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Abstract

In the framework of the small perturbations theory, we study the incompressible
inviscid flow of a uniform stream past an oscillatory/undulatory thin hydrofoil
including floor effects. A Green function is used to deduce the integral equation for
the jump of the pressure past the foil. The integral equation is numerically solved and
the average drag coefficient is calculated. For some wings there appears a propulsive
force and this force increases when the hydrofoil is close to the floor.
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Introduction

In the present paper we study the small-amplitude oscillatory/undulatory motion of an in-
compressible fluid past a thin flexible plate which performs prescribed oscillations in the
presence of a wall (floor) with which it is parallel in its undisturbed state, and relative to
which it is moving with constant speed. We shall limit the analysis to bodies large enough
so that the Reynolds number is large. As is stated by Eloy et al. in [1], when the flexible
surface has a typical speed of several body lengths per second, the flow can be consid-
ered irrotational, meaning that the flow vorticity is concentrated in thin boundary layers
adjacent to the body surface and in a thin wake (vortex sheet) behind the body. Since the
effects of viscosity manifest inside the thin boundary layers, we may treat the fluid as invis-
cid in the rest of the flow domain. Recalling Lagrange-Cauchy’s theorem which states that if
the flow is potential in a certain configuration, it remains potential in every configuration
arising from the initial one, we deduce that the theory of the unsteady motion of lifting
wings as well as the theory of potential flow can be successfully utilized (see the papers of
Carabineanu [2-6], Dowell and Hall [7], Dragos [8], Homentcovschi [9, 10], Lighthill [11],
Street [12], Taylor [13], Wu [14, 15], Watkins et al. [16]).

The periodic motion of a flexible foil is oscillatory if the foil or parts of it remain rigid
during the motion. The undulatory motion involves a traveling wave down the foil (Street
[12]). As we know from aerodynamics and hydrodynamics studies (Dragos and Cara-
bineanu [17, 18], Dragos et al. [19]), the hydrodynamic coefficients of a hydrofoil are in-
fluenced by the presence of the floor. The aim of the paper is to predict the drag or the
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Figure 1 The flexible hydrofoil and the vortex sheet.

thrust enhancement generated by the presence of the floor. We employ like in [2-6, 8,
9] the linearized Euler equations for the incompressible flow. For taking into account the
floor effect we use the Green function of the Laplacean for the Neumann problem in the
half-space. We use the integral representation for the harmonic functions and the slipping
condition to obtain an integral equation for the jump of the pressure over the hydrofoil.
In order to discretize the integral equation, we split the kernel of the equation into several
kernels for which we provide appropriate approximation formulas depending on the type
of singularity of the kernel. Assuming that the hydrofoil is subjected to harmonic oscil-
lations, we simplify the integral equation making it independent of time. By solving the
discretized integral equation we calculate the jump of the pressure over the wing.

After obtaining the pressure field, the average drag is calculate by performing a numeri-
cal integration. We study an example of undulatory motion of the flexible thin delta wing.
When the frequency surpasses a critical value, the drag becomes negative i.e. it appears
a propulsive force. We notice that the distance between the wing and the floor influences
the drag and the thrust.

The statement of the problem
We consider the continuity and Euler equations for incompressible flow in a fixed Carte-
sian frame of reference Oxyz having the versors i, j, k. At the moment ¢, the hydrofoil S(¢)

(see Figure 1) has the equation:

z—h(x+ Vot,y,£) =0, (x,9,0) € D(z). (1)

D(t) is the projection of the hydrofoil onto the Oxy plane. We assume that

%
ox

«1 oh «1 oh «1 (2)
’ ay ’ at

and that the hydrofoil moves into the Ox direction, producing small perturbations v =

ui + vj + wk of the vanishing velocity of the surrounding fluid.
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Let — Vi be the average velocity of the hydrofoil S(¢) i.e. the velocity of D(¢). In a point
of D(t) we have

x(t) = x* — Vo, y(t) = %, (x*,y*) € D* = D(0). 3)

The velocity of an arbitrary point of (x,y,z) € S(¢) is

dz dh(x(t), y,t)
V=-Voi+—k=-Voi+ ——""1 4
ol + 7 ol + It S (4)
and the normal vector on S(¢) is
oh, 0oh
n=-—i-—j+k ®)
ax 0y
We linearize the slipping condition on the two sides of S(¢)
(v-V)-n=0, (6)
and we obtain
oh dh
w(x(t),y, +0, t) =V ™ (x(t),y, t) + 7 (x(t),y, t), (x(t),y, O) € D(¢). (7)
We consider the floor
F={(xy-x)®xy) eR%x >0}, (8)
where the slipping condition is also imposed:
wx,y,—x,t) = 0. 9

