the cavity grows in size and strength. The
strength of the clockwise circulation is stronger than that of the anti-clockwise circula-
tion. The flow is still dominated by lid-driven flow, but natural convection now has a more
significant effect on the flow.An increase in theGrashof number causes the heat to rise fur-
ther towards the center of the cavity. When Gr = , the secondary circulation increases
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Figure 5 Stream function and temperature contours for linearly heated side walls when Re = 100,
(a) Gr = 103, (b) Gr = 104, (c) Gr = 105.

in size, becomes slanted and dominates most of the cavity and a small third clockwise cir-
culation is formed on the bottom right-hand side of the cavity. The isotherms at Gr = 

are also similar in shape to those when Re = .
In Figure  at Re = , Gr =  and Gr = , the flow is again dominated by forced

convection. A single clockwise circulation is formed due to strong inertial effects at the top
wall. There is little change in the flow as theGrashof number increases from  to . The
isotherms for both Gr =  and Gr =  are dispersed on the left-hand side of the cavity
and are compressed on the right-hand side of the cavity. This is due to the domination
of the forced convection flow regime. At Re = , Gr = , a large slanted clockwise
circulation is formedwhich dominatesmore of the cavity than the circulationswhenRe = 
and when Re = . Again a small third anti-clockwise circulation is formed at the bottom
right-hand corner of the cavity. The isotherms are similar in shape for Re =  and Re = .

http://www.boundaryvalueproblems.com/content/2013/1/83


Ducasse and Sibanda Boundary Value Problems 2013, 2013:83 Page 12 of 21
http://www.boundaryvalueproblems.com/content/2013/1/83

Figure 6 Stream function and temperature contours for linearly heated side walls when Re = 1,000,
(a) Gr = 103, (b) Gr = 104, (c) Gr = 105.

For Re = , (see Figure ), the flow is dominated by forced convection for Gr = ,
Gr =  and Gr = . For Gr = , a single clockwise circulation is formed within the
cavity. As Gr increases to , a small anti-clockwise circulation is formed on the bot-
tom right-hand side of the cavity. As Gr increases to , there is little change in the fluid
flow. The isotherms for both Gr =  and Gr =  are dispersed on the bottom left-
hand side of the cavity and compressed on the bottom right-hand side of the cavity. The
warm isotherms are dispersed towards the top right-hand side of the cavity, causing the
cool isotherms to be compressed into the top right corner. As Gr increases to , the hot
isotherms stretch slightly higher into the center of the cavity. It can be seen that as the
Reynolds number increases, the strength of the circulation decreases.
Figures - show the results for the stream function and temperature contours for a

moving sinusoidally heated lid with cooled side walls and uniformly heated bottom wall
for Pr = ., Re = ,  and  and a range of Grashof numbers between  and . For
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Figure 7 Stream function and temperature contours for cooled side walls when Re = 1, (a) Gr = 103,
(b) Gr = 104, (c) Gr = 105.

Re =  and Gr =  (Figure ), the flow is slightly dominated by forced convection. Two
counter rotating circulations are formed in the cavity, with the clockwise circulation being
only slightly stronger than the anti-clockwise circulation. The temperature distribution
across the cavity shows that the cavity is at a high temperature across the bottom of the
cavity and towards the center of the top of the cavity. The cavity is cooler towards the
side walls and top corners as was expected. The hot isotherms still span the width of the
cavity, but are pushed downwards in the corners. For θ ≥ ., the isotherms are horizontal
across the cavity, but for θ ≤ ., the isotherms stretch vertically across the cavity. The
temperature distribution obviously differs from that of the linearly heated walls at the side
walls. It can also be seen that the contour lines are more widely dispersed towards the
bottom of the cavity for the linearly heated case.
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Figure 8 Stream function and temperature contours for cooled side walls when Re = 10, (a) Gr = 103,
(b) Gr = 104, (c) Gr = 105.

AsGr increases to , the clockwise circulation increases in size to form two counter ro-
tating circulations of a similar size and the natural convection is almost equally dominant
to that of forced convection. The centers of the circulations are now at the same height.
The temperature contours become slightly more compressed towards the side walls as
the Grashof number increases. The hotter contour lines from the top wall are seen to be
wider than that of Gr =  and are found to be narrower in the center towards the bot-
tom wall. As Gr increases to , the strength of the stream function increases and the
size and position of the two circulations are identical. It can be seen that the hot contour
lines have widened even further along the top wall causing the cooler contour lines to
become compressed towards the top of the cavity. Towards the bottom of the cavity, the
cool isotherms (those where θ ≤ .) are widely dispersed towards the center of the cavity
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Figure 9 Stream function and temperature contours for cooled side walls when Re = 100, (a) Gr = 103,
(b) Gr = 104, (c) Gr = 105.

