
Bhrawy et al. Boundary Value Problems 2013, 2013:87
http://www.boundaryvalueproblems.com/content/2013/1/87

RESEARCH Open Access

An efficient spectral collocation algorithm for
nonlinear Phi-four equations
Ali H Bhrawy1,2*, Laila M Assas1,3 and Mohammed A Alghamdi1

*Correspondence:
alibhrawy@yahoo.co.uk
1Department of Mathematics,
Faculty of Science, King Abdulaziz
University, Jeddah, 21589, Saudi
Arabia
2Department of Mathematics,
Faculty of Science, Beni-Suef
University, Beni-Suef, Egypt
Full list of author information is
available at the end of the article

Abstract
A Jacobi-Gauss-Lobatto collocation method is developed in this work to obtain
spectral solutions for different versions of nonlinear time-dependent Phi-four
equations subject to nonhomogeneous initial-boundary conditions. The node points
are introduced as the roots of the orthogonal Jacobi polynomial with general
parameters, α and β . The objective of this paper is thus to investigate the influence of
the Jacobi spectral collocation method for solving the nonlinear Phi-four equations.
Moreover, the results obtained with the different Jacobi polynomial parameters,
α and β are compared to examine the accuracy of most of these parameters. The
accuracy and performance of the proposed method are assessed and evaluated
through solving three nonlinear problems. Some numerical experiments are
presented to show the convergence and the accuracy of the proposed algorithm.
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1 Introduction
Spectral methods are an efficient and highly accurate techniques adopted in appliedmath-
ematics andfluid dynamics to numerically solve linear andnonlinear differential equations
and integral equations (see, e.g., [–] and the references therein). The three well-known
versions of spectral methods are the Galerkin, tau and collocation methods. The spectral
collocation method is considered the simplest method with high accuracy and stability
similar to the other types of spectral methods. During the last three decades, the spec-
tral collocationmethod has gained increased interest in the numerical analysis field and is
considered as a good candidate for solving nonlinear physicalmodeling problems and frac-
tional differential equations [–]. The spectral collocationmethod offers the exponential
rate of convergence as the grid is refined or the degree of the interpolation polynomial is
increased.
A well-known advantage of a collocation method is that it achieves high accuracy with

relatively fewer spatial grid points when compared with other numerical methods. In this
direction, a new Legendre-Gauss collocationmethod was proposed in [] for solving non-
linear second-order ordinary differential equations. A generalization of this approach was
well studied in [] for treating a class of fractional differential equation. Saadatmandi and
Dehghan [] introduced the Sinc-collocation approach for solving multi-point boundary
value problems; in this approach, the computation of numerical solution is reduced to
solve system of algebraic equations. Recently, Bhrawy and Alofi [] proposed the shifted
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Jacobi-Gauss collocation approach to find an accurate solution of the Lane-Emden type
equation, meanwhile, Doha et al. [] developed this approach for solving nonlinear high-
order multipoint boundary value problems.
Manymathematical problems arising in science and engineering have been described by

the nonlinear Klein-Gordon equation. It is a relativistic version of the Schrödinger equa-
tion. Moreover, any solution to the Dirac equation is automatically a solution to the Klein-
Gordon equation, but the converse is not true [–]. A very important particular form
of the Klein-Gordon equation is the Phi-four equation; themodel phenomenon in particle
physics where kink and antikink solitary waves interact.
Several numerical methods have been proposed in the literature for solving nonlinear

time-dependent partial differential equations, (see, [–]). Dehghan et al. [] proposed
a finite difference scheme for solving the Klein-Gordon equation. They approximated the
spatial derivative by the fourth-order finite difference scheme and the resulted system of
second-order ordinary differential equations in time by the implicit Runge-Kutta-Nystrom
method, which has fourth-order accuracy in time. In the literature, few numerical schemes
have been presented for solving the Phi-four equation. In [], the authors obtained the
singular soliton solution of the Phi-four equation, which appears in relativistic quantum
mechanics by the ansatz method, and a new spectral solution was proposed based on ra-
tional Chebyshev functions on a semiinfinite domain. Some analytical methods for solv-
ing the Phi-four equation and other related equations were given in [–]. To the best
of the authors’ knowledge, there are no results on the Jacobi-Gauss-Lobatto collocation
method for solving nonlinear Phi-four equations. This partially motivated our interest in
such method.
In this paper, we propose an orthogonal collocation scheme for solving the Phi-four