Let X(¢) represent the thin vortex wake behind the hydrofoil S(¢). In the small-amplitude
approximation theory the wake remains planar (see the demonstration of Homentcov-
schi in [10]). We linearize the equations of motion around the rest state (neglecting the
products of the perturbation quantities) in the domain E = {(x,7,z,t);t € R, (x,7,2) € Q(¢)}
where Q(t) = {(x,9,2) € R%z > —x} - (S(t) U 2(¢)) and we have

u Jdv ow
— t+— 4+ —=
ox 0y 0z
0 10
_M+__p:0’
dt  po Ix
d 10
_V+__p=0
at  po dy

0,

’

ow 19dp

—+ =0,
ot L0 dz

where p is the pressure and py is the constant density of the fluid. The aim of the present
paper is to use the boundary conditions (7), (9), and the partial differential equations (10)
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for obtaining an integral equation for the jump of the pressure across S(¢). In order to
ensure the uniqueness of the solution we shall impose a certain periodic in time behavior
to the unknowns.

The Green function. The integral equation of the problem
Eliminating u, v, w, from (10) we get the Laplace equation

Ap=0. (11)

Let us consider the Green function of the Laplacean for the Neumann problem in the
half-space z > —x:

1
G 2V, %5 /) /1 / =
(xyzx 4 Z) A |(x—x)i+ (y—y)j + (z - 2)k|
1
- - : : (12)
Al —x)i+ (@ —9y)j+(z+2 +2x)k|

Obviously on the floor F

aG Y, —Xo ,r ,y /
Wy, —x;%,y,2) _ 13)

v 4

We assume that the harmonic function p vanishes at infinity and we have the integral

representation formula

, , 0G4,y ,2)
p(x,y,z,t)=ff [p(x,y/,z,t)#_...
9Q(t) on

p,y,7,t)

o G(x,y,z;x,y,z):| do, (14)

where % stands for the outward normal derivative and 9Q(¢) = FUS*(£) US~ (1) U Z*(£) U
¥7(¢). Here S*(¢) and S~ () are, respectively, the upper face and the lower face of S(¢) and
similarly for ¥(¢). As usual in the small perturbation theory, we replace S(¢) with D(¢) and
we assume that X(¢) is planar (as Homentcovschi stated in [10]). Hence

0 9 0 0 a| 0 (15)
onlprwuste 9z’ onlp-wus-v) 9z’ onlr 87’

From the boundary condition (7) and from the fourth equation (10) we deduce that
0
il -0. (16)
on D+ (U +()UD-(HUS~(£)

From (9) it follows that
0
Pl o, (17)
onlr

Since the pressure is continuous over X (), from (9)-(14) we obtain

px,y,2,t) = — / /( )[P(x’,y’, .,_o,t) _P(x/,y/, -0, t)]w dx'dy.  (18)
D(t

Page 4 of 15
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Taking into account that

1
9z —)i+ (y=y)j+ (2 -2k
d 1
"R =it G-+ @K 19
1
oz [(x—a)i+(y—9)j+(z+2 +2x)k|
ad 1
"oz |(x—x)i+(y—y)j+(z+2 +2))k|

we get from the fourth equation of (10) and from (18)

w(x, y,z,t)

1 ! 92 1
:_/ f/ f(x/,y/,t)—[ - - —
47 J o) Jow) 022 [ |(x = )i+ (y—y)j + (z—2)k]|
1

dax'dy dt’, (21)

[x=a)i+(y—9)j+(z+2 +2x)l(|]

Wheref(x,y; t) = p(x,y,+o,t)/)_()p(x'y—’_0,t) .