while the warmer isotherms are compressed towards the bottom wall. This is particularly
the case towards the bottom corners of the cavity.
In Figure  it is clear that for Re = , Gr = , the flow is dominated by forced convec-

tion. The majority of the cavity is dominated by a clockwise rotating circulation. A small
anti-clockwise circulation is formed on the bottom left-hand side of the cavity. The tem-
perature contours are similar to the case where Re = . On close inspection it can be seen
that the contours are slightly more compressed towards the top right corner than when
Re = .
As Gr increases to , the anti-clockwise circulation grows in size although the clock-

wise rotating circulation is still larger in size and in strength indicating that the flow is still
slightly dominated by forced convection. Again the contour lines are similar in shape to
those for Re = , and a slight compression towards the top right-hand corner can be seen.
As Gr increases further to , natural convection becomes equal to forced convection.
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There is no observable difference in the shape of the temperature contours from that of
Re = .
Figure  shows that for Re =  and Gr =  and Gr = , the flow is dominated by

forced convection. For Gr = , only one clockwise rotating circulation appears in the
cavity. As Gr increases to , a small anti-clockwise circulation is formed in the bot-
tom left-hand corner of the cavity. As Gr increases to , the anti-clockwise circulation
increases in size and strength. The flow is still slightly dominated by forced convection.
The temperature contours for Re =  show a marked difference to those for Re =  and
Re = . ForGr = , the hot isotherms (where θ ≥ .) are dispersed towards the bottom
left and top right corners and compressed in the top left and bottom right corners. The
cool isotherms are compressed in the top right and bottom left corners and dispersed to-
wards the center of the cavity along the middle and bottom of the right wall and at the top
of the left wall. The compression and dispersion is more significant along the right side
wall than along the left side wall. As Gr increases to , the hot temperature contours
from the bottomwall move slightly higher towards the center of the cavity, while the basic
shape of the contours remains the same as those for Gr = . A further increase in Gr to
 causes the temperature contours to become compressed in the top two corners of the
cavity and more dispersed in the bottom two corners. There is a significant compression
of isotherms towards the top right-hand corner. The hot temperature contours from the
bottom wall become more elongated and extend further towards the center of the cavity.
Figure  shows that for Re = ,, Gr =  and Gr = , the flow is dominated by

forced convection with a single clockwise circulation being formed within the cavity. As
Gr increases to , an anti-clockwise circulation is formed on the bottom left-hand side
of the cavity. The isotherms for Gr =  and Gr =  are similar. The hot isotherms are
dispersed on the left-hand side of the cavity and compressed on the right-hand side of the
cavity. Warm isotherms (θ = . and .) from the top of the cavity are stretched down-
wards towards the right-hand side of the cavity. AsGr increases to , thewarm isotherms
stretch slightly higher into the center of the cavity than for Gr =  and Gr = . The
warm isotherms from the top of the cavity stretch slightly further downwards towards the
center right-hand side of the cavity.
In general, the circulation is stronger for the case of cooled side walls than that for lin-

early heated walls. The anti-clockwise circulation is significantly stronger for the cooled
walls than for the linearly heated walls while the clockwise circulation is only slightly
stronger for the cooled walls. For Re =  and , the cooled walls produce two identical
counter rotating circulations in contrast to the three tilted circulations resulting from the
linearly heated walls. For Gr = , the stream function pattern for the cooled walls shows
a slightly stronger clockwise circulation indicating a slight domination by forced convec-
tion, but again the flow pattern is different from that of the linearly heated side walls.

5 Heat transfer at the walls
Figure  shows the effect of the Grashof number on the heat transfer at each of the walls
in the cavity for the case of linearly heated side walls.
For all values of theGrashof number, the local Nusselt number is equal to one at the edge

of the bottom wall on both sides due to the linear heating of the side walls. For Gr = ,
the local Nusselt number falls below  and reaches a local minimum between x = . and
x = .. There is not much variation in the Nusselt number across the cavity due to the
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Figure 10 Stream function and temperature contours for cooled side walls when Re = 1,000, (a)
Gr = 103, (b) Gr = 104, (c) Gr = 105.

relatively flat isotherms at the bottom of the cavity. WhenGr = , the Nusselt number is
of a similar value to that for Gr =  between x =  and x = .. Beyond x = ., the graph
rises above that of Gr =  reaching a maximum at x = ..
WhenGr = , the Nusselt number is greater than  for themajority of the cavity due to

the compressed isotherms. The Nusselt number drops below  between x =  and x = .
due to the widely dispersed isotherms on the left-hand side of the cavity. The Nusselt
number is at a maximum at x = .. The local Nusselt number at the edges of the top
wall is equal to – for all values of the Grashof number due to the linearly heated walls.
For Gr = , the Nusselt number rises and reaches a local maximum at x = . and then
gradually decreases. For Gr = , the Nusselt number follows a similar pattern to that
for Gr = , although is lower than the graph of Gr = . At Gr = , the graph of the
Nusselt number is close to being symmetric in shape. The Nusselt number drops to a local
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Figure 11 Local Nusselt number for linearly heated side walls with Re = 10 and Gr = 103 (+), Gr = 104