equation based on Jacobi family in which the nodes of the Jacobi-Gauss-Lobatto quadra-
ture whose distributions can be tuned by two parameters, α and β . Firstly, we apply the
Jacobi-Gauss-Lobatto collocation (J-GL-C) method on the model equation for discretiz-
ing spatial derivatives, using (N – ) nodes of the Jacobi-Gauss-Lobatto interpolation,
which depends upon the two general parameters (α,β > –). These equations together
with the two-point boundary conditions, which are enforced in the collocated equation,
constitute the system of (N – ) ordinary differential equations (ODEs) in time. Secondly,
the Runge-Kutta method of fourth-order is investigated for the time integration of the
resulting nonlinear system of (N –) second-order ODEs. Finally, the accuracy of the pro-
posed method is shown by test problems.
The outline of this paper is as follows. In Section , we give some properties of Jacobi

polynomials. In Section , the J-GL-C method technique for nonlinear time-dependent
Phi-four equation is implemented, and in Section  the proposed method is applied to
three Phi-four equations. Finally, a conclusion is drawn in Section .

2 Some properties of Jacobi polynomials
Due to obtaining the solution in terms of the Jacobi parameters α and β , the use of Ja-
cobi polynomials for solving differential equations has gained increasing popularity in re-
cent years (see, [, ]). These orthogonal polynomials are eigenfunctions of the Sturm-
Liouville equation:

(
 – x

)
φ′′(x) +

[
β – α + (α + β + )x

]
φ′(x) + n(n + α + β + )φ(x) = . ()
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The orthogonal Jacobi polynomials are satisfying the following relations:

P(α,β)
k (–x) = (–)kP(α,β)

k (x), P(α,β)
k (–) =

(–)k�(k + β + )
k!�(β + )

,

P(α,β)
k () =

�(k + α + )
k!�(α + )

.
()

Let w(α,β)(x) = ( – x)α( + x)β , then we define the weighted space Lw(α,β) as usual, equipped
with the following inner product and norm:

(u, v)w(α,β) =
∫ 

–
u(x)v(x)w(α,β)(x)dx, ‖u‖w(α,β) = (u,u)



w(α,β) , ()

and the discrete inner product and norm

(u, v)w(α,β) =
N∑
j=

u
(
x(α,β)N ,j

)
v
(
x(α,β)N ,j

)
�

(α,β)
N ,j , ‖u‖w(α,β) = (u,u)



w(α,β) , ()

where x(α,β)N ,j ( ≤ j ≤ N ) and �
(α,β)
N ,j ( ≤ j ≤ N ) are the nodes and the correspond-

ing Christoffel numbers of the Jacobi-Gauss-Lobatto quadrature formula on the interval
(–, ).
The set of Jacobi polynomials forms a complete Lw(α,β) -orthogonal system, and

∥∥P(α,β)
k

∥∥
w(α,β) = hk =

α+β+�(k + α + )�(k + β + )
(k + α + β + )�(k + )�(k + α + β + )

. ()

3 J-GL-Cmethod for nonlinear Phi-four model
Since the collocation method is an efficient numerical technique for approximating var-
ious problems in physical space, including variable coefficient and nonlinear terms (see,
for instance [, ]), we present the J-GL-C method to numerically solve the nonlinear
time-dependent Phi-four equations.