In order to obtain a domain of integration that does not vary in time, we shall introduce
(like in [5] and [6]) and a new system of coordinates O*x*y*z*, related to the lifting wing.
We consider the Galilean transformations

x* =x+ Vo, ¥ =y, Zf =z =t (22)
We also denote
x*=x, x* =x + Vot y* =y, M=axt—xt = V(e -t). (23)
In the new system of coordinates, the equation of the flexible hydrofoil is

Zt = (x%, ", ) = hix + Vot, p,t) (24)

and the perturbation velocity is

v* (x*,y*, t*) =v(x + Vot, 3, ¢), v =ufi+ v+ w'k (25)
Obviously,
on* dh
= —, 26
ot* dt ( )

Let D* be the projection of the lifting surface onto the O*x*y* plane. Considering the
lifting surface subject to harmonic oscillations, we impose

W (%", %, %) = b (x*, %) exp(iwt*). (27)

Page 5 of 15
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In (27) h*(x*, y*) may have complex values. By convention /*(x*,y*) exp(iwt*) means the
real part of I*(x*, y*) exp(iwt*). For the sake of simplicity, we shall calculate (as is usual in
the oscillatory hydrofoil theory) complex values for the jump of pressure and then we shall
consider the real part.

We also have

5" 17) = f (%", 5") exp(iot”). (28)

From (7), (26), and (27) we get

*

w* (x*,y*, 40, t*) =V gh exp(ia)t*) + iwh* (x*,y*) exp(ia)t*). (29)

x*

Performing the change of variables («',y,¢') — (x*,5*, A*) and considering z* — 0, from
(28) and (29) it follows that

oh* sk (koK) 1 © Kk lwxg
e o) [ [ (5)

/’“O iw\* 1
X ex
. p Vo (AF2 4 y52)302

8x* -2 -y
A2+ g2 1 Ay 2)52

Vo

+ ( ) dk*} dx"™ dy™* (30)
with x§ = x* —x™, y§ = y* —*. The sign © indicates the finite part in the Hadamard sense
of the integral. Denoting by a the half-span of the wing, we introduce the dimensionless
variables

(x’yyzr)\')g)an¢h!t): (;7 T T 0T T Ty Ty T (31)

We reuse the notations (x,¥,z, A, x,/,t) which must not be confounded with the no-
tations for the dimensional variables corresponding to the fixed frame Oxyz. Let D =
{(x,5,0); (ax,ay, 0) € D*}. The velocity field (with respect to the fixed frame) is V = Vpi+v,
where v = ui + vj + wk is the perturbation velocity of the fluid. Introducing the dimen-

sionless functions and variables @ = “‘;—Z (reduced frequency), f (x,9) = W, XxXo=x—§&,
yo =y —n, and taking into account the linearized slip condition, the integral equation (30)
becomes

oh(x,

Y + ioh(x,y)

X
®~
- [ | Femention

N 1 8x> 227
X |:/_oo exp(zwk)((Az e + G242+ dg ) d) | d& dn. (32)

We discretize the hypersingular integral equation (32) in order to solve it numerically.
In Appendix A we split the kernel into several kernels and describe the type of singularity

for each one. In Appendix B, depending on the kind of singularity, we deliver appropriate

Page 6 of 15
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Figure 2 Pressure jump past the flexible hydrofoil.

approximation formulas. In order to ensure the uniqueness of the solution, we impose a

certain behavior of the pressure jump in the vicinity of the leading edge.

The propulsive force. Numerical results. Floor effects

We introduce the pressure jump coefficient

Colx,3,8) = -2 Re[f(x,y) exp(iwt)]. (33)
We consider the undulatory delta hydrofoil whose equation is

0=2z"—ax* exp(iwlx* + iwt); (x*,y*) e D* (34)
whence, using nondimensional coordinates,

h(x,y) = axexp(iorx), @y =aw;;  (x,y) €D. (35)
We used the values @ = /6, @ = —27/3 and the nondimensional distances to floor x =1
and x =10. In Figure 2 we present (as three-dimensional surfaces with contour plots be-

neath the surface) the flexible hydrofoil and the pressure jump coefficient fields (divided

by 2«) for the nondimensional moments ¢ € {0, %, %} where T = 27” = % is the nondi-

mensional period of oscillation.

We are also interested in calculating the drag coefficient

CD(t)://l;nxCp(x,y,t)dxdy. (36)

Since

Ny =—a Re[(l + iyx) exp(iox + i&)t)], (37)
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Average drag coefficient

25 i i i i
0 0.5 1 1.5 2 25 3 35
Frequency

Figure 3 Average drag coefficient for the oscillatory hydrofoil.

we deduce
Cp(t) =2« / / Re[(l + iy x) explianx + ic?)t)] Re[f(x,y) exp(icbt)] dxdy. (38)
D

We introduce and we calculate the average drag coefficient:

s 1 [T
CDZ?/(; Cp(t)dt

= / /L; {Re[f(x,y) exp(~i@x)] + @1 Im[f (x, y) exp(~i@nx) ] } dx dy. (39)

In Figure 3 we present the average drag coefficient (divided by o) against the reduced
frequency for the delta hydrofoil in ground effects. We consider @ = 7/6, @, = -7 /2. We
notice that if the reduced frequency surpasses a certain value, the average drag coefficient
is negative, i.e. it appears a propulsive force. We also notice that the propulsive force is
bigger for x =1 (dash dot line) than for x =10 (continuous line) i.e. it is bigger when the

oscillatory wing is closer to the floor.