(�) and Gr = 105 (o).

minimum at x = . and then rises to a local maximum at the center of the cavity. The
Nusselt number then drops again to a local minimum at x = .. When Gr = , the local
Nusselt number at the right-hand wall gradually increases as y increases. For Gr = , a
similar occurrence happens, although the Nusselt number is below that for Gr =  until
y = . where the Nusselt number becomes greater than that of Gr = . For Gr = ,
the Nusselt number decreases below  attaining a local minimum at y = . due to the
compressed isotherms at the bottom corner of the right wall. The Nusselt number then
increases reaching a local maximum at y = ..
The local Nusselt number at the left-hand wall for Gr =  and Gr =  is very similar

in shape to that for the right-hand wall due to a near symmetrical isotherm pattern at the
two walls. However at Gr = , the local Nusselt number at the left-hand wall is above
 for the entire height of the cavity and has an oscillatory pattern. The Nusselt number
initially rises attaining a local maximum at y = . due to the dispersed isotherms along
the bottom half of the left-hand wall. Towards the top of the cavity, the isotherms become
more dispersed once again and the Nusselt number again rises to a local maximum at
y = ..
The graph at the left-hand wall is similar to that of Basak et al. [] which also exhibits

a slightly oscillatory shape. However, the graph in the present study has a local maximum
near the top corner and then decreases in contrast to the graph in Basak et al. [] which
increases monotonically to the wall. This is due to the difference between the adiabatic
and the heated lid.
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Figure 12 The average Nusselt number for linearly heated side walls with Re = 10.

Figure  shows the averageNusselt number at the four walls of the cavity. At the bottom
wall, the Nusselt number is seen to increase as the Grashof number increases. The graph
of the average Nusselt number at the bottomwall is almost identical to the results of Basak
et al. []. At the top wall, the opposite is seen to happen. This is due to the fact that as the
Grashof number increases, the isotherms become more compressed in the top corners.
At the left-hand side wall, the average Nusselt number is lower for Gr =  than it is for
Gr = . This is due to the slight dip in the isotherms at the left wall. The average Nusselt
number at the left wall then increases for Gr = . The average Nusselt number at the
right side wall decreases as the Grashof number increases. The local Nusselt number at
the bottom wall for cooled side walls is shown in Figure . For all values of the Grashof
number, the Nusselt number decreases to x = . where it attains a local minimum. The
local Nusselt number when Gr =  is lower than that when Gr =  which, in turn, is
lower than that when Gr = . In contrast to the case of linearly heated side walls, the
local Nusselt number at the bottom wall for cooled walls is concave up due to the fact that
the isotherms are equal to  at the corners of the bottom wall for the cooled walls.
The local Nusselt number decreases to a local minimum at y = . forGr =  and then

increases slightly towards the top of the cavity. ForGr = , theNusselt number decreases
to a local minimum near y = . and then slowly increases towards the top of the cavity.
WhenGr = , the localNusselt number decreases to a localminimumnear y = . due to
the dispersion of isotherms near the bottom corner(s). TheNusselt number then increases
above that of Gr =  and Gr =  at y = . and y = ., respectively, due to the more
compressed isotherms in the top corners. The Nusselt number then increases to a local
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Figure 13 The local Nusselt number for cooled side walls with Re = 10, Gr = 103 (+), Gr = 104 (�) and
Gr = 105 (o).

maximum near y = .. There is no oscillatory pattern when Gr =  as was observed in
the case of the heated side walls.

6 Conclusion
A numerical study has been performed using the penalty-Galerkin finite element method
to analyze mixed convective heat transfer and fluid flow in an air filled square cavity. The
effects of linearly heated and uniformly cooled walls on flow and heat transfer character-
istics within the cavity have been studied. It was observed that
- In general, the strength of circulation was stronger for the case of cooled walls, and
that the anti-clockwise circulation was significantly stronger for cooled walls, while
the clockwise circulation was only slightly stronger for cooled walls. The difference in
strength decreased with increasing both Reynolds and Grashof numbers.

- Both the local and average Nusselt numbers were generally higher for the case of
cooled side walls than those for heated side walls.

- The local Nusselt numbers at the left and right walls were similar in the case of cooled
side walls due to symmetric patterns in the temperature isotherms. However,
particularly for Gr = , the heated side walls had different local Nusselt numbers at
the two different walls.

- The local Nusselt number at the top wall was similar in shape for the two cases
although the linearly heated case was lower in value than for the cooled side walls.
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