3.1 Jacobi spectral collocationmethod in space dimensional
The J-GL-Cmethod will be used to approximate solutions of the following nonlinear Phi-
four equation:

vtt = εvθ + εv + ζvyy, (y, t) ∈D× [,T], ()

where

D = {y : A≤ y≤ B},

subject to the initial-boundary conditions

v(A, t) = g(t), v(B, t) = g(t), ()

v(y, ) = f(y), vt(y, ) = f(y), y ∈D. ()
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Now, suppose the change of variables x = 
B–Ay +

A+B
A–B , u(x, t) = v(y, t), which will be used

to transform problem ()-() into another one in the classical interval, [–, ], for the
space variable, to directly implement collocation method based on Jacobi family defined
on [–, ],

utt = εuθ + εu +
(


B –A

)

ζuxx, (x, t) ∈D∗ × [,T], ()

where D∗ = {x : – ≤ x≤ }, subject to the initial-boundary conditions

u(–, t) = g(t), u(, t) = g(t), ()

u(x, ) = f(x), ut(x, ) = f(x), x ∈D∗. ()

The node points are the set of points in a specified domain where the dependent vari-
able values are approximated. In general, the choice of the location of the node points are
optional, but taking the nodes of Jacobi-Gauss-Lobatto quadrature whose distributions
can be tuned by two parameters, α and β ; referred to as Jacobi -Gauss-Lobatto colloca-
tion points, gives particularly accurate solutions for the spectral methods. The aim of this
work is to consider the advantage of the Jacobi collocation method in a specified domain,
[–, ] using the nodes of Jacobi-Gauss-Lobatto quadrature. Now, we outline themain step
of the J-GL-Cmethod for solving the nonlinear Phi-four model. Let us expand the depen-
dent variable in a Jacobi series,

u(x, t) =
N∑
j=

aj(t)P(α,β)
j (x), ()

and in virtue of () and (), we deduce that

aj(t) =

hj

∫ 

–
u(x, t)w(α,β)(x)P(α,β)

j (x)dx. ()

To evaluate the previous integral accurately, we present the Jacobi-Gauss-Lobatto quadra-
ture. For any φ ∈ SN+(–, ),

∫ 

–
w(α,β)(x)φ(x)dx =

N∑
j=

�
(α,β)
N ,j φ

(
x(α,β)N ,j

)
, ()

where SN (–, ) is the set of polynomials of degree less than or equal toN , x(α,β)N ,j ( ≤ j ≤ N )
and �

(α,β)
N ,j ( ≤ j ≤ N ) are the nodes and the corresponding Christoffel numbers of the

Jacobi-Gauss-Lobatto quadrature formula on the interval (–, ), respectively.
In accordance to (), the coefficients aj(t) in terms of the solution at the collocation

points can be approximated by

aj(t) =

hj

N∑
i=

P(α,β)
j

(
x(α,β)N ,i

)
�

(α,β)
N ,i u

(
x(α,β)N ,i , t

)
. ()
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Therefore, () can be rewritten as

u(x, t) =
N∑
j=

(

hj

N∑
i=

P(α,β)
j

(
x(α,β)N ,i

)
P(α,β)
j (x)� (α,β)

N ,i u
(
x(α,β)N ,i , t

))
, ()

or equivalently

u(x, t) =
N∑
i=

( N∑
j=


hj
P(α,β)
j

(
x(α,β)N ,i

)
P(α,β)
j (x)� (α,β)

N ,i

)
u
(
x(α,β)N ,i , t

)
. ()

Furthermore, if we differentiate () once, and evaluate it at all Jacobi-Gauss-Lobatto col-
location points, we can write the first spatial partial derivative in terms of the values at
theses collocation points as

ux
(
x(α,β)N ,n , t

)
=

N∑
i=

( N∑
j=


hj
P(α,β)
j

(
x(α,β)N ,i

)(
P(α,β)
j

(
x(α,β)N ,n

))′
�

(α,β)
N ,i

)
u
(
x(α,β)N ,i , t

)
,

n = , , . . . ,N , ()

or shortened to

ux
(
x(α,β)N ,n , t

)
=

N∑
i=

Aniu
(
x(α,β)N ,i , t

)
, n = , , . . . ,N , ()

where

Ani =
N∑
j=


hj
P(α,β)
j

(
x(α,β)N ,i

)(
P(α,β)
j

(
x(α,β)N ,n

))′
�

(α,β)
N ,i . ()