Appendix A: The singularities of the kernel of the integral equation

For solving numerically the integral equation (32) we have to discretize the left hand mem-
ber in order to obtain a linear algebraic system of equations. To this aim we split, like in
[5] and [6], the kernel

X0

L 8x* 2% )dk (40)

N(x,y;§,n) =
(x,3:€,1) / 02+ 322 T 02 492 + dx2)52

—00

exp(idA) <

into several kernels in order to show the kind of singularities we are dealing with and to

find afterwards the most convenient approximation formulas.
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We have step by step

*0 15) *0 jwo)) —1 1

/ 76?)002) 3)/2 dx = / 76?)(“02)2 75 dh+ = (1 - ), (41)
—00 ()\’ +y0) —00 ()" +w yO) yO /x(2)+yg
“ exp(i@)) - 1 %0 exp(idr) — 1 % exp(—idh) — 1

/ 7&:){2(1(0 2) =y Ak = / Lz(lw 2) 5 Ah+ / 7@(% le )3 5= Ak, (42)
e (A +yo) / o (& +yo) / 0 (A +y0) /
 exp(—idA) —1 1 /°° COS WA /“ sin WA

——————dA=——+ ——————dA—1i ————dA. 43
/(; (A2 +y2)32 w2 Jo (4R o (A2+92)3" (43)

The integrals from the right hand part of (43) represent the sine and cosine Fourier trans-

forms of (A2 + y3)732 and in [20] one shows that

©  CcosdA @
2 a4 = o K(@lol), 44
/o G vy = gt @bel) (44)
®  sinoi T O
i = = — (L (@lyol) = L (@lyol))- 45
/0 (A2 +92)32 2|y0|( 1(a)|y0|) 1(60|J’0|)) (45)

L_y, L_, are Strouve functions and 11, I, Kj, K, are Bessel functions. We also have

%0 exp(ioA) — 1
————dA
/(; (AZ +y%)3/2

/xo exp(ior) — 1 — i@ + @*A%/2 " i@
= + —
0 (A2 +y5)%2 yol
~ ~2 ~2 ~
- e + il e ln(xo + /%02 +y(2)> + <% [0, (46)
(02 + y5)12  2(xo? +y5)V2 2 2
o 8xP -4 -y
€X la))\. —_—
/_oo T E SWROEE

X0 . 8X2_)‘2_ 2
=/ exp(zwk)zz—gom2 dx
0 (A2 +y5 +4x?)

Y cos(wA) N e sin(@A)
+12x 5, dA — 12ix 5
0 ()\2 + +4X2)5/2 0 ()LZ + 9 +4X2)5/2

> cos(wA) ,/DO sin(@A)
- —————d\ + ————d), 47
/0 ()\2 +y% +4‘)(2)3/2 l 0 ()\'2 +y(2) +4X2)3/2 ( )

o cos(@A) 1) -
./o (A2 + 92 +4x2)32 = Kl(a) y°+4x2)’ (48)

Vg + 4 x>

o cos(@A) 20 - [ )
/o (W21 92 + dx2)52 dh = 3 /2 21(2(a)\/y0+4x >, (49)
VYo +4x

~ .
/‘ sin(@A) g

o (A2+y5+4x2)32

- L[L,l(&),/yg+4x2) —Il(cb,/y(2)+4)(2)], (50)

2,/yh +4x2
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/OOO (A2 j;g(f)ilz)s/z dxr
i) Lo )] 2

From the previous calculations we deduce that we can split the kernel N(x,y;&,n) as

follows:

N(x’y;‘é;:: 77) :Nl(x’y;%-r Tl) +oe +Nl4(x’y;$r Tl): (52)

where

Ny =

1 ( X0 X0 ) N ( ) —l&)

“\—7—-) 2=

Yo vV x% +J’% %ol %ol v xo ‘U’o
(I)2 X0 a)

Ny =—1 1+—, N5 :———l 54

V= H(I)’o|)< +|x0|> AL GIRRERE0)) (54)

~2 1 ~2 ~ ~2 1
Ne=—2* _ N= Kl(w|y0|) L Ol om 1 (55)
2.2 492 1Yol vy 2 2 22
0 exp(iou) — 1 — iou + @*u®/2
Ns(x,y;é,n):/ W s R du, (56)
R
No(x,y;&,n) = exp(ioy) —————— 57
e = [ expti irser s 57)

Np=—2 K (@, [y2 + 4X2), (58)
VI +4x?