Similar steps can be applied to the second spatial partial derivative to get

uxx
(
x(α,β)N ,n , t

)
=

N∑
i=

( N∑
j=


hj
P(α,β)
j

(
x(α,β)N ,i

)(
P(α,β)
j

(
x(α,β)N ,n

))′′
�

(α,β)
N ,i

)
u
(
x(α,β)N ,i , t

)

=
N∑
i=

Bniu
(
x(α,β)N ,i , t

)
, n = , , . . . ,N , ()

where

Bni =
N∑
j=


hj
P(α,β)
j

(
x(α,β)N ,i

)(
P(α,β)
j

(
x(α,β)N ,n

))′′
�

(α,β)
N ,i . ()

In the proposed Jacobi-Gauss-Lobatto collocation method, the residual of () is set to
zero at N –  of Jacobi-Gauss-Lobatto points, moreover, the boundary conditions () will
be enforced at the two collocation points – and . Therefore, adopting ()-(), enable
one to write ()-() in the form:

ün(t) = ε
(
un(t)

)θ + εun(t) + ζ

(


B –A

) N∑
i=

Bniui(t), n = , . . . ,N – , ()
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where

uk(t) = u
(
x(α,β)N ,k , t

)
, k = , . . . ,N – .

This provides a (N – ) system of second-order ordinary differential equations in the ex-
pansion coefficients aj(t), namely

ün(t) = ε
(
un(t)

)θ + εun(t) + ζ

(


B –A

)
(N–∑

i=

Bniui(t) + d̃n(t)

)
, ()

where

dn(t) = Ang(t) +AnNg(t),

d̃n(t) = Bng(t) + BnNg(t).

This means that problem ()-() is transformed to the following system of ordinary dif-
ferential equations (SODEs):

ün(t) = ε
(
un(t)

)θ + εun(t) + ζ

(


b – a

)
(N–∑

i=

Bniui(t) + d̃n(t)

)
, ()

subject to the initial values

un() = f
(
x(α,β)N ,n

)
, n = , . . . ,N – ,

u̇n() = f
(
x(α,β)N ,n

)
, n = , . . . ,N – .

()

Finally, ()-() can be rewritten into a matrix form of N –  second-order ordinary dif-
ferential equations with their vectors of initial values:

ü(t) = F
(
t,u(t)

)
,

u() = f, ()

u̇() = f,

where

ü(t) =
[
ü(t), ü(t), . . . , üN–(t)

]T ,
f =

[
f

(
x(α,β)N ,

)
, f

(
x(α,β)N ,

)
, . . . , f

(
x(α,β)N ,N–

)]T ,
f =

[
f

(
x(α,β)N ,

)
, f

(
x(α,β)N ,

)
, . . . , f

(
x(α,β)N ,N–

)]T ,
and

F
(
t,u(t)

)
=

[
F

(
t,u(t)

)
,F

(
t,u(t)

)
, . . . ,FN–

(
t,u(t)

)]T ,
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where

Fn
(
t,u(t)

)
= ε

(
un(t)

)θ + εun(t) + ζ

(


b – a

)
(N–∑

i=

Bniui(t) + d̃n(t)

)
.

Remark . It is well known that the Legendre polynomials, the Chebyshev polynomials
of the first, second, third and fourth kinds, and the ultraspherical polynomials are special
cases of the Jacobi polynomials. Therefore, this work covers all the previous mentioned
polynomials. More specifically, Legendre, Chebyshev and ultraspherical spectral colloca-
tion methods can be obtained as special cases from the proposed method.