8“‘ 2
Ny = —2X g, (@,/yg + 4x2), (59)
2 2
VYo +4x

Nip(x,y;:6,m) = 2\/%[Ll (d)v V5 + 4)(2) -4 ((I)V V5 + 4)(2)]’ (60)

2"’2 iy 2
Nia(x,5:,7) = % [L-2(@y5%+4x7) - B(@)5% +4x?) | (61)
Nia(x,y;6,m) = o (Il(wlyol) 1(@lyol) + %) (62)

The integral equation becomes

1M o
—_— 5 10 Ni Y56, d d
n;//Df(S 1) exp(id€)N;(x, y; &, 1) d€ dn

= (% + idh(x, y)) exp(iwx). (63)

The kernels N; and N have strong singularities of order " . The kernel N3 has a polar

singularity. The kernels N, and N5 have integrable logarlthmlc singularities. Taking into

Page 10 of 15


http://www.boundaryvalueproblems.com/content/2014/1/104

Rapeanu and Carabineanu Boundary Value Problems 2014, 2014:104
http://www.boundaryvalueproblems.com/content/2014/1/104

account the series expansions of L 3, L_», I1, I, K3, K; we may easily prove that the kernels
N7, Nio, N11, N1z, Nis, N1 have no singularity and they are continuous functions. Ng, Ng,
Ny are also continuous functions. We notice that Ny = N = 0 for x¢ < 0.

Appendix B: The discretization of the integral equation
We consider the undulatory delta hydrofoil. The equations of the leading edge are

y+(x) = i%; x€[0,D]. (64)

In order to ensure the uniqueness of the solution of the integral equation, some analytical
results from [2] suggest to presume that there exists a continuous finite function g such

that f &,n) = ﬁ We have therefore
@ ~
[ [ Femexptiaeioyie,nde i

Y10 g - ( %o ) )
= FP — A L — _— dé ) dn, 65
/—1 % </hln 2 - bn? (i) o2 + 2 ol 5) (69)

where FP stands for the finite part of the hypersingular integral as it is introduced by Ch.
Fox in [21]. Since the inner integral vanishes for n = 1, we assume that

b
g(fﬂ?) ~ ( X0 X0 )
———explivg)| ———=-— ) d§
i VE B JB+ ol

= V1-12G(x,y 1), (66)

where G(x,y;n) is finite for n = +1. We consider on D a net consisting of the nodes (grid
points, control points) (x;,y;) = (%b, %), h=1,...,n,j=-h,~h+1,...,h— 1. For the hy-
persingular integral occurring in (65) we may use the quadrature formula for equidistant

control points given by Dumitrescu [22],

V1= 2G5 i _
/ 6 (;c)kzy’ D an = Y G353, (67)
- I

j=—n

Ay = —arccos(y))

\/1 J/+1 v Ci:
+arccos(yj.1) + ! 1 In| -V , (68)
-9 Vi =Y 1 —712 Gy
o VITY VI =Ty 1Y) (69)
= = —.
’ VI=y-J1+y+/1+y- /1=
We shall give a quadrature formula for calculating G(x, ;). Denoting
b .
-0, —h h-1,
By = Xp i <j< (70)
xh_ﬂ> VAS {_h’h_l}}

Page 11 of 15
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- {xh—f, —h<j<h-1,
thZ

xp— L, jel{-hh-1},

2n’

1, j=0,

&y =8@3)),  H()= {o, j <0,

we have

V1-7 G, 757))
g(g y] ~ X0 X0
exp(iwé)(i - —) d&
/by/ - b5 22 + 52 %ol

Xie — K Xk — Xpy
~ Z |:ghj exp(za)xhj)< ( / - =7
X

h=ljl+H{(j)
[ 7]
X —
o gz_bzy]?

whence it follows that

“ E}iDyjxi
Gy y;) =~ Z Buiks B = ——=

h=Ij+H () V1 —5,2
Ey = expiay) | In(w, + 2 - 577) = In(®y + /2, - 277 .

Xk — xh]‘ Xk — ﬁh/' )
_ | )

<\/(x/< = xn)* + 0= ))? 1k = %

—-h<j<h-1

Dyjy =

Finally we deduce

/ /D (6, m) explics€)N: e, 333 ) i

n h-1
~ (1)
= Z Z &N, hjki
h=1 j=—h

with
1)
Nhjkl = Alth/'kl~

For Ny (x,y;€,1) = yl%(l + o) we get

O~
f /D F(&,n) expliok)Na (35 &, n) d diy

o [ L[ SR
-« Yo \Jbinl /&2 —b*n?

—xy)* + (o, = 9))? k= |
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Assuming that [, LEn expliGE) e _ x2/b2 — n2G® (xx; 1), we have

bl Je

®~
/ /D (6, m) explics€ ) Na (e, 3,3 £ m) d di

wlb 3% — ﬂsz)(xk n) k1
= 2FP /_ . dn~2) Gl &) (80)

(xk:y])A
/b ) —
b by;
AEI'() o arccos( Y] ) + arccos< y’“)
/ Xk Xk
2 _ p242 2 _ p242 _ (k)
X Y Xy Vi1 byl i ‘ Cl(1+1 (81)
+ - - n
by; — by by;.1 — by / — &
y/ yl y/ 1 yl xl%_bzy? Cl/
® %k = by - \/xic+ By, = /% + by; - \Jx — by, 82)

b V% = by - /% + by + Jxi + by - /i~ by,
For calculating G (xx;;) we employ the quadrature formula

“ g(&, y,)eXp(lw%‘)

GOy = /
! Jxi/b2 =y bl 2
Z G ——— (83)

i=|jl+H(j) /b2

At last we find

* n -1
[ [ Fem ety dean=3" Y N, (34)
b h=1 j=—h
({() Ly . h<k
N =1 Rt (85)
0; h>k.

The singularities of the kernels N3, N4, N5 are weaker than & 7 . We replace these kernels
0

.o N3y2 Nu? N
with 3—y° 4—2% S—y" for obtaining approximation formulas similar to the formulas for Nj.

We get forp =3, 4, 5:
[ [ 7emexptaen . gise,nde dn
D

n i-1
= Z ZgijN%, (86)
i1 j=—i
Al](yl J// l/N ( . .
Y e S xk’y ,xm)’) 17!]1
NG =1 7 e (87)
0; i=j.
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The kernels Ng, N7, N3, No, N1o, N11, N12, Ni3, and N4 are continuous and we utilize the

approximation formulas

/ /D 7€) expliat )N, (xe, 5 £, n) d& dn

n h-1
ZZghz N p=6.. (88)
h=1 j=—h
NB) = EyN, (6035 %1,5)/n, p=6,...,14. (89)

For calculating N7 (xx, ¥;; X4, y;) we use the series expansions of the Bessel and Strouve
functions and we take into account that
- - QY1) +y(2)  midd
Ny (%, Y5 %y §)) = —————————— + ——, (90)
4 4
where ¥ (1) = —0.5772, ¥(2) = 0.4228. Ng(xk,yl;a_chj,yj) and Ng(xk,yl;xhj,y/) are integrals
which are evaluated numerically with the trapezoidal rule. For calculating the Bessel (Mac-
Donald) functions K; and K; we may utilize the series expansions. We may also uti-
lize the libraries offered by MATLAB. For calculating the kernels le(xk,yl;a_chj,yj) and
Nia(xk, 3 X, y;) we use the integral representations

2 _ 2 /2
L_i(x) - L(x) = M + i / exp(—xcos t)(sin ¢ — sin? t) dt, (91)
T T Jo

L_y(x) — Ir(x)

2 2xexp(—x) 2x2 72
=—— 4 m + il f exp(—xcos t)(sin ¢ —sin* t) dt. (92)
X 3 3 Jo
The integrals are evaluated numerically with the trapezoidal rule. The approximation for-
mulas for the kernels Nj, Ny, Ng, N7, Ng, No, Nio, N11, Ni2, Ni3, and Ny4 were also given
in [5] and [6]. The new approximation formulas for the l<err1els N3, Ny, N5 are given for

the first time herein. Denoting Ny = N, ,(,

},)d +N, ;% +o+ NU P kl , we obtain, discretizing the

two-dimensional integral equation (32):

— Z Zgh;Nthl <ah(xk’y D, i, yl)) explidouy). (93)

h=1 j=—h d
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