3.2 System of differential equations in time
This subsection presents the implicit Runge-Kutta of fourth order investigated in this
study and difference between the measured value of approximate solution and its exact
value. One of the most important family of implicit and explicit iterative finite differ-
ence methods for the approximation of solutions of ordinary differential equations is the
method of implicit Runge-Kutta of fourth order. The SODEs () can be solved by using
the implicit Runge-Kutta of fourth order

ui(t) = ui–(t) +
h

(k + k + k + k), ()

where

kl = hF

(
ti + cih,ui +

s∑
j=

aljkj

)
. ()

Thus, we can calculate the values of ui, i = , . . . ,n for any time t and then the approximated
solution () of the PDEs () can be obtained.
The difference between the measured or inferred value of approximate solution and its

exact value (absolute error) is given by

E(x, t) =
∣∣u(x, t) – ũ(x, t)

∣∣, ()

where u(x, t) and ũ(x, t) are the exact and approximate solutions at the point (x, t), respec-
tively. Moreover, the maximum absolute error is given by

ME =max
{
E(x, t) : ∀(x, t) ∈ D× [,T]

}
. ()

4 Numerical results
This section considers three numerical examples to demonstrate the accuracy and appli-
cability of the proposed method in the present paper. Comparison of the results obtained
by adopting different choices of the two Jacobi parameters α and β reveals that the present
method is very convenient for all choices of α and β and produces highly accurate solu-
tions to the Phi-four equations.

http://www.boundaryvalueproblems.com/content/2013/1/87
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Example  As a first example, we consider the nonlinear time-dependent Phi-four equa-
tion in the form

utt = λuxx + λu – λu, (x, t) ∈D× [,T], ()

subject to the boundary conditions

u(A, t) =
λ

λ

(
 – tanh

[√
λ

(ν – λ)
(A – νt)

])
,

u(B, t) =
λ

λ

(
 – tanh

[√
λ

(ν – λ)
(B – νt)

])
,

()

and the initial conditions

u(x, ) =
λ

λ

(
 – tanh

[√
λ

(ν – λ)
(x)

])
, x ∈D, ()

ut(x, ) =
νλ

λ

(√
λ

(ν – λ)
tanh

[√
λ

(ν – λ)
(x)

]
sech

[√
λ

(ν – λ)
(x)

])
,

x ∈ D. ()

If we apply the generalized tanh method [], then the exact solution of () is

u(x, t) =
λ

λ

(
 – tanh

[√
λ

(ν – λ)
(x – νt)

])
. ()

Maximum absolute errors of () subject to () and () are introduced in Table  using
the J-GL-C method for with various choices of N , α and β in the interval [, ], while the
absolute errors of problem () are presented in Table  for α = β = 

 , λ = λ = λ =  and
N =  with different values of (x, t) in the interval [, ].
In Figure , we see that the approximate solution and the exact solution for different

values of t (, . and .) of problem () are completely coinciding in the case of α =
β = 

 , λ = λ = λ = , ν =  and N = . Moreover, the approximate solution of problem
 where α = –β = 

 , λ = λ = λ = , ν =  and N =  is plotted in Figure , while the

Table 1 Maximum absolute errors with A = 0, B = 1 and various choices of N, α and β , for
Example 1

N α β ME

4 0 0 1.02× 10–4

8 7.52× 10–10

12 2.96× 10–10

4 1
2

1
2 1.67× 10–4

8 1.40× 10–9

12 3.00× 10–10

4 – 1
2 – 1

2 6.67× 10–5

8 2.96× 10–10

12 2.84× 10–10

http://www.boundaryvalueproblems.com/content/2013/1/87
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Table 2 Absolute errors with A = 0, B = 10, α = β = 1
2 , N = 24 and various choices of x, t, for

Example 1

x t E

0 0.1 3.08× 10–10

1 5.33× 10–11

2 4.53× 10–11

3 2.13× 10–11

4 4.37× 10–11

5 4.37× 10–11

6 3.57× 10–11

7 6.56× 10–11

8 4.77× 10–11

9 7.96× 10–11

10 3.08× 10–10

x t E

0 0.2 2.87× 10–10

1 5.12× 10–11

2 2.04× 10–11

3 2.96× 10–11

4 7.97× 10–12

5 2.45× 10–11

6 2.63× 10–11

7 4.35× 10–11

8 1.87× 10–11

9 4.43× 10–11

10 2.87× 10–10

Figure 1 The approximate and exact solutions for different values of t (0, 0.5 and 0.9) of problem (32)
with α = β = 1

2 , λ1 = λ2 = λ3 = 1, ν = 2 and N = 24.

absolute error of () with α = β = – 
 , λ = λ = λ = , ν =  and N =  is displayed in

Figure . This assertion that the obtained numerical results are very accurate and compare
favorably with the exact solution.

Example  Consider the Phi-four equation

utt = uxx + u – u, (x, t) ∈D× [,T], ()

subject to initial-boundary conditions

u(A, t) = tanh

[√


( – ν)
(A – νt)

]
,

u(B, t) = tanh

[√


( – ν)
(B – νt)

]
,

()

http://www.boundaryvalueproblems.com/content/2013/1/87
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Figure 2 The approximate solution of (32) with α = –β = 1
2 , λ1 = λ2 = λ3 = 1, ν = 2 and N = 20.

Figure 3 The absolute error of (32) with α = β = – 1
2 , λ1 = λ2 = λ3 = 1, ν = 2 and N = 4.

u(x, ) = tanh

[√


( – ν)
(x)

]
, x ∈D, ()

ut(x, ) = tanh

[√


( – ν)
(x)

]
, x ∈D. ()

The exact solution of this equation is

u(x, t) = tanh

[√


( – ν)
(x – νt)

]
. ()

http://www.boundaryvalueproblems.com/content/2013/1/87
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Table 3 Maximum absolute errors with A = 0, B = 1 and various choices of N, α and β , for
Example 2

N α β ME

4 0 0 7.38× 10–4

8 1.26× 10–7

12 7.20× 10–12

4 1
2

1
2 11.55× 10–4

8 2.49× 10–7

12 1.82× 10–11

4 – 1
2 – 1

2 4.61× 10–4

8 4.39× 10–8

12 3.17× 10–12

Table 4 Absolute errors with A = 0, B = 1, –α = β = 1
2 , N = 12 and various choices of x, t for

Example 2

x t E

0 0.1 1.97× 10–9

0.1 6.05× 10–11

0.2 6.21× 10–10

0.3 5.64× 10–10

0.4 1.04× 10–9

0.5 8.99× 10–10

0.6 1.31× 10–9

0.7 1.18× 10–9

0.8 1.42× 10–9

0.9 7.16× 10–10

1 7.89× 10–11

x t E

0 0.2 1.12× 10–10

1 1.49× 10–10

0.2 6.11× 10–10

0.3 6.01× 10–10

0.4 8.29× 10–10

0.5 1.08× 10–9

0.6 1.03× 10–9

0.7 1.33× 10–9

0.8 7.60× 10–10

0.9 2.35× 10–10

1 4.47× 10–12

Figure 4 The approximate and exact solutions for t = 0.5 of problem (37) with α = β = – 1
2 , ν = 0.01

and N = 16.
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Figure 5 The approximate solution of problem (37) with α = β = – 1
2 , ν = 0.01 and N = 16.

Figure 6 The absolute error between the exact and approximate solutions of problem (37) where
α = β = 0, ν = 0.01 and N = 12.

Table  lists the maximum absolute errors of () subject to () and (), using the
J-GL-Cmethod for with various choices ofN , α and β . Moreover, in Table , we introduce
absolute errors using the J-GL-C method for the special value –α = β = 

 (Chebyshev
polynomials of the third kind) and N = .
In case of α = β = – 

 (Chebyshev polynomials of the first kind), we display in Figure 
the approximate solution and the exact solution at t = . of problem () ν = . and
N = . In Figure , we display the approximate solution for x ∈ [–, ] and t ∈ [, ] with
α = β = – 

 , ν = . and N = . Moreover, the absolute error between the exact and

http://www.boundaryvalueproblems.com/content/2013/1/87
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Table 5 Maximum absolute errors with A = 0, B = 1, and various choices of N, α and β , for
Example 3

N α β ME

4 0 0 6.59× 10–4

8 2.20× 10–7

12 1.36× 10–8

4 1
2

1
2 8.66× 10–4

8 4.35× 10–7

12 1.36× 10–8

4 – 1
2 – 1

2 4.40× 10–4

8 7.74× 10–8

12 7.56× 10–9

Table 6 Absolute errors with A = 0, B = 1, α = β = –1
2 , N = 12 and various choices of x, t for

Example 3

x t E

0 0.1 3.71× 10–9

0.1 4.08× 10–9

0.2 3.95× 10–9

0.3 3.04× 10–9

0.4 2.05× 10–9

0.5 1.92× 10–9

0.6 2.32× 10–9

0.7 1.56× 10–9

0.8 2.35× 10–10

0.9 1.81× 10–9

1 2.04× 10–10

x t E

0 0.2 3.28× 10–9

0.1 4.64× 10–9

0.2 5.20× 10–9

0.3 4.28× 10–9

0.4 3.05× 10–9

0.5 3.48× 10–9

0.6 5.31× 10–9

0.7 5.00× 10–9

0.8 1.20× 10–9

0.9 2.16× 10–9

1 4.49× 10–10

approximate solutions of problem () with α = β =  (Legendre polynomials), ν = .
and N =  is plotted in Figure .

Example  Consider the nonlinear time-dependent one-dimensional Phi-four equation
in the form

utt = uxx + u – u, (x, t) ∈D× [,T], ()

subject to the initial-boundary values

u(A, t) = 
(
 – tanh

[


(A – νt)

]) 

,

u(B, t) = 
(
 – tanh

[


(B – νt)

]) 

,

()

u(x, ) = 
(
 – tanh

[


(x)

]) 

, x ∈D,

ut(x, ) = ν

(
 – tanh

[


(x)

]) –

tanh

[


(x)

]
sech

[


(x)

]
, x ∈D.

()

http://www.boundaryvalueproblems.com/content/2013/1/87
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Figure 7 The approximate solution and the exact solution for t = 0.5 of problem (42) where
α = β = – 1

2 , ν = 0.01 and N = 16.

The exact solution using generalized tanh method is

u(x, t) = 
(
 – tanh

[


(x – νt)

]) 

. ()

Maximumabsolute errors of () subject to () and () are introduced inTable  using
the J-GL-C method for with various choices of N , α and β , while the absolute errors are
presented in Table  for α = β = 

 (Chebyshev polynomials of the second kind) andN = 
at different values of (x, t).
In Figure , we see that the approximate solutions and the exact solutions for three values

of t (t = ,., .) of problem () are completely coincide for all values of x in the interval
x ∈ [–, ]. The approximate solution is plotted in Figure  with values of parameters listed
in its caption, and the absolute error using J-GL-C method is displayed in Figure . From
the presented results, it can be concluded that the numerical solutions are in excellent
agreement with the exact solutions.

5 Conclusions
In this paper, we have implemented the Jacobi-Gauss-Lobatto collocation method with
different parameters, α and β in the Jacobi family to solve the nonlinear time-dependent
Phi-four problem. The Jacobi collocation method in space reduces Phi-four equation to
a system of second-order ordinary differential equations in time, which can be solved by
fourth-order implicit Runge-Kutta method. The numerical results demonstrate that the
proposed J-GL-C method is accurate and efficient. Comparison of the results obtained by
adopting different choices of the two Jacobi parameters α and β reveals that the present
method was very convenient for all choices of α and β , and produces highly accurate so-
lutions to the nonlinear Phi-four equations.

http://www.boundaryvalueproblems.com/content/2013/1/87
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Figure 8 The approximate solution of problem (42) where α = β = 0, ν = 0.01 and N = 16.

Figure 9 The absolute error between the exact and approximate solutions of problem (42) where
α = β = 1

2 , ν = 0.01 and N = 12.
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